Thermodynamic Database Update to Model Synthetic Chelating Agents in Soil Systems

Authors

  • Felipe Yunta Autonoma University of Madrid
  • Sandra López-Rayo Departamento de Química Agrícola, Facultad de Ciencias, Universidad Autónoma de Madrid
  • Juan J Lucena Departamento de Química Agrícola, Facultad de Ciencias, Universidad Autónoma de Madrid

DOI:

https://doi.org/10.6000/1929-5030.2012.01.01.6

Keywords:

chelating agents, iron, database, VMinteq, chemical equilibrium program, EDDHA, EDTA, iron chelates, fertilizers

Abstract

Poliaminocarboxylate and polyaminophenolcarboxylate chelating agents, being the most representatives EDTA and o,o-EDDHA, have been profusely studied by our research team during the last 25 years because they are synthetized to be mainly used as micronutrient fertilizers to correct nutritional disorders affecting largely on crop yields placed under Mediterranean conditions. In the last years new chelating agents were designed and synthesized and the most of them were proposed to be included in the current European Directive on Fertilizers. Overall chelating agent properties, including equilibrium in soil by modeling, should be taken in account in order to check the iron chlorosis correction ability. Chemical speciation programs such as MINTEQA2, and most recently VMinteq, are being successfully used as tools to predict the behavior of each novel chelating agent in soil-plant system. Nowadays just one polyaminophenolcarboxylate chelating agent (o,o-EDDHA) is available into a VMinteq-compatible database (Lindsay's database) whereas more than seven of these type of products are authorized by European fertilizers normative to be used as micronutrient fertilizers. Therefore the aim of this work was the database updating to include all chelating agents related to o,o-EDDHA and EDTA whose complete characterization is performed and published elsewhere. Once database is updated, further modelization studies such as equilibrium reactions and adsorption isotherms with solid phase may be readily performed to get fundamental information and understand the reactivity of these recalcitrant polyaminophenolcarboxylates in soils.

Author Biography

Felipe Yunta, Autonoma University of Madrid

Departamento de Geología y Geoquímica

References


[1] Kim HJ, Kim T, Lee M. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules. Acc Chem Res 2011; 44: 72-82. http://dx.doi.org/10.1021/ar100111n
[2] Kabir-ud-Din, Siddiqui US, Kumar S, Dar AA. Micellization of monomeric and dimeric (gemini) surfactants in polar nonaqueous-water-mixed solvents. Coll Polym Sci 2006; 284: 807-12. http://dx.doi.org/10.1007/s00396-005-1449-4
[3] Kumar S, Parveen N, Kabir-ud-Din. Effect of urea addition on micellization and related phenomena. J Phys Chem B 2004; 108: 9588-92. http://dx.doi.org/10.1021/jp036552w
[4] Mitra D, Chakraborty I, Bhattacharya SC, Moulik SP. Interfacial and solution properties of tetra alkyl ammonium bromides and their sodium dodecyl sulfate interacted products: a detailed physicochemical study. Langmuir 2007; 23: 3049-61. http://dx.doi.org/10.1021/la062830h
[5] Kabir-ud-Din, Koya PA. Micellar properties and related thermodynamic parameters of the 14-6-14, 2Br gemini surfactant in water + organic solvent mixed media. J Chem Eng Data 2010; 55: 1921-9. http://dx.doi.org/10.1021/je900894x
[6] Menger FM, Keiper JS. Gemini surfactants. Angew Chem Int Ed 2000; 39: 1906-20.
[7] Zana R. Dimeric and oligomeric surfactants. behavior at interfaces and in aqueous solution: a review. Adv Coll Interface Sci 2002; 97: 205-53. http://dx.doi.org/10.1016/S0001-8686(01)00069-0
[8] Borse M, Sharma V, Aswal VK, Goyal PS, Devi S. Effect of head group polarity and spacer chain length on the aggregation properties of gemini surfactants in an aquatic environment. J Coll Interface Sci 2005; 284: 282-8. http://dx.doi.org/10.1016/j.jcis.2004.10.008
[9] Laatiris A, El Achouri M, Infante MR, Bensouda Y. Antibacterial activity, structure and cmc relationship of alkanediyl ,-bis(dimethylammonium bromide) surfactants. Microbiol Res 2008; 163: 645-50. http://dx.doi.org/10.1016/j.micres.2006.09.006
[10] La Mesa C. Dependence of critical micelle concentrations on intensive variables: a reduced variables analysis. J Phys Chem 1990; 94: 323-6. http://dx.doi.org/10.1021/j100364a054
[11] Chen L-J, Lin S-Y, Huang C-C. Effect of hydrophobic chain length of surfactants on enthalpy – entropy compensation of micellization. J Phys Chem B 1998; 102: 4350-6. http://dx.doi.org/10.1021/jp9804345
[12] Gonzalez-Perez A, Del Castillo JL, Czapkiewicz J, Rodriguez JR. Conductivity, density and adiabatic compressibility of dodecyl dimethyl benzyl ammonium chloride in aqueous solutions. J Phys Chem B 2001; 105: 1720-4. http://dx.doi.org/10.1021/jp0022149
[13] Perger T-M, Bester-Rogac M. Thermodynamics of micelle formation of alkyl trimethyl ammonium chlorides from high performance electric conductivity measurements. J Coll Interface Sci 2007; 313: 288-95. http://dx.doi.org/10.1016/j.jcis.2007.04.043
[14] Pahi AB, Varga D, Kiraly Z, Mastalir A. Thermodynamics of micelle formation of the ephedrine-based chiral cationic surfactant DMEB in water, and the intercalation of DMEB in montmorillonite. Coll Surf A: Physicochem Eng Aspects 2008; 319: 77-83. http://dx.doi.org/10.1016/j.colsurfa.2007.06.056
[15] Stasiuk ENB, Schramm LL. The temperature dependence of critical micelle concentrations of foam-forming surfactants. J Coll Interface Sci 1996; 178: 324-33. http://dx.doi.org/10.1006/jcis.1996.0120
[16] Sarac B, Bester-Rogac M. Temperature and salt-induced micellization of dodecyl trimethyl ammonium chloride in aqueous solution: a thermodynamic study. J Coll Interface Sci 2009; 338: 216-21. http://dx.doi.org/10.1016/j.jcis.2009.06.027
[17] Bai G, Wang J, Yan H, Li Z, Thomas RK. Thermodynamics of molecular self-assembly of cationic gemini and related double chain surfactants in aqueous solution. J Phys Chem B 2001; 105: 3105-8. http://dx.doi.org/10.1021/jp0043017
[18] Zhaoxi ZY, Ou Z, Yi Y, Yu Q. Temperature dependence and enthalpy-entropy compensation micellization of gemini surfactants in aqueous solutions. Acta Chim Sin 2001; 59: 690-5.
[19] Bakshi MS, Kaura A, Mahajan RK. Effects of temperature on the micellar properties of polyoxyethylene chain glycol and twin tail alkyl ammonium surfactants. Coll Surf A: Physicochem Eng Aspects 2005; 262: 168-74. http://dx.doi.org/10.1016/j.colsurfa.2005.04.027
[20] Pahi AB, Kitaly Z, Mastalir A, Dudas J, Puskas S, Vago A. Thermodynamics of micelle formation of the counterion coupled gemini surfactant bis(4-92- dodecyl)benzenesulfonate)-jeffamine salt and its dynamic adsorption on sandstone. J Phys Chem B 2008; 112: 15320- 6. http://dx.doi.org/10.1021/jp806522h
[21] Kabir-ud-Din, Koya PA, Khan ZA. Conductometric studies of micellization of gemini surfactant pentamethylene-1,5- bis(tetradeyl dimethyl ammonium bromide) in water-organic solvent mixed media. J Coll Interface Sci 2010; 342: 340-7. http://dx.doi.org/10.1016/j.jcis.2009.10.056
[22] Kabir-ud-Din, Koya PA. Effects of solvent media and temperature on the self-aggregation of cationic dimeric surfactant 14-6-14, 2br studied by conductometric and fluorescence techniques. Langmuir 2010; 26: 7905-14.
[23] Kabir-ud-Din, Koya PA, Khan ZA. Studies on the effect of organic solvents and temperature on the micellar solution of pentamethylene-1,5-bis(tetradecyldimethylammonium bromide) gemini surfactant. J Dispersion Sci Technol 2011; 32: 558-67. http://dx.doi.org/10.1080/01932691003757256
[24] Yan Z, Li Y, Wang X, Dan J, Wang J. Effect of glycyl dipeptides on the micellar-behaviour of gemini surfactant: a conductometric and fluorescence spectroscopy study. J Mol Liquid 2011; 161: 49-54. http://dx.doi.org/10.1016/j.molliq.2011.04.009
[25] Liu G, Gu D, Liu H, Ding W, Li Z. Enthalpy – entropy compensation of ionic –type gemini imidazolium surfactants in aqueous solution: a free energy perturbation study. J Coll Interface Sci 2011; 358: 521-6. http://dx.doi.org/10.1016/j.jcis.2011.03.064
[26] Chavda S, Kuperkar K, Bhadur P. Formation and growth of gemini surfactant (12-s-12) micelles as a modulate by spacers: a thermodynamic and small-angle neutron scattering (sans) study. J Chem Eng Data 2011; 56: 2647- 54. http://dx.doi.org/10.1021/je2001683
[27] Zarganian R, Bordbar AK, Amiri R, Tamannaei M, Khosropour AR, Mohammdapoor-Baltork I. Micellization of pentanediyl-1,5-bis(hydroxy ethyl methyl hexadecyl ammonium bromide as a cationic gemini surfactant in aqueous solutions: investigation using conductometry and fluorescence techniques. J Solution Chem 2011; 40: 921-8. http://dx.doi.org/10.1007/s10953-011-9694-2
[28] Batigoc C, Akbas H, Boz M. Micellization behavior and thermodynamics parameters of 12-2-12 gemini surfactant in (water + organic solvent) mixtures. J Chem Thermodyn 2011; 43: 1349-54. http://dx.doi.org/10.1016/j.jct.2011.04.007
[29] Alimohammadi MH, Javadian S, Gharibi H, Tehrani-Bhagha AR, Alavijeh MR, Kakaei K. Aggregation behavior and intermicellar interactions of cationic gemini surfactants: effect of alkyl chain, spacer lengths and temperature. J Chem Thermodyn 2012; 44: 107-15. http://dx.doi.org/10.1016/j.jct.2011.08.007
[30] Wetting SD, Li X, Verral RE. Thermodynamic and aggregation properties of gemini surfactants with ethoxylated spacers in a aqueous solution. Langmuir 2003; 19: 3666-70. http://dx.doi.org/10.1021/la0340100
[31] Bai G, Yan H, Thomas RK. Microcalorimetric studies on the thermodynamic properties of cationic gemini surfactants. Langmuir 2001; 17: 4501-4. http://dx.doi.org/10.1021/la001472u
[32] Hellberg P-E, Bergstrom K, Holmberg K. Cleavable surfactants. J Surfact Detergent 2000; 3: 81-91. http://dx.doi.org/10.1007/s11743-000-0118-z
[33] Baixia L, Yuquan L, Yinkui L. Synthesis of alphachloroacetates of ethylene glycol and its oligomers. Acta Polym Sin 1992; 2: 34-41.
[34] Zhinong G, Shuxin T, Qi Z, et al. Synhesis and surface activity of biquarternary ammonium salt gemini surfactants with ester bond. Wuhan Univ J Nat Sci 2008; 13: 227-31. http://dx.doi.org/10.1007/s11859-008-0219-9
[35] Rosen MJ. Surfactants and Interfacial Phenomena. 3rd ed. John Wiley & Sons: New Jersey 2004. http://dx.doi.org/10.1002/0471670561
[36] Sarkar B, Lam S, Alexandridis P. Micellization of alkylpropoxy-ethoxylate surfactants in water-polar organic solvent mixtures. Langmuir 2010; 26: 10532-40. http://dx.doi.org/10.1021/la100544w
[37] Chakraborty I, Moulik SP. Self-aggregation of ionic C(10) surfactants having different head groups with special reference to the behavior of decyltrimethyl ammonium bromide in different salt environments: a calorimetric study with energetic analysis. J Phys Chem B 2007; 111: 3658-64. http://dx.doi.org/10.1021/jp066500h
[38] Rehage H, Hoffmann H. Rheological properties of viscoelastic surfactant systems. J Phys Chem 1988; 92: 4712-19. http://dx.doi.org/10.1021/j100327a031
[39] Kang KH, Kim HU, Lim KH. Effect of temperature on critical micelle concentration and thermodynamic potentials of micellization of anionic ammonium dodecyl sulfate and cationic octadecyl trimethyl ammonium chloride. Coll Surf A: Physicochem Eng Aspects 2001; 189: 113-21. http://dx.doi.org/10.1016/S0927-7757(01)00577-5
[40] Swarbrick J, Daruwala J. Thermodynamics of micellization of some zwitterionic n-alkyl betaines. J Phys Chem 1969; 73: 2627-32. http://dx.doi.org/10.1021/j100842a029
[41] Del Rio JM, Pombo C, Prieto G, Mosquera V, Sarmiento F. Effect of temperature and alkyl chain length on the micellization properties of n-alkyltrimethyl ammonium bromides in a low ph medium. J Coll Interface Sci 1995; 172: 137-41. http://dx.doi.org/10.1006/jcis.1995.1235

Downloads

Published

2012-10-15

How to Cite

Yunta, F., López-Rayo, S., & Lucena, J. J. (2012). Thermodynamic Database Update to Model Synthetic Chelating Agents in Soil Systems. Journal of Applied Solution Chemistry and Modeling, 1(1), 46–64. https://doi.org/10.6000/1929-5030.2012.01.01.6

Issue

Section

General Articles