Can MP(P)4 Compounds Form Complexes with C60?

Authors

  • Aleksey E. Kuznetsov nstituto de Química, Universidade de São Paulo - SP, Brasil

DOI:

https://doi.org/10.6000/1929-5030.2017.06.03.1

Keywords:

Porphyrin-fullerene complexes, tetraphosphorus-metalloporphyrins, DFT, binding energies, NBO charges

Abstract

Numerous complexes between versatile derivatives of metalloporphyrins MP (with M being Mn, Co, Ni, Cu, Zn and Fe) and C60 have been synthesized and characterized recently. Favorable van der Waals attractions between the curved p-surface of the fullerene and the planar p-surface of MP assist in the supramolecular recognition, overcoming the necessity of matching a concave-shaped host with a convex-shaped guest structure. Recently, we reported the computational studies of the structures and electronic properties of the series of metalloporphyrins where all the four pyrrole nitrogen atoms are replaced with P-atoms, MP(P)4, M = Sc-Zn. Motivated by the numerous examples of the complex formation between regular planar or quasi-planar MP and C60, we computationally investigated possibility of the complex formation between two MP(P)4 species, ZnP(P)4 and NiP(P)4, and C60 without any linkers, using the CAM-B3LYP/6-31G* approach, both in the gas phase and with implicit effects from C6H6. We found that the binding energies in the MP(P)4-C60 complexes for these two MP(P)4 compounds are relatively low, ca. 1-1.6 kcal/mol and ca. 5 kcal/mol for M = Zn and Ni, respectively. The ZnP(P)4 species was found to be noticeably distorted in the ZnP(P)4-C60 complex whereas NiP(P)4 inside the NiP(P)4-C60 complex essentially retained its bowl-like shape. Thus, we showed the possibility of the formation of complexes between MP(P)4 species and C60 without any linkers and showed dependence of the complex stability on the transition metal M. Further investigations are in progress.

References


[1] Kadish KM, Smith KM, Guilard R, Eds. Handbook of porphyrin science with applications to chemistry, physics, materials science, engineering, biology and medicine. Singapore: World Scientific 2010.
[2] Urbani M, Grätzel M, Nazeeruddin MK, Torres T. Mesosubstituted porphyrins for dye-sensitized solar cells. Chem Rev 2014; 114: 12330-96. https://doi.org/10.1021/cr5001964
[3] Cardenas-Jirón GI, Baruah T, Zope RR. Excited electronic states of porphyrin-based assemblies using density functional theory. In: Handbook of porphyrin science. River Edge, NJ: World Scientific Publishing Co. 2016; pp. 233-89. https://doi.org/10.1142/9789813149625_0004
[4] Guldi DM. Fullerenes: three-dimensional electron acceptor materials. Chem Commun 2000; 321-27. https://doi.org/10.1039/a907807j
[5] Dennler G, Scharber MC, Brabec CJ. Polymer-fullerene bulkheterojunction solar cells. Adv Mater 2009; 21: 1323-38. https://doi.org/10.1002/adma.200801283
[6] Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F. Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene. Science 1992; 258: 1474-6. https://doi.org/10.1126/science.258.5087.1474
[7] Jung SH, Lee J-W, Kim H-J. Self-assembly of uncharged amphiphilic porphyrins and incorporation of C60 fullerenes in water. Supramol Chem 2016; 28: 634-9. https://doi.org/10.1080/10610278.2015.1092535
[8] Beletskaya I, Tyurin VS, Tsivadze AY, Guilard R, Stern C. Supramolecular chemistry of metalloporphyrins. Chem Rev 2009; 109: 1659-1713. https://doi.org/10.1021/cr800247a
[9] Drain CM, Varotto A, Radivojevic I. Self-organized porphyrinic materials. Chem Rev 2009; 109: 1630-58. https://doi.org/10.1021/cr8002483
[10] Guldi DM. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev 2002; 31: 22-36. https://doi.org/10.1039/b106962b
[11] Zope RR, Olguin M, Baruah T. Charge transfer excitations in cofacial fullerene-porphyrin complexes. J Chem Phys 2012; 137: 084317. https://doi.org/10.1063/1.4739272
[12] Stangel C, Schubert C, Kuhri S, et al. Tuning the reorganization energy of electron transfer in supramolecular ensembles--metalloporphyrin, oligophenylenevinylenes, and fullerene--and the impact on electron transfer kinetics. Nanoscale 2015; 7: 2597-608. https://doi.org/10.1039/C4NR05165C
[13] Garg V, Kodis G, Liddell PA, et al. Artificial photosynthetic reaction center with a coumarin-based antenna system. J Phys Chem B 2013; 117: 11299-308. https://doi.org/10.1021/jp402265e
[14] Ðor?evi? L, Marangoni T, De Leo F, et al. Fullerene– porphyrin
[n]pseudorotaxanes: self-assembly, photophysics and third-order NLO response. Phys Chem Chem Phys 2016; 18: 11858-68. https://doi.org/10.1039/C5CP06055A
[15] Sánchez L, Sierra M, Martín N, et al. Exceptionally strong electronic communication through hydrogen bonds in porphyrin–C60 pairs. Angew Chem Int Ed 2006; 45: 4637-41. https://doi.org/10.1002/anie.200601264
[16] D’Souza F, Maligaspe E, Ohkubo K, Zandler ME, Subbaiyan NK, Fukuzumi S. Photosynthetic reaction center mimicry: low reorganization energy driven charge stabilization in selfassembled cofacial zinc phthalocyanine dimer-fullerene conjugate. J Am Chem Soc 2009; 131: 8787-97. https://doi.org/10.1021/ja903467w
[17] Grimm B, Karnas E, Brettreich M, Ohta K, Hirsch A, Guldi DM, Torres T, Sessler JL. Charge transfer in sapphyrinfullerene hybrids employing dendritic ensembles. J Phys Chem B 2010; 114: 14134-9. https://doi.org/10.1021/jp906785f
[18] Megiatto JD, Schuster DI, de Miguel G, Wolfrum S, Guldi DM. Topological and conformational effects on electron transfer dynamics in porphyrin-
[60]fullerene interlocked systems. Chem Mater 2012; 24: 2472-85. https://doi.org/10.1021/cm3004408
[19] Megiatto JD, Li K, Schuster DI, et al. Convergent synthesis and photoinduced processes in multi-chromophoric rotaxanes. J Phys Chem B 2010; 114: 14408-19. https://doi.org/10.1021/jp101154k
[20] Moreira L, Calbo J, Illescas BM, et al. Metal-atom impact on the self-assembly of cup-and-ball metalloporphyrin-fullerene conjugates. Angew Chem Int Ed 2015; 54: 1255-60. https://doi.org/10.1002/anie.201409487
[21] Calderon RMK, Valero J, Grimm B, de Mendoza J, Guldi DM. Enhancing molecular recognition in electron donor-acceptor hybrids via cooperativity. J Am Chem Soc 2014; 136: 11436- 43. https://doi.org/10.1021/ja5052236
[22] Fang X, Zhu Y-Z, Zheng J-Y. Clawlike tripodal porphyrin trimer: ion-controlled on–off fullerene binding. J Org Chem 2014; 79: 1184-91. https://doi.org/10.1021/jo4026176
[23] Garg V, Kodis G, Chachisvilis M, et al. Conformationally constrained macrocyclic diporphyrin-fullerene artificial photosynthetic reaction center. J Am Chem Soc 2011; 133: 2944-54. https://doi.org/10.1021/ja1083078
[24] Al-Subi AH, Niemi M, Tkachenko NV, Lemmetyinen H. Effect of anion ligation on electron transfer of double-linked zinc porphyrin-fullerene dyad. J Phys Chem A 2011; 115: 3263- 71. https://doi.org/10.1021/jp111234d
[25] Lemmetyinen H, Tkachenko NV, Efimov A, Niemi M. Transient states in photoinduced electron transfer reactions of porphyrin- and phthalocyanine-fullerene dyads. J Porphyrins Phthalocyanines 2009; 13: 1090-7. https://doi.org/10.1142/S108842460900139X
[26] D’Souza F, Chitta R, Gadde S, et al. Photosynthetic reaction center mimicry of a ?special pair? dimer linked to electron acceptors by a supramolecular approach: self-assembled cofacial zinc porphyrin dimer complexed with fullerene
[s]. Chem- Eur J 2007; 13: 916-22. https://doi.org/10.1002/chem.200600885
[27] D’Souza F, Maligaspe E, Karr PA, et al. Faceto-face Pacman-type porphyrin-fullerene dyads: design, synthesis, charge-transfer interactions, and photophysical studies. Chem-Eur J 2008; 14: 674-81. https://doi.org/10.1002/chem.200700936
[28] Fukuzumi S, Kashiwagi Y. Photoinduced electron transfer in a supramolecular triad system composed of ferrocene-zinc porphyrin-pyridylnaphthalenediimide. J Porphyrins Phthalocyanines 2007; 11: 368-74. https://doi.org/10.1142/S1088424607000412
[29] Sarova GH, Hartnagel U, Balbinot D, Sali S, Jux N, Hirsch A, Guldi DM. Testing electron transfer within molecular associates built around anionic C
[60] and C
[70] dendrofullerenes and a cationic zinc porphyrin. Chem-Eur J 2008; 14: 3137-45. https://doi.org/10.1002/chem.200701462
[30] Mironov AF. Synthesis, properties, and potential applications of porphyrin-fullerenes. ????????????????/ Macroheterocycles 2011; 4: 186-208. https://doi.org/10.6060/mhc2011.3.08
[31] Buldum A, Reneker DH. Fullerene-porphyrin supramolecular nanocables. Nanotechnology 2014; 25: 235201. https://doi.org/10.1088/0957-4484/25/23/235201
[32] Moreira L, Calbo J, Arago J, et al. Conjugated porphyrin dimers: cooperative effects and electronic communication in supramolecular ensembles with C60. J Am Chem Soc 2016; 138: 15359-67. https://doi.org/10.1021/jacs.6b07250
[33] Ca?denas-Jiro? G, Borges-Martínez M, Sikorski E, Baruah T. Excited states of light-harvesting systems based on fullerene/graphene oxide and porphyrin/smaragdyrin. J Phys Chem C 2017; 121: 4859-72. https://doi.org/10.1021/acs.jpcc.6b12452
[34] Saegusa Y, Ishizuka T, Kojima T, Mori S, Kawano M, Kojima T. Supramolecular interaction of fullerenes with a curved ?- surface of a monomeric quadruply ring-fused porphyrin. Chem Eur J 2015; 21: 5302-6. https://doi.org/10.1002/chem.201500389
[35] Imahori H, Fukuzumi S. Porphyrin- and fullerene-based photovoltaic devices. Adv Funct Mater 2004; 14: 525-36. https://doi.org/10.1002/adfm.200305172
[36] Barbee J, Kuznetsov AE. Revealing substituent effects on the electronic structure and planarity of Ni-porphyrins. Comp Theoret Chem 2012; 981: 73-85. https://doi.org/10.1016/j.comptc.2011.11.049
[37] Kuznetsov AE. Metalloporphyrins with all the pyrrole nitrogens replaced with phosphorus atoms, MP
[P]4
[M = Sc, Ti, Fe, Ni, Cu, Zn]. Chem Phys 2015; 447: 36-45. https://doi.org/10.1016/j.chemphys.2014.11.018
[38] Kuznetsov AE. How the change of the ligand from L = porphine, P2- , to L = P4-substituted porphine, P
[P]4 2- , affects the electronic properties and the M-L binding energies for the first-row transition metals M = Sc-Zn: comparative study. Chem Phys 2016; 469-470: 38-48. https://doi.org/10.1016/j.chemphys.2016.02.010
[39] Kuznetsov AE. Computational design of ZnP
[P]4 stacks: three modes of binding. J Theor Comp Chem 2016; 15: 1650043. https://doi.org/10.1142/S0219633616500437
[40] Reddy BK, Gadekar SC, Anand VG. The synthesis and characterization of the meso– meso linked antiaromatic tetraoxaisophlorin dimer. Chem Commun 2016; 52: 3007-9. https://doi.org/10.1039/C5CC10370C
[41] Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09: ES64L-G09RevD.01 24-Apr-2013, Gaussian, Inc., Wallingford CT. 2013.
[42] Yanai T, Tew D, Handy N. A new hybrid exchangecorrelation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 2004; 393: 51-7. https://doi.org/10.1016/j.cplett.2004.06.011
[43] Hariharan PC, Pople JA. Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory. Mol Phys 1974; 27: 209-14. https://doi.org/10.1080/00268977400100171
[44] Gordon MS. The isomers of silacyclopropane. Chem Phys Lett 1980; 76: 163-8. https://doi.org/10.1016/0009-2614(80)80628-2
[45] Stangel C, Charisiadis A, Zervaki GE, et al. Case study for artificial photosynthesis: noncovalent interactions between C60-dipyridyl and zinc porphyrin dimer. J Phys Chem C 2017; 121: 4850-8. https://doi.org/10.1021/acs.jpcc.6b11863
[46] Rhoda HM, Kayser MP, Wang Y, et al. Tuning up an electronic structure of the subphthalocyanine derivatives toward electron-transfer process in noncovalent complexes with C60 and C70 fullerenes: experimental and theoretical studies. Inorg Chem 2016; 55: 9549-63. https://doi.org/10.1021/acs.inorgchem.6b00992
[47] Cancès E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anistropic dielectrics. J Chem Phys 1997; 107: 3032-41. https://doi.org/10.1063/1.474659
[48] Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 1988; 88: 899-926. https://doi.org/10.1021/cr00088a005
[49] Schaftenaar G, Noordik JH. Molden: a pre- and postprocessing program for molecular and electronic structures. J Comput-Aided Mol Design 2000; 14: 123-34. https://doi.org/10.1023/A:1008193805436
[50] Towns J, Cockerill T, Dahan M, et al. XSEDE: accelerating scientific discovery. Comp Sci Eng 2014; 16: 62-74. https://doi.org/10.1109/MCSE.2014.80

Downloads

Published

2017-11-02

How to Cite

E. Kuznetsov, A. (2017). Can MP(P)4 Compounds Form Complexes with C60?. Journal of Applied Solution Chemistry and Modeling, 6(3), 91–97. https://doi.org/10.6000/1929-5030.2017.06.03.1

Issue

Section

General Articles