Analysis of Tautomerism in β-Ketobuanamides by Nuclear Magnetic Resonance: Substituent, Temperature and Solvent Effects

Authors

  • Sergio Laurella Facultad de Ciencias Exactas, UNLP
  • Manuel González Sierra Facultad de Ciencias Exactas, UNLP
  • Jorge Furlong Facultad de Ciencias Exactas, UNLP
  • Patricia Allegretti Facultad de Ciencias Exactas, UNLP

DOI:

https://doi.org/10.6000/1929-5030.2012.01.01.2

Keywords:

keto-enol equilibrium, nuclear magnetic resonance spectroscopy, beta-ketoamides

Abstract

β-ketoamides are versatile intermediates for the synthesis of several heterocycles and they are also relevant compounds in biological systems, with their tautomeric equilibria being a crucial aspect to be studied in order to understand their chemical and biological behaviour. Tautomeric equilibria of a series of β-ketobutanamides were analyzed by means of 1HNMR, determining that ketoamide and Z-enolamide are the main tautomeric species in solution, both presenting internal hydrogen bonds. Keto-enol equilibrium predominates over other possible tautomerisms (e.g. amide-imidol). The enol tautomer appears to be favoured by electron withdrawing substituents and non-protic solvents. Thermodynamic parameters ΔH and ΔS were determined in CDCl3 and DMSO-d6, showing that the keto-enol equilibria are exothermic and require a molecule order increase.

Author Biographies

Sergio Laurella, Facultad de Ciencias Exactas, UNLP

Departamento de Química

Patricia Allegretti, Facultad de Ciencias Exactas, UNLP

Departamento de Química

References


[1] Zana R. Dimeric (gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. J Colloid Interface Sci 2002; 248: 203-20. http://dx.doi.org/10.1006/jcis.2001.8104
[2] Menger F, Mbadugha BN. Gemini surfactants with a disaccharide spacer. J Am Chem Soc 2001; 123: 875-85. http://dx.doi.org/10.1021/ja0033178
[3] Grosmaire L, Chorro M, Chorro C, Partyka S, Zana R. Alkanediyl-alpha, omega-bis(dimethylalkylammonium bromide) surfactants 9. Effect of the spacer carbon number and temperature on the enthalpy of micellization. J. Colloid Interface Sci 2002; 246: 175-81. http://dx.doi.org/10.1006/jcis.2001.8001
[4] Menger FM, Keiper JS. Gemini surfactants. Angew Chem Int Ed 2000; 39: 1906-20. http://dx.doi.org/10.1002/1521- 3773(20000602)39:113.0.CO;2-Q
[5] Menger FM, Littau CA. Gemini surfactants: a new class of self-assembling molecules. J Am Chem Soc 1993; 115: 10083-90. http://dx.doi.org/10.1021/ja00075a025
[6] Menger FM, Littau CA. Gemini-surfactants: synthesis and properties. J Am Chem Soc 1991; 113: 1451-2. http://dx.doi.org/10.1021/ja00004a077
[7] Ryhänen SJ, Säily VM, Parry MJ, et al. Counterion-controlled transition of a cationic gemini from submicroscopic to giant vesicles. J Am Chem Soc 2006; 128: 8659-63. http://dx.doi.org/10.1021/ja060382u
[8] Kirby AJ, Camilleri P, Engberts JBFN, et al. Gemini surfactants: new synthetic vectors for gene transfection. Angew Chem Int Ed 2003; 42: 1448-57. http://dx.doi.org/10.1002/anie.200201597
[9] Badea I, Verrall R, Estrada MB, et al. In vivo cutaneous interferon-gamma gene delivery using novel dicationic (gemini) surfactant-plasmid complexes. J Gene Med 2005; 7: 1200-14. http://dx.doi.org/10.1002/jgm.763
[10] Badea I, Wettig S, Verrall R, Foldvari M. Topical non-invasive gene delivery using gemini nanoparticles in interferongamma-deficient mice. Eur J Pharm Biopharm 2007; 65: 414-22. http://dx.doi.org/10.1016/j.ejpb.2007.01.002
[11] Ryhänen SJ, Säily MJ, Paukku T, et al. Surface charge density determines the efficiency of cationic gemini surfactant based lipofection. Biophys J 2003; 84: 578-87. http://dx.doi.org/10.1016/S0006-3495(03)74878-4
[12] Zana R. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv Colloid Inter Sci 2003; 97: 205-53. http://dx.doi.org/10.1016/S0001-8686(01)00069-0
[13] Kabir-ud-Din FW, Khan ZA, Dar AA. 1 H NMR and viscometric studies on cationic gemini surfactants in presence of aromatic acids and salts. J Phys Chem B 2007; 111: 8860-7. http://dx.doi.org/10.1021/jp070782j
[14] McLoughlin D, Delsanti M, Albouy MPA, Langevin D. Aggregates formation between short DNA fragments and cationic surfactants. Mol Phys 2005; 103: 3125-39. http://dx.doi.org/10.1080/00268970500250460
[15] Goddard ED. Polymer/Surfactant Interaction: Interfacial Aspects. J Colloid Inter Sci 2002; 256: 228-35. http://dx.doi.org/10.1006/jcis.2001.8066
[16] Jianga N, Lib P, Wanga Y. Aggregation behavior of hexadecyltrimethylammonium surfactants with various counterions in aqueous solution. J Colloid Inter Sci 2005; 286: 755-60. http://dx.doi.org/10.1016/j.jcis.2005.01.064
[17] Zana R, Benrraou M, Rueff R. Alkanediyl-.alpha.,.omega.- bis(dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 1991; 7: 1072-75. http://dx.doi.org/10.1021/la00054a008
[18] Tejera-Garcia R, Connell L, Shaw WA, Kinnunen PKJ. Gravimetric determination of phospholipid concentration. Chem Phys Lipids 2012; 6: 689-95. http://dx.doi.org/10.1016/j.chemphyslip.2012.06.005
[19] Vitovic P, Alakoskela JM, Kinnunen PKJ. Assessment of drug-lipid complex formation by a high-throughput Langmuir-
balance and correlation to phospholipidosis. J Med Chem 2008; 51: 1842-48. http://dx.doi.org/10.1021/jm7013953
[20] Suomalainen P, Johans C, Soderlund T, Kinnunen PKJ. Surface activity profiling of drugs applied to the prediction of blood-brain barrier permeability. J Med Chem 2004; 47: 1783-88. http://dx.doi.org/10.1021/jm0309001
[21] Padday JF, Pitt AR, Pashley RM. Menisci at a free liquid surface: Surface tension from the maximum pull on a rod. J Chem Soc Fr 1 1974; 71: 1919-31.
[22] Ryhänen SJ, Alakoskela JM, Kinnunen PKJ. Increasing surface charge density induces interdigitation in vesicles of cationic amphiphile and phosphatidylcholine. Langmuir 2005; 21: 5707-15. http://dx.doi.org/10.1021/la0503303
[23] Ryhänen SJ, Säily VMJ, Kinnunen PKJ. Cationic lipid membranes-specific interactions with counter-ions. J Phys Condens Matter 2006; 18(28): S1139-50. http://dx.doi.org/10.1088/0953-8984/18/28/S03
[24] Geng Y, Romstead SL, Menger F. Specific ion pairing and interfacial hydration as controlling factors in gemini micelle morphology. Chemical trapping studies. J Am Chem Soc 2006; 128: 492-501. http://dx.doi.org/10.1021/ja056807e
[25] Knock MM, Main CD. Effect of counterion on monolayers of hexadecyltrimethylammonium halides at the air water interface. Langmuir 2000; 16: 2857-65. http://dx.doi.org/10.1021/la991031e
[26] Subramanian V, Ducker WA. Counterion effects on adsorbed micellar shape: experimental study of the role of polarizability and charge. Langmuir 2000; 16: 4447-54. http://dx.doi.org/10.1021/la991245w
[27] Bijma K, Engberts JBFN. Effect of counterions on properties of micelles formed by alkylpyridinium surfactants. 1. conductometry and 1 H-NMR chemical shifts. Langmuir 1997; 13: 4843-49. http://dx.doi.org/10.1021/la970171q

Downloads

Published

2012-10-15

How to Cite

Laurella, S., Sierra, M. G., Furlong, J., & Allegretti, P. (2012). Analysis of Tautomerism in β-Ketobuanamides by Nuclear Magnetic Resonance: Substituent, Temperature and Solvent Effects. Journal of Applied Solution Chemistry and Modeling, 1(1), 6–12. https://doi.org/10.6000/1929-5030.2012.01.01.2

Issue

Section

General Articles