Pointyng Correction in Phase Equilibrium Thermodynamics of Non Polar Gases and Brines: A Review

Authors

  • José Martínez Reyes National Autonomous University
  • Melitón Estrada Jaramillo University of the Ciénega of Michoacán State
  • Iván Vera Romero University of the Ciénega of Michoacán State
  • Agustina Ortiz Soriano University of the Ciénega of Michoacán State

DOI:

https://doi.org/10.6000/1929-5030.2013.02.01.3

Keywords:

Thermodynamic modeling, Poynting correction

Abstract

Abstract: The development of an equation for Poynting correction, is of paramount importance in the field of modeling and interpretation of phase equilibrium thermodynamics in a wide range of temperatures and pressures /densities for practical applications in chemistry, physical chemistry, geochemistry and industrial technology. The unique previous existing equation for Poynting correction is a simple expression, represented by a product of a constant volume by a pressure difference between wich the correction is applied. [1] proposed an equation based on a semitheoretical expression for the partial molar volume at infinite dilution of volatile aqueous non-electrolyte solute (ν20) that considers as variables the density and isothermal compressibility of the solvent, as well as the second cross solvent-solute virial coefficient (β12) and the second virial coefficient of pure solvent (β11). The mathematical equation is applicable to solutes whose β12 is known or can be estimated, in a temperature range of 273.16 K to 647 K, values of pressure up to 2 kbar and brines with ionic strength equal to 6 m NaCl. The expression provides excellent correlation with experimental data as shown for the H2S-H2O-NaCl system (with maximum deviation of 7%), through a thermodynamic model that uses this formula proposal coupled with the Law of Henry and the Soave- Redlich-Kwong equation of state for modeling the liquid-vapor phase equilibria.

References


[1] Martínez RJ, Pérez RJ, González PE. y Tinoco M JA. Ecuación Para la Corrección Poynting en Termodinámica de Equilibrio de Fases Gases No Polares-Sistemas Acuosos. Aplicación al Sistema H2S-H2O-NaCl Boletín de la Sociedad Geológica Mexicana 2010; 62(2): 213-20.
[2] Plyasunov A, O'Connel J, Wood R. Infinite dilution partial molar properties of aqueous solutions of nonelectrolytes. I. Equations for partial molar volumes at infinite dilution and standard thermodynamic functions of hydration of volatile nonelectrolytes over wide ranges of conditions: Geochimica et Cosmochimica Acta 2000a; 64: 495-12. http://dx.doi.org/10.1016/S0016-7037(99)00322-1
[3] Perez RJ, Heidemann RA. Coupling an equation of state and henry's law to model the phase equilibria of gases and brines examples in the N2–H2O–NaCl system. J Geochem Explorat 2006; 89: 331-34. http://dx.doi.org/10.1016/j.gexplo.2005.11.083
[4] Pérez RJ, Heidemann RA, y González-Partida E. Modelo teórico para el cálculo de las solubilidades mutuas entre gases no-polares y agua con sales disueltas. Boletín de la Sociedad Geológica Mexicana 2009; 61(3): 325-37.
[5] Kirkwood JG, Buff FP. The statistical mechanical theory of solutions. I J Chem Phys 1951; 19: 774-82. http://dx.doi.org/10.1063/1.1748352
[6] O’Connell JP. Thermodynamic properties of solutions based on correlation functions. Mol Phys 1971; 20: 27-29. http://dx.doi.org/10.1080/00268977100100031
[7] O’Connell JP. Thermodynamics and fluctuation solution theory with some applications to systems at near- or supercritical conditions. In Supercritical Fluids: Fundamentals for Application. Kiran E, Levelt Sengers JMH, Eds. NATO ASI Series Applied Sciences 1994; Vol. 273: pp. 191-229.
[8] O’Connell JP. Application of fluctuation solution theory to thermodynamic properties of solutions. Fluid Phase Equilibria 1995; 104: 21-39. http://dx.doi.org/10.1016/0378-3812(94)02637-G
[9] Plyasunov A, O'Connel J, Wood R, Shock E. Infinite dilution partial molar properties of aqueous solutions of nonelectrolytes. II. equations for thestandard thermodynamic functions of hydration of volatile nonelectrolytes over wide ranges of conditions including subcritical temperatures. Geochimica et Cosmochimica Acta 2000b; 64(16): 2779-95. http://dx.doi.org/10.1016/S0016-7037(00)00390-2
[10] Rowlinson J, Swinton F. Liquids and liquid mixtures: Butterwoths Monographs in Chemistry: London, Butherworth Scientific 1982; p. 328.
[11] Heidemann R, Jeje A, Mohtadi F. An introduction to the properties of fluids and solids, Calgary. University of Calgary Press 1987; p. 401.
[12] Kell G. Density, Thermal Expansivity, and Compressibility of liquid water from 0 to 150 C; Correlations 1975.
[13] Fernandez-Prini R, Alvarez JL, Harvey AH. Henry’s constants and vapor–liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures. J Phys Chem 2003; 32(2).
[14] Lee JI, Mather AE. Solubility of hydrogen sulfide in water Ber Bunsenges Phys Chem 1977; 81: 1021-23. http://dx.doi.org/10.1002/bbpc.19770811029
[15] Soave G. Equilibrium constants from a modified Redlich– Kwong equation of state. Chem Eng Sci 1972; 27(6): 1197- 203. http://dx.doi.org/10.1016/0009-2509(72)80096-4

Downloads

Published

2013-03-01

How to Cite

Reyes, J. . M., Jaramillo, M. E., Romero, I. V., & Soriano, A. O. (2013). Pointyng Correction in Phase Equilibrium Thermodynamics of Non Polar Gases and Brines: A Review. Journal of Applied Solution Chemistry and Modeling, 2(1), 22–24. https://doi.org/10.6000/1929-5030.2013.02.01.3

Issue

Section

General Articles