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Abstract: Based on a dynamic (i.e. time-dependent) one-dimensional approach, this work applied lattice Boltzmann 
method (LBM) to computationally model biospecific affinity chromatography (BAC). With governing equations expressed 
in lattice-based dimensionless form, LBM was implemented in D1Q2 lattice by assigning particle distribution functions to 
adsorbate concentration in both fluid and solid phases. The LBM simulator was firstly tested in view of a classic BAC 
work on lysozyme and the streaming step relating to adsorbate concentration in the solid-phase was suppressed from 
the LBM code with no loss of functionality. Expected behaviour of breakthrough curves was numerically reproduced and 
the influence of lattice-based dimensionless parameters was examined. The LBM simulator was next applied so as to 
assess lattice-based dimensionless parameters regarding an experimental BAC work on lipase. 
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1. INTRODUCTION 

Innovative design, scale-up procedures and optimal 
operation can be rapidly achieved via numerical 
simulation [1], thus reducing the number of tests and 
saving valuable material and human resources 

required in bioseparation processes. Given the costs of 
industrial-scale experimentation, distinct design 
parameters and operation scenarios can be 
numerically tested for process viability [2] and such has 
been the case of bioreactor engineering [3-5]. 

Bioseparation models are prone to be complex 
enough to justify computational modelling [6-8] and 
biospecific affinity chromatography (BAC) may benefit 

from it if comprehensive knowledge is required [9]. Use 
of computational fluid dynamics (CFD) towards 
bioprocesses has increased as its importance has 
been recognized while suitable techniques have been 
developed [10]. 

Distinct approaches can be followed. By relying on 
continuum concept, macroscale simulation applies 
basic conservation principles to obtain differential 

equations to observable properties, which are 
numerically solved. Finite differences method (FDM), 
finite elements method (FEM) and finite volumes 
method (FVM) have been among widespread 
discretization techniques for food and bioprocesses 
[11-16]. 
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Microscale models individually identify constituent 
particles in conjunction with their mutual interactions. In 

molecular dynamics (MD) simulation, Newtonian 
mechanics is then applied to predict space-time 
evolution of such (colossal!) particle collection while 
statistical mechanics is applied to retrieve observable 
properties. The task is to simulate macroscopic 
behaviour from microscopic modelling, requiring huge 

computational effort and memory resources. MD has 
been used in pharmacological and emulsion research 
[17-20]. 

Between those two scales, mesoscopic models 
treat bulk media as cellular automata, i.e. as systems 
where quantities may only assume discrete values [21]. 
From the mathematical viewpoint, a particle distribution 
function is introduced in order to describe the 

behaviour of constituent particle collections [22]. Based 
on that function one implements lattice Boltzmann 
method (LBM), regarded as an extension of its 
predecessor method, namely lattice-gas cellular 
automata [23]. 

With pioneering ideas launched in [24] and more 
recent if compared to long-standing methods (e.g. 
FDM, FEM or FVM), LBM has become an alternative 

technique to simulate food and bioprocesses [25]. 
Interesting applications in view of biosystems have 
comprised flow through fibrous materials [26], particle 
suspensions and particle-fluid interactions [27], solute 
transport in porous media [28, 29], fluid dynamics of 
blood [30, 31], liquid-vapour interface [32] and 
chromatography [33, 34]. 
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As part of on-going research on LBM simulation of 
food and bioprocesses [35], LBM has been applied to 

biospecific affinity chromatography (BAC). Based on a 
dynamic one-dimensional reaction-diffusive model with 
Langmuir kinetics [36, 37], this work aimed at the 
computational modelling of one-component 
breakthrough curves via LBM. Governing differential 
equations were cast in lattice-based dimensionless 

form together with initial and boundary conditions. Trial 
LBM simulations were performed in view of a classic 
BAC work on lysozyme [38] and the LBM simulator was 
next applied towards an existing experimental work on 
lipase bioseparation [39]. 

While there is no doubt about the efficiency of 
methods like FDM, FEM or FVM to perform equivalent 
simulations, comparisons in terms of computational 

effort and memory use fall beyond the purpose of this 
work. Rather, its goal is to present LBM as an 
alternative route for BAC simulation. By rendering 
relatively simpler codes [40], LBM can easily deal with 
moving or free boundaries while being able to simulate 
fluid flow without directly solving Navier-Stokes 

equations. Such features are particularly appealing for 
those who have programmed their own computational 
fluid dynamics codes via FDM, FEM or FVM. 

2. THEORY 

2.1. Mathematical Models for Biospecific Affinity 
Chromatography (BAC) 

BAC models have typically invoked 2nd-order 
adsorption and 1st-order desorption kinetics, uniform 
fluid flow and adsorbate transport by either convection 
or diffusion [7, 9, 16, 38, 41-43]. Additional 
assumptions have included uniform porosity  over the 
chromatographic column and constant volumetric flow 

rate  V  of the percolating solution. Hence, interstitial 

fluid velocity 
 
v = V / ( A)  results uniform, being A the 

cross-sectional area of the column. In model equations 

one may use superficial velocity v = V / A , also referred 
to as seepage velocity, which is related to interstitial 
velocity via Dupuit-Forchheimer relation v = v  [44]. 
Those models are dynamic with 1st-order spatial 
dependence so that adsorbate concentrations are 
allowed to vary along a coordinate z (usually the 
column axis) besides depending on time t. 

This work modelled chromatographic columns as 

stratified cylindrical fixed-beds with inlet at z = 0 and 
outlet at z = L (= column length). Adsorbate 
concentrations in fluid and solid phases were identified 
respectively as c = c(z,t) and q = q(z,t) while 

corresponding governing partial differential equations 
(PDEs) were put forward as: 

 

c

t
+ v

c

z
= D

2 c

z2

1
r          (1) 

r =
q

t
= kadsc(qmax q) kdesq          (2) 

where D is axial diffusivity in the fluid phase, r  is the 
instantaneous rate at which adsorbate is transferred 

from fluid to solid phase, kads and kdes are respectively 
adsorption and desorption coefficients, and qmax is the 
maximum adsorption capacity (i.e. saturation) of the 
column. 

Initial conditions were prescribed as: 

c(z,0) = 0 and q(z,0) = 0 , for 0  z  L        (3) 

In the proposed model framework, the governing 
equation for solid-phase concentration lacks partial 
derivatives with respect to coordinate z so that 

boundary conditions were only required for the fluid-
phase PDE. Being cin  0 the adsorbate concentration 
in feed solution, one may impose Dirichlet condition at 
column inlet (z = 0) [7, 41, 45] and null Neumann 
condition at column exit (z = L), namely: 

c(0,t) = cin and 
c

z z=L

= 0  , for t > 0        (4) 

At inlet, one may alternatively prescribe Danckwerts 
condition [16, 34, 42], namely: 

vcin = vc(0,t ) D
c

z z=0

, for t > 0         (5) 

which simplifies to Dirichlet condition if D = 0. 

In this work, LBM simulations use process 
parameters as suggested in [41], where Dirichlet inlet 
condition is adopted (thus Danckwerts condition was 
disregarded). Moreover, a numerical study has shown 
that no practical effect is introduced when one 
boundary condition is replaced by the other for low 
mass diffusivities, D < 10 8 m2/s [46]. Differences 
become noticeable for D > 10 8 m2/s but, in this case, 
simulated breakthrough curves deviate from 
experimental data, regardless of the boundary 
condition type imposed at column inlet. 

2.2. Rationale of Lattice-Boltzmann Method (LBM) 

Inspired on kinetic gas theory, LBM is a bottom-up 
technique different not only from top-down methods like 
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FDM, FEM or FVM but also from MD simulation, which 
is another bottom-up approach [22]. Contrast from MD 

relies on the fact that LBM treats the macroscale 
medium, whether solid or fluid, as a set of fictitious 
particles in a discrete space, namely a fictitious lattice. 
During discrete time steps and according to their 
speeds, such particles travel (stream) between 
adjacent sites along pre-defined directions (lattice 

links). As particles arrive at lattice sites, they mutually 
collide and their velocities become rearranged. By 
imposing mass and momentum conservations to such 
dynamics, referred to as streaming and collision, 
macroscopic behaviour can be simulated [23]. 

LBM mathematically relies on a particle distribution 
function 

 
f (r ,u,t )  giving the probability of finding, at 

time t, fictitious particles about position  r  with 
velocities between u  and u + du . Observable 
properties (e.g. species concentration, bulk flow 
velocity or temperature) can be retrieved through 
moments of function f [25, 40]. 

LBM is implemented to numerically obtain function f, 
which is ruled by Boltzmann transport equation. In the 
absence of external forces, such governing equation is 
written as: 

 

f

t
+ u f = ( f )

BGK approximation for f

t
+ u f =

f eq f

trelax

        (6) 

where the collision operator  = (f) gives the variation 
rate of function f due to collisions between particles. In 
Equation (6), BGK approximation (after Bhatnagar-
Gross-Krook) has been invoked to linearize such 
operator as (f) = (feq  f)/ trelax [47], meaning that 
particles tend to local equilibrium values f

eq at a rate 
controlled by a relaxation time trelax [48, 49]. 

In LBM, Equation (6) is written for each link k in the 

fictitious lattice so that it becomes referred to as lattice-
Boltzmann equation: 

fk

t
+ uk fk =

fk
eq fk

trelax

          (7) 

Distinct lattices are identified as DnQm, where n is 

the problem dimensionality (e.g., n = 1 = 1-D = one 
dimensional) and m refers to the speed model (= 
number of particle distribution functions to be solved for 
each observable property). Typical lattices for LBM 
simulations are depicted elsewhere [23, 25, 40]. 

Space-time discretisation of Equation (7) written for 
a given macroscopic property yields an algebraic 

equation whose numerical evolution is accomplished in 
two steps. During collision (time evolution), particle 
distribution functions fk are updated from instant t to t + 

t at all lattice sites, being t the advancing time step. 
During streaming (spatial evolution), collision updates 
are transferred to adjacent sites. 

The connection between mesoscale (LBM 
simulation) and macroscale (observable properties) is 

established by means of the equilibrium distribution 
function feq together with the relaxation parameter  = 

trelax/ t. The former dictates the transport 
phenomenon (i.e. momentum, heat or mass transfer) 
while the later sets the related transport coefficient (i.e. 
kinematic viscosity, thermal diffusivity or mass 
diffusivity). 

3. NUMERICAL METHOD 

3.1. BAC Model Equations in Lattice-Based 
Dimensionless Form 

The BAC model described in section 2.1 was cast in 
dimensionless form as an attempt to deal with 
concurrent effects while aiming at fewer parameters. 
Being 

 
rref 0  a reference value for adsorbate transfer 

rate defined ahead, dimensionless variables were 
based on LBM parameters z and t as well as on 
BAC parameters cin and qmax as follows: 

 

Z =
z

z
, =

t

t
, C =

c

cin

,

Q =
q

qmax

, R =
r

rref

        (8) 

Accordingly, lattice-based dimensionless forms of 
Equations (1) and (2) resulted as: 

C
+ Ma

C

Z
=

1

Pem

2C

Z 2

1
Pmax R         (9) 

 

R =
Q

= Pads C (1 Q) PdesQ        (10) 

Lattice-based Mach number (Ma) and mass-transfer 
Peclet number (Pem) were defined as: 

Ma =
v t

z
and Pem =

( z)2

D t
       (11) 

By identifying 
 
R = Q  as claimed in Equation 

(10), reference value for adsorbate transfer rate 
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resulted as rref = qmax t  so that the remaining 

dimensionless parameters became: 

Pmax =
rref t

cin

=
qmax

cin

, Pads = kads cin t , Pdes = kdes t  (12) 

By introducing Nz = L/ z so that Nz + 1 is the 
number of lattice sites in z axis including end points, 

initial and boundary conditions, Equations (3) and (4), 
respectively became: 

C(Z,0) = 0 and Q(Z,0) = 0 , for 0  Z  Nz     (13) 

C(0, ) = 1 and 
C

Z Z=Nz

= 0 , for  > 0      (14) 

3.2. LBM Implementation for BAC Simulation 

Based on BGK approach, LBM was programmed in 
Fortran 90/95 to simulate BAC ruled by Equations (9) 

to (14), with code lines following [40]. As the proposed 
model deals with adsorbate concentrations in fluid and 
solid phases, two particle distribution functions were 
required. Functions fk = fk(Z, ) were assigned to 
dimensionless fluid-phase concentration C = C(Z, ) 
whereas functions sk = sk(Z, ) referred to solid-phase 
counterpart Q = Q(Z, ). 

At any dimensionless instant  and position Z within 

the chromatographic column, dimensionless adsorbate 
concentrations were retrieved as: 

C(Z, ) = f1(Z, ) + f2 (Z, )  and Q(Z, ) = s1(Z, ) + s2 (Z, )

           (15) 

where k = 1 and k = 2 refer to forward and backward 
streaming directions, respectively. LBM was 
implemented in D1Q2 lattice so that functions f0 and s0 
were disregarded. 

The underlying physics at each phase dictates the 

equilibrium distribution functions fk
eq  and sk

eq  as well as 

the relaxation factors f and s. Provided that the solid 
matrix remains stationary while diffusive-convective 
transport takes place in the fluid phase, the equilibrium 
distribution functions were adopted as [40]: 

fk
eq (Z, ) = wk C(Z, ) [1± Ma]  and sk

eq (Z, ) = wk Q(Z, )

           (16) 

Fulfilling the condition wk = 1, weighting factors wk 

are the same for fk
eq  and sk

eq , namely w0 = 0 (i.e. f0 and 

s0 are disregarded) and w1 = w2 = 1/2 for D1Q2 lattice. 
The sign before Mach number depends on streaming 

direction, being +Ma for forward (k = 1) and –Ma for 
backward (k = 2) streaming. 

For governing equations invoking diffusive mass 
transport, relaxation factor  refers to diffusivity D. 
Consistent with Pem definition in Equation (11), the 
following expressions were applied [35]: 

f =
1

Pem

+
1

2

1

 and s = 2        (17) 

In LBM, eventual source or sink terms are 
introduced in the collision step [40]. In view of 

Equations (9) and (10), the following expressions were 
computationally implemented: 

fk (Z, + ) = [1 f ] fk (Z, ) +

f fk
eq (Z, ) wk

1 PmaxR( )
       (18) 

sk (Z, + ) = [1 s ] sk (Z, ) + ssk
eq (Z, ) + wk R    (19) 

where  is the dimensionless time step and 

R = Pads C (1 Q) PdesQ . 

At this point, it is worth recalling the absence of 
partial derivatives with respect to coordinate Z in 
Equation (10). As far as the streaming step is 

concerned in such a case, one may implement LBM by 
either imposing periodic boundary conditions or simply 
suppressing the streaming step itself [50]. The later 
approach was adopted so that streaming was solely 
implemented for fluid-phase particle distribution 
functions as: 

fk (Z + Zk , + ) = fk (Z, + )        (21) 

being Zk the dimensionless separation distances 

between lattice sites. Yet, systems modeled by zero-
order equations with respect to space may still 
“perceive” external influence through source and/or 
sink terms [35]. 

With C(Z,0) and Q(Z,0) provided by Equation     
(13), initial conditions for particle distribution functions 
were imposed as: 

fk (Z,0) = wk C(Z,0)  and sk (Z,0) = wk Q(Z,0)      (21) 

At inlet (Z = 0), f2(0, ) was obtained via streaming 
from the adjacent site at Z = 1 so that f1(0, ) was the 

only unknown. As Equation (14) provides C(0, ) = 1, 
flux conservation leads to the following condition [40]: 
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f1(0, ) = C(0, ) f2 (0, ) f1(0, ) = 1 f2 (0, )      (22) 

At outlet (Z = Nz), f1(Nz, ) was obtained via 

streaming from the adjacent site at Z = Nz  1 so that 
f2(Nz, ) was unknown. By approximating the null 
Neumann condition in Equation (14) by first-order finite-
differences [40], the following condition was obtained: 

f2 (Nz , ) = f2 (Nz 1, )         (23) 

4. RESULTS AND DISCUSSION 

4.1. Trial LBM Simulations Against a Classic BAC 
Work 

Implementation of the LBM simulator was tested 
against a classic work on lysozyme bioseparation [38], 
whose parameters concerning a given 
chromatographic column are shown in Table 1a 

together with LBM parameters z and t. The later 
were adopted so as to ensure low lattice-based Mach 
number [40] whereas the former were used in 
simulations performed in [41]. Bed porosity was set as 
 = 0.5 so that Equations (1) and (2) could match 

model equations in [41] as (1 – )/  = 1. For LBM 

simulations, Table 1b shows lattice-based 
dimensionless parameters obtained by means of 
Equations (11) and (12). 

Table 1 (a) Process Parameters Concerning Lysozyme 

Bioseparation [38] and LBM Parameters z and 

t, (b) Resulting Lattice-Based Dimensionless 

Parameters for LBM Simulations 

(a) BAC and LBM  
parameters 

(b) Lattice-based dimensionless 
parameters 

L = 0.104 m

cin = 0.0071 mol/m3

qmax = 0.875 mol/m3

kads = 0.286 m3/(mol s)

kdes = 0.0005 s-1

v = 0.000224 m/s

z = 0.0001 m

t = 0.05 s

 

Nz = 1040

Pmax = 123.24

Pads = 1.0153 10 4

Pdes = 2.5 10 5

Ma = 0.112

Z = 1

= 1

 

 
For comprehensiveness towards large-scale BAC, 

axial diffusion was considered in the fluid phase. 

Functionality of the LBM simulator was tested for 
distinct lattice-based mass-transfer Peclet numbers, 
namely Pem = 0.15, 0.30, 1.00 and , the latter being 
implemented by setting f = 2 in agreement with 
Equation (17). For each testing Pem, Figure 1a 
compares experimental data [38] with breakthrough 

curves Cexit( ) = C(Nz, ) simulated using parameters 
from Table 1. 

Despite breakthrough curves are shifted to right with 
respect to time, their expected shape was reproduced. 

It is worth noting that curve slope reduces as Pem 
decreases, i.e. as mass diffusion becomes more 
influential. This is because diffusion “spreads” species 
to both forward and backward directions in 1-D 
transport. Hence, saturation front becomes smoother 
than if transported solely by convection. 

Additional simulations were performed in [41] by 
adopting a slightly lower maximum adsorption capacity, 
namely qmax = 0.845 mol/m3, for which Equation (12) 

provides Pmax = 119.01. For each trial Pem as in prior 

LBM simulations, Figure 1b shows that numerically 
simulated breakthrough curves are closer to 
experimental data, i.e. saturation arrives earlier at the 
column exit as expected. Moreover, as parameters Pem 
were kept the same, the slope of each corresponding 
breakthrough curve remains apparently unchanged. 

With regard to the original qmax value, two lower 
maximum adsorption capacities were tested, namely 
qmax = 0.95qmax  and qmax = 0.90qmax , respectively 

rendering Pmax = 117.08 and Pmax = 110.92. By keeping 

Pem = 0.30 (as this value yields a slope close to 
experimental data), Figure 1c shows the corresponding 
simulated breakthrough curves, where good match is 
observed for Pmax = 117.08. 

It is worth mentioning that some simulations were 
carried out in [41] by disregarding diffusive transport in 
fluid phase, which is mathematically equivalent to 
assume D = 0 in Equation (1) or Pem   in Equation 

(9). In this case, fluid-phase concentration becomes 
ruled by a first-order PDE with respect to spatial 
dependence and adsorbate transport in fluid phase 
becomes convection-dominant. In doing so, one may 
claim the advantage of being able to apply marching 
numerical methods for initial-value problems (e.g., 

Runge-Kutta method) while dismissing the additional 
boundary condition at column exit. 

Nonetheless, discretisation schemes of convective 
terms (e.g. upwind scheme) might yield numerical 
dispersion [51], also referred to as false diffusion, 
which is not the case of LBM [25, 40]. In FDM, for 
instance, numerical dispersion due to upwind schemes 
becomes evident for convection prevailing over 

diffusion [52], i.e. for higher Pem. For that reason, slope 
of breakthrough curves simulated in [41] with 
parameters from Table 1a could be “artificially 
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smoother”, which may suggest a re-evaluation of some 
(if not all) parameters. As depicted in Figures 1a and 

1b, curves simulated via LBM with Pem  , i.e. which 
mimic numerical simulations in [41], seem steeper than 
experimental data. 

4.2. LBM Simulation of BAC for Lipase 
Bioseparation 

Thanks to industrial and medical applications, there 
has been a growing interest in microbial lipases, whose 
high-degree purification can be achieved through BAC 
[53]. After trial tests as addressed in section 4.1, the 
LBM simulator was applied to lipase bioseparation. 
Along with LBM parameters z and t, Table 2a shows 

parameters concerning a given column studied in [39]. 
Adsorbate concentrations are here expressed in 
enzymatic activity units defined as 1 U = 1 μmol of fatty 
acids released per minute. However, lattice-based 
dimensionless parameters are insensitive to units and 
Table 2b shows their values as assessed by Equations 
(11) and (12). Bed porosity was initially set at  = 0.5. 

Table 2: (a) Process Parameters Concerning Lipase 

Bioseparation [39] and LBM Parameters z and 

t, (b) Resulting Lattice-Based Dimensionless 

Parameters for LBM Simulations 

(a) BAC and LBM 
parameters 

(b) Lattice-based dimensionless 
parameters 

L = 0.032 m

cin = 9.52 106 U/m3

qmax = 9.89 107 U/m3

kads = 1.00 10 9 m3/(U s)

kdes = 0.00233 s-1

v = 0.00025 m/s

D = 3.06 10 8 m2 /s

z = 0.0001 m

t = 0.05 s

 

Nz = 320

Pmax = 10.389

Pads = 4.76 10 4

Pdes = 1.17 10 4

Ma = 0.125

Pem = 6.536

Z = 1

= 1

 

 
Recalling that values in Table 2a are tentative, LBM 

simulations were also performed for different values of 
dimensionless parameters Pmax, Pem and  (i.e. 

variations in adsorption-desorption parameters Pads and 

 

     a       b 

 

c 

Figure 1: Comparison between experimental data [38] and breakthrough curves simulated with lattice-based dimensionless 
parameters as assessed from (a) model parameters in [41] and distinct mass-transfer Peclet numbers Pem, (b) lower maximum 
adsorption capacity as suggested in [41] and distinct mass-transfer Peclet numbers Pem, (c) trial higher values of maximum 
adsorption capacity and Pem = 0.30. 
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Pdes were not tested). In Figure 2a, experimental data 
[39] are compared with breakthrough curves as 
simulated with parameters from Table 2b as well as 
exploratory higher Pmax = 11.46, 18.91 and 27.86. Such 

values are related via Equation  (12) to higher qmax 
equally tested in [39]. One notes that saturation arrives 
at proper time at column exit but slopes need some 
adjustment. 

Accordingly, Figure 2b shows breakthrough curves 
as simulated with tentative Pem, namely 0.05, 0.10, 
0.20 and 0.30, while keeping Pmax = 27.86. As 
expected and as pointed in section 4.1, curve slopes 

are reduced inasmuch as Pem decreases. Yet, 
numerically simulated curves remain distant from 
experimental data, thus claiming for further tests. 

Figure 2c shows breakthrough curves simulated 
with Pmax = 27.86 while combining either Pem = 0.06 or 
0.07 with porosity  = 0.44 or 0.45. Any combination of 
those values of diffusivity D (for Pem calculations) or 
bed porosity  yields reasonable curves. It should be 

noted that experimental assessment of aforementioned 
parameters is not straightforward. 

5. CONCLUSION AND FUTURE WORK 

Computational modelling of biospecific affinity 
chromatography (BAC) requires the solution of coupled 
partial differential equations and lattice-Boltzmann 
method (LBM) comes forward as an interesting 

numerical technique. This work applied LBM following 
a dynamic one-dimensional BAC model cast in 
dimensionless form so that lattice-based Mach number 
(Ma) and mass-transfer Peclet number (Pem) arose as 
model parameters. 

As the differential equation for adsorbate 
concentration in solid phase lacked partial derivatives 
with respect to spatial coordinate, the related streaming 

step was simply suppressed in the LBM code. No loss 
of functionality was observed as the LBM simulator was 
able to reproduce the expected shape of breakthrough 
curves. 

 

     a       b 

 

c 

Figure 2: Comparison between experimental data [39] and breakthrough curves simulated with lattice-based dimensionless 
parameters as assessed from (a) distinct maximum adsorption capacities as suggested in [39] and mass-transfer Peclet number 
Pem = 6.536, (b) the highest maximum adsorption capacity in [39] and distinct Pem, (c) the highest maximum adsorption 
capacity and combinations of Pem = 0.06 or 0.07 with trial lower porosities  = 0.44 or 0.45. 
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Influence of Pem (sometimes neglected in BAC 
models) and dimensionless parameter Pmax related to 

maximum adsorption capacity of the column was 
examined by performing LBM simulations of a classic 
work on lysozyme bioseparation. While Pem influenced 
the slope of the breakthrough curve, Pmax affected the 
time lag for column saturation. Differences between 
simulated breakthrough curves and experimental data 

were assigned to the absence of numerical diffusion in 
LBM. Those discrepancies were mitigated by re-
evaluating the original model parameters. 

Numerical simulations of lipase bioseparation 
proved that bed porosity are influential in BAC models, 
apart from lattice-based dimensionless parameters Pem 
and Pmax. In view of an accurate assessment of model 
parameters via best-fit against experimental data, the 

numerical simulator is currently being extended in order 
to combine the LBM solution procedure with 
optimisation routines (to minimise the sum of squared 
differences between numerical and experimental 
breakthrough curves). 

At its current development stage the LBM simulator 
is limited to 1-D modelling and extension to 2-D models 
implies in simulating the downstream solution as well. 

Accordingly, upcoming versions of the LBM simulator 
will cope with bed hydrodynamics by the use of D2Q9 
lattices not only for flow simulation but also mass 
transfer as already accounted for. 

The LBM simulator will be equally extended towards 
multi-component bioseparation. As pointed in [23], LBM 
may tackle multiphase flows by relying on a set of 
multicomponent distribution functions fki with index i 

running over as many species as necessary, e.g. other 
enzymes or protein products. In view of that, 
corresponding adsorption-desorption kinetics should be 
properly modelled and numerically implemented via 

source or sink terms Rki related to the variation rate of 
species i for each lattice link k. 
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APPENDIX: NOMENCLATURE 

Latin Symbols 

A = cross-sectional area of the chromatographic 
column, m2 

C = dimensionless adsorbate concentration in 
fluid phase 

c = adsorbate concentration in fluid phase, 
mol m 3

 

D = adsorbate axial diffusivity, m2 s 1 

f = particle distribution function related to fluid-
phase concentration, dimensionless 

k = index for lattice (streaming) link, 
dimensionless 

kads = adsorption kinetic constant, m3 mol 1 s 1
 

kdes = desorption kinetic constant, s 1
 

L = chromatographic column length, m 

Ma = lattice-based Mach number, dimensionless 

Nz = index of the last lattice site, dimensionless 

Pem = lattice-based mass-transfer Peclet number, 
dimensionless 

Pads = adsorption-related parameter, dimensionless 

Pdes = desorption-related parameter, dimensionless 

Pmax = inlet concentration and maximum adsorption 
capacity parameter, dimensionless 

Q = dimensionless adsorbate concentration in 
solid phase 

q = adsorbate concentration in solid phase, 
mol m 3

 

 R  = dimensionless adsorbate transfer rate from 
fluid to solid phase 

 r  = adsorbate transfer rate from fluid to solid 
phase, mol m 3 s 1 

 r  = particle position, m 

s = particle distribution function related to solid-
phase concentration, dimensionless 

t = time, s 

 u  = particle velocity, m s 1 

 V  = volumetric flow rate of the percolating 
solution, m3 s 1 



48     International Journal of Biotechnology for Wellness Industries, 2015, Vol. 4, No. 1 Okiyama et al. 

v = interstitial velocity of the percolating solution, 
m s 1 

w = weighting factors, dimensionless 

Z = dimensionless axial coordinate 

z = axial coordinate, m 

Greek Symbols 

 = bed porosity, dimensionless 

 = dimensionless time 

 = collision operator, s 1 

 = relaxation parameter, dimensionless 

Subscripts and Superscripts 

eq = equilibrium distribution function 

exit = chromatographic column exit 

f = fluid phase 

in = chromatographic column inlet 

k = lattice link (for streaming) 

max = maximum adsorption capacity of the 
chromatographic column 

ref = reference value 

relax = relaxation time 

s = solid phase 

z = axial coordinate 

0 = central lattice site 

1 = downward streaming direction 

2 = upward streaming direction 

 = superficial velocity (average over a 
representative elementary volume) 

Abbreviations and Acronyms 

BAC = biospecific affinity chromatography 

BGK = Bhatnagar-Gross-Krook approximation 

FDM = finite differences method 

FEM = finite elements method 

FVM = finite volumes method 

LBM = lattice Boltzmann method 

MD = molecular dynamics 

PDE = partial differential equation 

1-D = one dimensional 
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