The Potential of Hydrocyclone Application for Mammalian Cell Separation in Perfusion Cultivation Bioreactors

Authors

  • Elsayed A. Elsayed Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia
  • Mohamad A. Wadaan Natural & Microbial Products Department, National Research Centre, 12311 Dokki, Cairo, Egypt

DOI:

https://doi.org/10.6000/1927-3037.2013.02.04.2

Keywords:

Hydrocyclone, cell separation, mammalian cells, perfusion bioreactors, separation efficiency

Abstract

Hydrocyclones have been traditionally applied for long times in many industrial fields, such as in mineral processing and mining, chemical and petrochemical, and food industries. They have many characteristics that favor them as separation system in solid/liquid, gas/liquid and liquid/liquid processes. During the last two decades, they have been evaluated for their possible application in the separation of microbial and mammalian cells. Nowadays, mammalian cells are widely used for the production of a large number of valuable therapeutic proteins, antibodies, hormones and vaccines. This review highlights the potential of the application of hydrocyclones for mammalian cell separation in continuous perfusion biorecators. The discussion will cover the structure of hydrocyclone, mechanism of separation inside hydrocyclones, different theories describing the separation process, as well as the effect of changing different geometrical variables on the efficiency and performance of the separation process. Furthermore, we will focus on the latest developments achieved in the field of separation of living cells in both laboratory and pilot plant cultivation scales.

References

Sarmidi MR, El Enshasy HA. Biotechnology for wellness industry: Concepts and biofactories. Int J of Biotechnol Wellness Industries, 2012; 1: 3-28. http://dx.doi.org/10.6000/1927-3037.2012.01.01.01

Dimitrov DS, Marks JD. Therapeutic antibodies: Current state and future trends - Is a paradigm change coming soon? Methods Mol Biol, 2009; 525: 1–27. http://dx.doi.org/10.1007/978-1-59745-554-1_1

Strohl WR. Therapeutic monoclonal antibodies: Past, present and future. In: An Z, editor. Therapeutic monoclonal antibodies. From bench to Clinic. New Jersey: Wiley & Sons, 2009. p. 3-50. http://dx.doi.org/0.1002/9780470485408.ch

Pringle AT. Fermentation and mammalian cell culture. In: Klegerman ME, Groves MJ, editors. Pharmaceutical biotechnology, fundamentals and essentials. Illinois: Interpharm Press Inc., 1992; p. 115-37.

Tokashiki M, Yokoyama S. Bioreactors designed for animal cells. In: Hauser H, Wagner R, editors. Mammalian cell biotechnology in protein production. Berlin: Walter de Gruyter, 1997; p. 279-317.

Zhang J, Collins A, Chen M, Knyazev I, Gentz R. High-density perfusion culture of insect cells with a BioSep ultrasonic filter. Biotechnol Bioeng, 1998; 59: 351-9. http://dx.doi.org/10.1002/(SICI)1097-0290(19980805)59:3<351::AID-BIT11>3.0.CO;2-H

Sandig V, Rose T, Winkler K, Brecht R. Mammalian cells. In: Gellissen G, editor. Production of recombinant proteins: Novel microbial and eukaryotic systems. Weinheim: Wiley-VCH, 2005; p. 233-52. http://dx.doi.org/10.1002/3527603670

Su WW. Bioreactors, perfusion. In: Spier RE, editor. Encyclopedia of cell technology. Vol 1, New York: Wiley, 2000; p. 230-42.

Castilho LR, Medronho RA. Cell retention devices for suspended-cell perfusion cultures. In: Schügerl K, Zeng A-P, editors. Tools and applications of biochemical engineering science. Adv Biochem Eng Biotechnol, Vol. 74, Berlin: Springer Verlag, 2002; p. 129-69. http://dx.doi.org/10.1007/3-540-45736-4_7

Voisard D, Meuwly F, Ruffieux P-A, Baer G, Kadouri A. Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng, 2003; 82: 751-65. http://dx.doi.org/10.1002/bit.10629

Elsayed EA. Application of hydrocyclone for cell separation in mammalian cell perfusion cultures. Göttingen: Cuvillier; 2005.

Woodside SM, Bowen BD, Piret JM. Mammalian cell retention devices for stirred perfusion bioreactors. Cytotechnology, 1998; 28: 163-75. http://dx.doi.org/10.1023/A:1008050202561

Castilho LR, Medronho RA. Animal cell separation. In: Castilho LR, Moraes AM, Augusto EFP, Butler M., editors. Animal cell technology: From biopharmaceuticals to gene therapy. New York: Taylor & Francis, 2008; p. 273-93.

Deo YM, Mahadevan MD, Fuchs R. Practical considerations in operation and scale-up of spin-filter based bioreactors for monoclonal antibody production. Biotechnol Prog, 1996; 12: 57-64. http://dx.doi.org/10.1021/bp950079p

van Reis R, Gadam S, Frautschy LN, et al. High performance tangential flow filtration. Biotechnol Bioeng, 1997; 56: 71-82. http://dx.doi.org/10.1002/(SICI)1097-0290(19971005)56:1<71::AID-BIT8>3.0.CO;2-S

Castilho LR, Anspach FB. CFD-Aided design of a dynamic filter for mammalian cell separation. Biotechnol Bioeng, 2003; 83: 514-24. http://dx.doi.org/10.1002/bit.10697

Sato S, Kawamura K, Fujiyoshi N. Animal cell cultivation for production of biological substances with a novel perfusion culture apparatus. J Tissue Cult Method, 1983; 8: 167-71. http://dx.doi.org/10.1007/BF01665880

Hülscher M, Scheibler U, Onken U. Selective recycle of viable animal cells by coupling of airlift reactor and cell settler. Biotechnol Bioeng, 1992; 39: 442-6. http://dx.doi.org/10.1002/bit.260390410

Hamamoto K, Ishimaru K, Tokashiki M. Perfusion culture of hybridoma cells using a centrifuge to separate cells from the culture mixture. J Ferment Bioeng, 1989; 67: 190-4. http://dx.doi.org/10.1016/0922-338X(89)90121-9

Takamatsu H, Hamamoto K, Ishimaru K, Yokoyama S, Tokashiki M. Large-scale perfusion culture process for suspended mammalian cells that uses a centrifuge with multiple setting zones. Appl Microbiol Biotechnol, 1996; 45: 454-7.

Gorenflo VM, Smith L, Dedinsky B, Persson B, Piret JM. Scale-up and optimization of an acoustic filter for 200 L/day perfusion of a CHO cell culture. Biotechnol Bioeng, 2002; 80: 438-44. http://dx.doi.org/10.1002/bit.10386

Gorenflo VM, Angepat S, Bowen BD, Piret JM. Optimization of an acoustic cell filter with a novel Air-Backflush system. Biotechnol Prog, 2003; 19: 30-6. http://dx.doi.org/10.1021/bp025625a

Markx GH, Dyda PA, Pethig R. Dielectrophoretic separation of bacteria using a conductivity gradient. J Biotechnol, 1996; 51: 175-80. http://dx.doi.org/10.1016/0168-1656(96)01617-3

Liu R-M, Hunag JP. Theory of the dielectrophoretic behavior of clustered colloidal particles in two dimensions. Phys Lett A, 2004; 324: 458-64. http://dx.doi.org/10.1016/j.physleta.2004.03.004

Mousavian SM, Najafi AF. Influence of geometry on separation efficiency in a hydrocyclone. Arch Appl Mech, 2009; 79: 1033-50. http://dx.doi.org/10.1007/s00419-008-0268-8

Ortega-Rivas E. Separation techniques for solids and suspensions. Non-thermal food engineering operations, Food Engineering Series, 2012; 7: 131-97. http://dx.doi.org/10.1007/978-1-4614-2038-5_7

Trawinski H. Theory, application and practical operation of hydrocyclones. Eng Min J, 1976; 177: 115-27.

Bretney E. Water purifier. U.S. Patent No. 543, 105, 1891.

Wang H, Zhang Y, Wang J, Liu H. Cyclonic separation technology: Researches and developments. Chin J Chem Eng, 2012; 20(Pt 2): 212-9. http://dx.doi.org/10.1016/S1004-9541(12)60381-4

Oats WJ, Ozdemir O, Nguyen AV. Effect of mechanical and chemical clay removal by hydrocyclone and dispersants on coal flotation. Minerals Eng, 2010; 23: 413-9. http://dx.doi.org/10.1016/j.mineng.2009.12.002

Schwerzler GI. Recycling of glaze waste through hydrocyclone separation. Powder Technol, 2005; 160: 135-40. http://dx.doi.org/10.1016/j.powtec.2005.08.032

Dickey LC, Dallmer MF, Radewonuk ER, Parris N, Kurantz M, Craig Jr JC. Hydrocyclone separation of dry-milled corn. Cerel Chem, 1997; 74(Pt 5): 676-80. http://dx.doi.org/10.1094/CCHEM.1997.74.5.676

Yang Q, Wang H-L, Liu Y, Li Z-M. Solid/liquid separation performance of hydrocyclones with different cone combinations. Sep Pur Technol, 2010; 74: 271-9. http://dx.doi.org/10.1016/j.seppur.2010.06.014

Wood JR, Grondin M, Karnis A. Characterization of mechanical pulp fines with a small hydrocyclone. 1. The principle and nature of the separation. J Pulp Paper Sci, 1991; 17: J1-J5.

Young GAB, Wakley WD, Taggart DL, Andrews SL, Worrell JR. Oil-water separation using hydrocyclones-an experimental search for optimum dimensions. J Petrol Sci Eng, 1994; 11: 37-50.

Dhamo N. Electrochemical oxidation of cyanide in the hydrocyclone cell. Waste Manag, 1996; 16: 257-61. http://dx.doi.org/10.1016/S0956-053X(96)00051-7

Cilliers JJ, Harrison STL. The application of mini-hydrocyclones in the concentration of yeast suspension. Chem Eng J, 1997; 65: 21-6.

Klima MS, Kim BH. Dense-medium separation of heavy-metal particles from soil using a wide-angle hydrocyclone. J Environ Sci Health, 1998; A33: 1325-40. http://dx.doi.org/10.1080/10934529809376791

Moraes CAC, Hackenburg CM, Russo C, Medronho RA. Theoretical analysis of oily water hydrocyclones. In: Claxton D, Svarovsky L, Thew M, editors. Hydrocyclones. London & Bury Saint Edmunds: Mechanical Eng Publication, 1996; p. 383-98.

Marti S, Erdal FM, Shoham O, Shirazi S, Kouba GE. Analysis of gas carry-under in gas-liquid cylindrical cyclones. In: Claxton D, Svarovsky L, Thew M, editors, Hydrocyclones. London & Bury Saint Edmunds: Mechanical Eng Publication, 1996; p. 399-421.

Sierra C, Gallego JR, Afif E, Menéndez-Aguado JM, González-Coto F. Analysis of soil washing effectiveness to remediate a brownfield polluted with pyrite ashes. J Hazard Mater, 2010; 180: 602–8. http://dx.doi.org/10.1016/j.jhazmat.2010.04.075

Rastogi K, Sahu JN, Meikap BC, Biswas MN. Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone. J Hazard Mater, 2008; 158: 531–40. http://dx.doi.org/10.1016/j.jhazmat.2008.01.105

Bader MSH. A hybrid liquid-phase precipitation (LPP) process in conjunction with membrane distillation (MD) for the treatment of the INEEL sodium-bearing liquid waste. J Hazard Mater, 2005; 121: 89–108. http://dx.doi.org/10.1016/j.jhazmat.2005.01.017

Schwier D, Hartge EU, Werther J, Gruhn G. Global sensitivity analysis in the flowsheet simulation of solids processes. Chem Eng Process, 2010; 49: 9–21.

Williford Jr. CW, Bricka RM, Foster CC. Reduction of suspended solids following hydroclassification of metal-contaminated soils. J Hazard Mater, 2002; 92: 63–75. http://dx.doi.org/10.1016/S0304-3894(01)00374-0

Mann MJ. Full-scale and pilot-scale soil washing, J Hazard Mater, 1999; 66: 119–36. http://dx.doi.org/10.1016/S0304-3894(98)00207-6

Anderson R, Rasor E, Van Ryn F. Particle size separation via soil washing to obtain volume reduction. J Hazard Mater, 1999; 66: 89–98. http://dx.doi.org/10.1016/S0304-3894(98)00210-6

Yurdem H, Demir V, Degirmencioglu A. Development of a mathematical model to predict clean water head losses in hydrocyclone filters in drip irrigation systems using dimensional analysis. Biosys Eng, 2010; 105: 495–506. http://dx.doi.org/10.1016/j.biosystemseng.2010.02.001

Bai ZS, Wang HL, Tu ST. Purifying coke-cooling waste water. Chem Eng, 2010; 117: 40-1.

Bai ZS, Wang HL, Tu ST. Oil–water separation using hydrocyclones enhanced by air bubbles. Chem Eng Res Design, 2011; 89: 55–9. http://dx.doi.org/10.1016/j.cherd.2010.04.012

Wang H, Qian Z, Wang J, et al. A method and an equipment for waste water of cooling coke in USA. WO/2006/050,645, 2006.

Emami S, Tabil LG, Tyler RT, Crerar WJ. Starch–protein separation from chickpea flour using a hydrocyclone. J Food Eng, 2007; 82: 460-5. http://dx.doi.org/10.1016/j.jfoodeng.2007.03.002

Nielson RJ, Moffitt CM, Watten BJ. Hydrocylonic separation of invasive New Zealand mudsnails from an aquaculture water source. Aquaculture, 2012; 326-329: 156-62. http://dx.doi.org/10.1016/j.aquaculture.2011.11.035

Bendixen D, Rickwood D. Effects of hydrocyclones on the integrity of animal and microbial cells. Bioseparation, 1994; 4: 21–7.

Pinto RV, Medronho R, Castilho L. Separation of CHO cells using hydrocyclones. Cytotechnology, 2008; 56: 57–67. http://dx.doi.org/10.1007/s10616-007-9108-x

Min’kov LL, Krokhina AV, Dueck J. Hydrodynamic mechanisms of the influence of injection on the classification characteristics of a hydrocyclone. J Eng Phys Thermophys, 2011; 84(Pt 4): 807-19. http://dx.doi.org/10.1007/s10891-011-0538-0

Cilliers JJ. Particle size separation, Hydrocyclones for particle size separation. In: Poole C, Cooke M, editors. Encyclopedia of separation science, UK: Academic Press, 2000; p. 1819-25.

Lynch AJ, Rao TC. Studies on the operating characteristics of hydrocyclone classifiers. Ind J Technol, 1968; 6: 106-14.

Svarovsky L. Hydrocyclones. Holt: Reinehart and Winston Ltd; 1984.

Ortega-Rivas E. Applications of the liquid cyclone in biological separations. Eng Life Sci, 2004; 4: 119-23. http://dx.doi.org/10.1002/elsc.200402004

Dai GQ, Li JM, Chen WM. Numerical prediction of the liquid flow within a hydrocyclone. Chem Eng J, 1999; 74: 217-23. http://dx.doi.org/10.1016/S1385-8947(99)00044-3

Nowakowski AF, Cullivan JC, Williams RA, Dyakowski T. Application of CFD to modelling of the flow in hydrocyclones. Is this a realizable option or still a research challenge? Minerals Eng, 2004; 17: 661-9. http://dx.doi.org/10.1016/j.mineng.2004.01.018

Schuetz S, Mayer G, Bierdel M, Piesche M. Investigations on the flow and separation behaviour of hydrocyclones using computational fluid dynamics.Int J Miner Process, 2004; 73: 229-37. http://dx.doi.org/10.1016/S0301-7516(03)00075-9

Narasimha M, Sripriya R, Banerjee PK. CFD modelling of hydrocyclone-prediction of cut size. Inter J Miner Process, 2005; 75: 53-68. http://dx.doi.org/10.1016/j.minpro.2004.04.008

Sripriya R, Kaulaskar M, Chakraborty S, Meikap B. Studies on the performance of a hydrocyclone and modeling for flow characterization in presence and absence of air core. Chem Eng Sci, 2007; 62(Pt 22): 6391–6402. http://dx.doi.org/10.1016/j.ces.2007.07.046

Davailles A, Climent E, Bourgeois F. Fundamental understanding of swirling flow pattern in hydrocyclones. Sep Pur Technol, 2012; 92: 152-60. http://dx.doi.org/10.1016/j.seppur.2011.12.011

Rietema K. Performance and design of hydrocyclone. Chem Eng Sci, 1961; 15: 298-325.

Heiskanen K. Particle Classification. London: Chapman & Hall; 1993.

Chakraborti N, Miller JD. Fluid flow in hydrocyclones: A critical review. Mineral Process Extract Metall Rev, 1992; 211-44. http://dx.doi.org/10.1080/08827509208914207

Jirun X, Qian L, Jicun Q. Studying the flow field in a hydrocyclone with no forced vortex. Part II: Turbulence. Filtr Separat, 1990; 27: 356–9. http://dx.doi.org/10.1016/0015-1882(90)80369-V

Chu L-Y, Luo Q. Hydrocyclone with high separation sharpness. Filtr Separat, 1994; 31: 733–6. http://dx.doi.org/10.1016/0015-1882(94)80156-8

Bai Z-S, Wang H-L, Tu S-T. Removal of catalyst from oil slurry by hydrocyclone. Sep Sci Technol, 2009; 44: 2067–77. http://dx.doi.org/10.1080/01496390902880149

Kashiwaya K, Noumachi T, Hiroyoshi N, Ito M, Tsunekawa M. Effect of particle shape on hydrocyclone classification. Powder Technol, 2012; 226: 147-56. http://dx.doi.org/10.1016/j.powtec.2012.04.036

Chen W, Zydek N, Parma F. Evaluation of hydrocyclone models for practical applications. Chem Eng J, 2000; 80: 295-303. http://dx.doi.org/10.1016/S1383-5866(00)00105-2

Chu L-Y, Chen W-M, Lee X-Z. Enhancement of hydrocyclone performance by controlling the inside turbulence structure. Chem Eng Sci, 2002; 57: 207-12. http://dx.doi.org/10.1016/S0009-2509(01)00364-5

Lynch AJ, Rao TC, Prisbrey KA. The influence of hydrocyclone diameter on reduced efficiency curves. Inter J Miner Process, 1974; 1: 173-81. http://dx.doi.org/10.1016/0301-7516(74)90013-1

Lynch AJ, Rao TC, Bailey CW. The influence of design and operating variables on the capacities of hydrocyclone classifiers. Inter J Miner Process, 1975; 2: 29-37. http://dx.doi.org/10.1016/0301-7516(75)90010-1

Trawinski H. The separation process in the hydrocyclone. Miner Process, 1995; 36: 410-7.

Kurtela Z, Komadina P. Application of hydrocyclone and UV radiation as a ballast water treatment method. Sci J Traffic Transport Res, 2010; 22(Pt 3): 183–91. http://dx.doi.org/10.7307/ptt.v22i3.274

Abu-Khader MM, Badran O, Attarakih M. Ballast water treatment technologies: hydrocyclonic a viable option. Clean Technol Environmen Policy, 2011; 13: 403–13. http://dx.doi.org/10.1007/s10098-010-0325-1

Show K-Y, Lee D-J, Chang J-S. Algal biomass dehydration. Bioresource Technol, 2013; 135: 720-9. http://dx.doi.org/10.1016/j.biortech.2012.08.021

Seccombe P. Development of a hydrocyclone bioreactor for the continuous culture of immobilized yeast cells. J Chem Technol Biotechnol, 1991; 51: 284-5. http://dx.doi.org/10.1002/jctb.280510227

Yuan H, Rickwood D, Smyth IC, Thew MT. An investigation into the possible use of hydrocyclones for the removal of yeast from beer. Bioseparation, 1996; 6: 159-63.

Weuster-Botz D, Hünnekes E, Hartbrich A. Scale-up and application of a cyclone reactor for fermentation processes. Bioprocess Eng, 1998; 18: 433-8. http://dx.doi.org/10.1007/s004490050467

Matta VM, Medronho RA. A new method for yeast recovery in batch ethanol fermentation: Filter aid filtration followed by separation of yeast from filter aid using hydrocyclones. Bioseparation, 2000; 9: 43-53. http://dx.doi.org/10.1023/A:1008145419175

Medronho RA, Schuetze J, Deckwer W-D. Numerical simulation of hydrocyclones for cell separation. Lat Am App Res, 2005; 35: 1-8.

Habibian M, Pazouki M, Ghanaie H, Abbaspour-Sani A. Application of hydrocyclone for removal of yeasts from alcohol fermentations broth. Chem Eng J, 2008; 138: 30–4. http://dx.doi.org/10.1016/j.cej.2007.05.025

Bicalho IC, Mognon JL, Shimoyama J, Ataíde CH, Duarte CR. Separation of yeast from alcoholic fermentation in small hydrocyclones. Sep Pur Technol, 2012; 87: 62–70. http://dx.doi.org/10.1016/j.seppur.2011.11.023

Pinto AA, Bicalho IC, Mognon JL, Duarte CR, Ataíde CH. Separation of Saccharomyces cerevisiae from alcoholic fermentation broth by two commercial hydrocyclones. Sep Pur Technol, 2013, 120: 69-77. http://dx.doi.org/10.1016/j.seppur.2013.09.013

Castilho LR, Medronho RA. Animal cell separation. In: Castilho LR, Moraes AM, Augusto EFP, Butler M, editors. Animal cell technology: From biopharmaceuticals to gene therapy. New York: Taylor & Francis Group, 2008; p. 273-93.

Lübberstedt M, Anspach FB, Deckwer W-D, Medronho RA. Abtrennung tierischer Zellen mit Hydrozyklonen. Chem Eng Tech, 2000; 72: 1089-90. http://dx.doi.org/10.1002/1522-2640(200009)72:9<1089::AID-CITE10890>3.0.CO;2-O

Jockwer A, Medronho RA, Wagner R, Anspach FB, Deckwer W-D. The use of hydrocyclones for mammalian cell retention in perfusion bioreactors. In: Linder-Olsson E, Chatzissavidou N, Lüllau E, editors. Animal cell technology: From target to market. Dodrecht: Kluwer Academic Publishers, 2001; p. 301-5. http://dx.doi.org/10.1007/978-94-010-0369-8_69

Deckwer W-D, Medronho RA, Anspach B, Lübberstedt M. Method for separating viable cells from cell suspensions. US Patent 6,878,545 B2, WO 2001/85902. European Patent, PCT/EP 01/03665, 2005.

Elsayed EA, Piehl G-W, Nothnagel J, Medronho RA, Deckwer W-D, Wagner R. Use of hydrocyclone as an efficient tool for cell retention in perfusion cultures. In: Gòdia F, Fussenegger M, editors, Animal cell technology meets genomics. Netherlands: Springer, 2005; p.679-82. http://dx.doi.org/10.1007/1-4020-3103-3_139

Elsayed EA, Medronho RA, Wagner R, Deckwer W-D. Use of hydrocyclones for mammalian cell retention: separation efficiency and cell viability (Part 1). Eng Life Sci, 2006; 6(Pt 4): 347-54. http://dx.doi.org/10.1002/elsc.200620137

Pinto RCV, Medronho RA, Castilho LR. The effects of cell separation with hydrocyclones on the viability of CHO cells, In: Smith R, editor, Cell technology for cell products. Netherlands: Springer, 2007; p. 745-8. http://dx.doi.org/10.1007/978-1-4020-5476-1_134

Schröder B, Elsayed EA, Olownia J, Wagner R. Advantages of hydrodynamic cell separation in industrial cell culture processes, In: Noll T, editor, Cells and culture. Netherlands: Springer, 2010; p.657-64. http://dx.doi.org/10.1007/978-90-481-3419-9_113

Elsayed EA, Wagner R. Application of hydrocyclones for continuous cultivation of SP-2/0 cells in perfusion bioreactors: Effect of hydrocyclone operating pressure. BMC Proceed, 2011; 5(Suppl 8): P65. http://dx.doi.org/10.1186/1753-6561-5-S8-P65

Elsayed EA, Ramalho LAG, Castilho LR, Medronho RA. Feed flow pulsation in the separation of CHO cells in hydrocyclones: effects of pressure drop and pumphead type on separation efficiency and cell viability. In: Jenkins N, Barron Niall, Alves P, editors. Proceedings of the 21st Annual Meeting of the European Society for Animal Cell Technology (ESACT), Dublin, Ireland; 2012: p. 341-4. http://dx.doi.org/10.1007/978-94-007-0884-6_53

Rao TC, Nageswararao K, Lynch AJ. Influence of feed inlet diameter on the hydrocyclone behaviour. Inter J Miner Process, 1976; 3: 357-63.

Statie EC, Salcudean ME, Gartshore IS.The influence of hydrocyclone geometry on separation and fibre classification. Filtr Sep, 2001; 38: 36-41. http://dx.doi.org/10.1016/S0015-1882(01)80380-3

Chen C, Wang H-L, Gan G-H, Wang J-Y, Huang C. Pressure drop and flow distribution in a group of parallel hydrocyclones: Z-Z-type arrangement. Filtr Sep, 2013; 108: 15-27. http://dx.doi.org/10.1016/j.seppur.2013.01.038

Downloads

Published

2013-12-31

How to Cite

Elsayed, E. A., & Wadaan, M. A. (2013). The Potential of Hydrocyclone Application for Mammalian Cell Separation in Perfusion Cultivation Bioreactors. International Journal of Biotechnology for Wellness Industries, 2(4), 153–163. https://doi.org/10.6000/1927-3037.2013.02.04.2

Issue

Section

Articles