Banisteriopsis Species: A Source of Bioactive of Potential Medical Application

Authors

  • Ulysses A. de Frias Núcleo de Pesquisa Ciências Biológicas, Centro Universitário de Lavras, Rua Padre José Poggel, 506, CEP 37200-000, Lavras, MG, Brazil
  • Maria Cristina Mendes Costa Núcleo de Pesquisa Ciências Biológicas, Centro Universitário de Lavras, Rua Padre José Poggel, 506, CEP 37200-000, Lavras, MG, Brazil
  • Jacqueline Aparecida Takahashi Laboratório de Biotecnologia e Bioensaios, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6624, CEP 31270-901, Belo Horizonte, MG, Brazil
  • Yumi Oki Laboratório de Ecologia Evolutiva e Biodiversidade, ICB, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6624, CEP 31270-901, Belo Horizonte, MG, Brazil

DOI:

https://doi.org/10.6000/1927-3037/2012.01.03.02

Keywords:

Banisteriopsis, alkaloids, harmine, harmaline, flavonoids, quercetin, tannins, terpenoids, Ayahuasca, bioactivities

Abstract

In recent years, interest in further development of herbal or botanical drug products derived from traditional preparations has been increasing steadily. Plants have been used for thousands of years to treat health disorders and to prevent diseases including epidemics. Several research works have been developed to search for new natural products to be used in pharmaceutical products. Active compounds produced during secondary metabolism are responsible for the biological properties of the plant species and may be used to most diverse purposes, including treatment of several diseases. Banisteriopsis species has been described showing interesting activities by its use in popular medicine. The mainly use was described to production of the Ayahuasca, an Amazonian psychotropic plant tea obtained from Banisteriopsis caapi, which contains β-carboline alkaloids, mainly harmine, harmaline and tetrahydroharmine. Other species of Banisteriopsis genus have been described with biological metabolites as antimicrobial, anticholinesterase, antianxiety and others. These biological activities were described chiefly by the presence of alkaloids, flavonoids, tannins. Thus, to stimulate the study into the Banisteriopsis genus, the purpose of the present review is to gather information on the use of the extracts and metabolites of Banisteriopsis species (Malpighiaceae) as a resource to diseases treatment or to pharmaceutical purposes.

References

Mabberley DJ. The plant book: A portable dictionary of the vascular plants. 2nd ed. Cambridge: Cambridge University Press 1997.

Schultes RE. The Botanical and chemical distribution of hallucinogens. J Psychedelic Drugs 1977; 9: 247-63. http://dx.doi.org/10.1080/02791072.1977.10472055

Callaway JC, McKenna DJ, Grob CS, et al. Pharmacokinetics of Hoasca alkaloids in healthy humans. J Ethnopharmacol. 1999; 65: 243-56. http://dx.doi.org/10.1016/S0378-8741(98)00168-8

Riba J, Valle M, Urbano G, Yritia M, Morte A, Barbanoj MJ. Human pharmacology of ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics. J Pharmacol Exp Ther 2003; 306: 73-83. http://dx.doi.org/10.1124/jpet.103.049882

Callaway J. Various alkaloid profiles in decoctions of Banisteriopsis caapi. J Psychoactive Drugs 2005; 37: 151-5. http://dx.doi.org/10.1080/02791072.2005.10399796

Pomilio A, Vitale A, Ciprian-Ollivier J, Cetkovich-Bakmas M, Gomez R, Vazquez G. Ayahoasca: an experimental psychosis that mirrors the transmethylation hypothesis of schizophrenia. J Ethnopharmacol 1999; 65: 29-51. http://dx.doi.org/10.1016/S0378-8741(98)00163-9

Rodd R. Reassessing the cultural and psychopharmacological significance of Banisteriopsis caapi: preparation, classification and use among the Piaroa of southern Venezuela. J Psychoactive Drugs 2008; 40: 301-7. http://dx.doi.org/10.1016/S0378-8741(98)00163-9

Santos R, Landeira-Fernandez J, Strassman R, Motta V, Cruz A. Effects of ayahuasca on psychometric measures of anxiety, panic-like and hopelessness in Santo Daime members. J Ethnopharmacol 2007; 112: 507-13. http://dx.doi.org/10.1016/j.jep.2007.04.012

McKenna D. Clinical investigations of the therapeutic potential of ayahuasca: rationale and regulatory challenges. Pharmacol Ther 2004; 102: 111-29. http://dx.doi.org/10.1016/j.pharmthera.2004.03.002

Brierley DI, Davidson C. Developments in harmine pharmacology - Implications for ayahuasca use and drug-dependence treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2012; in press. http://dx.doi.org/10.1016/j.pnpbp.2012.06.001

McKenna D, Towers G, Abbott F. Monoamine-oxidase inhibitors in South-American hallucinogenic plants - tryptamine and beta-carboline constituents of Ayahuasca. J Ethnopharmacol 1984; 10: 195-223. http://dx.doi.org/10.1016/0378-8741(84)90003-5

Monsef H, Ghobadi A, Iranshahi M, Abdollahi M. Antinociceptive effects of Peganum harmala L. alkaloid extract on mouse formalin test. J Pharm Pharm Sci. 2004; 7: 65-9.

Farouk L, Laroubi A, Aboufatima R, Benharref A, Chait A. Evaluation of the analgesic effect of alkaloid extract of Peganum harmala L.: Possible mechanisms involved. J Ethnopharmacol 2008; 115: 449-54. http://dx.doi.org/10.1016/j.jep.2007.10.014

Lamchouri F, Settaf A, Cherrah Y, et al. In vitro cell-toxicity of Peganum harmala alkaloids on cancerous cell-lines. Fitoterapia 2000; 71: 50-4. http://dx.doi.org/10.1016/S0367-326X(99)00117-3

Sobhani AM ES, Hoormand M, Rahbar N, Mahmoudian M. Cytotoxicity of Peganum harmala L. seeds extract and its relationship with contents of beta-carboline alkaloids. J Iran Univ Med Sci 2002; 8: 432-8.

Jahaniani F, Ebrahimi S, Rahbar-Roshandel N, Mahmoudian M. Xanthomicrol is the main cytotoxic component of Dracocephalum kotschyii and a potential anti-cancer agent. Phytochemistry 2005; 66: 1581-92. http://dx.doi.org/10.1016/j.phytochem.2005.04.035

Ayoub MT, Al-Allaf TAK, Rashan LJ. Antiproliferative activity of harmol, a beta-carboline alkaloid. Fitoterapia 1994; 65: 14-8.

Shi CC, Liao JF, Chen CF. Comparative study on the vasorelaxant effects of three harmala alkaloids in vitro. Jpn J Pharmacol. 2001; 85: 299-305. http://dx.doi.org/10.1254/jjp.85.299

Berrougui H, Martín-Cordero C, Khalil A, et al. Vasorelaxant effects of harmine and harmaline extracted from Peganum harmala L. seeds in isolated rat aorta. Pharmacol Res 2006; 54: 150-7. http://dx.doi.org/10.1016/j.phrs.2006.04.001

Astulla A, Zaima K, Matsuno Y, et al. Alkaloids from the seeds of Peganum harmala showing antiplasmodial and vasorelaxant activities. J Nat Med 2008; 62: 470-2. http://dx.doi.org/10.1007/s11418-008-0259-7

Abdel-Fattah AF, Matsumoto K, Gammaz HA, Watanabe H. Hypothermic effect of harmala alkaloid in rats: involvement of serotonergic mechanism. Pharmacol Biochem Behav 1995; 52: 421-6. http://dx.doi.org/10.1016/0091-3057(95)00131-F

Kuhn MA, Winston D. Herbal Therapy & Supplements: A scientific & traditional approach. 2nd ed: New York: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2000.

Prashanth D, John S. Antibacterial activity of Peganum harmala. Fitoterapia 1999; 70: 438-9. http://dx.doi.org/10.1016/S0367-326X(99)00065-9

Arshad N, Neubauer C, Hasnain S, Hess M. Peganum harmala can minimize Escherichia coli infection in poultry, but long-term feeding may induce side effects. Poult Sci 2008; 87: 240-9. http://dx.doi.org/10.3382/ps.2007-00341

Kim H, Sablin SO, Ramsay RR. Inhibition of monoamine oxidase a by beta-carboline derivatives. Arch Biochem Biophys 1997; 337: 137-42. http://dx.doi.org/10.1006/abbi.1996.9771

Schwarz MJ, Houghton PJ, Rose S, Jenner P, Lees AD. Activities of extract and constituents of Banisteriopsis caapi relevant to parkinsonism. Pharmacol Biochem Behav 2003; 75: 627-33. http://dx.doi.org/10.1016/S0091-3057(03)00129-1

Zheng XY, Zhang ZJ, Chou GX, et al. Acetylcholinesterase inhibitive activity-guided isolation of two new alkaloids from seeds of Peganum nigellastrum Bunge by an in vitro TLC- bioautographic assay. Arch Pharm Res 2009; 32: 1245-51. http://dx.doi.org/10.1007/s12272-009-1910-x

Bussmann RW, Malca-García G, Glenn A, et al. Minimum inhibitory concentrations of medicinal plants used in Northern Peru as antibacterial remedies. J Ethnopharmacol 2010; 132: 101-8. http://dx.doi.org/10.1016/j.jep.2010.07.048

Freitas LBO. Estudo Fitoquímico e da Atividade Biológica de Banisteriopsis anisandra (A.Juss) B. Gates e Síntese de Amidas Indólicas para Avaliação da Atividade Alelopática. [dissertation]. Belo Horizonte (MG): Universidade Federal de Minas Gerais 2010; p. 236.

Frias UA, Mendes Costa MC, Aparecida Takahashi J. Caracterización fitoquímica y de las actividades antibacterianas y anticolinesterasa de Banisteriopsis anisandra A. Juss. (Malpighiaceae). Rev Cubana Plant Med 2011; 16: 11.

Hashimoto Y, Kawanishi K. New organic bases from Amazonian Banisteriopsis caapi. Phytochemistry 1975; 14: 1633-5. http://dx.doi.org/10.1016/0031-9422(75)85365-9

Hashimoto Y, Kawanishi K. New alkaloids from Banisteriopsis caapi. Phytochemistry 1976; 15: 1559-60. http://dx.doi.org/10.1016/S0031-9422(00)88936-0

Kawanishi K, Uhara Y, Hashimoto Y. Shihunine and dihydroshihunine from Banisteriopsis caapi. J Nat Prod 1982; 45: 637-9. http://dx.doi.org/10.1021/np50023a021

Samoylenko V, Rahman MM, Tekwani BL, et al. Banisteriopsis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson's disease. J Ethnopharmacol 2010; 127: 357-67. http://dx.doi.org/10.1016/j.jep.2009.10.030

Ghosal S, Mazumder UK. Alkaloids of the leaves of Banisteriopsis argentea. Phytochemistry 1971; 10: 2840-2. http://dx.doi.org/10.1016/S0031-9422(00)97304-7

Aricioglu F, Altunbas H. Harmane induces anxiolysis and antidepressant-like effects in rats. Ann N Y Acad Sci 2003; 1009: 196-201. http://dx.doi.org/10.1196/annals.1304.024

Nenaah G. Antibacterial and antifungal activities of (beta)-carboline alkaloids of Peganum harmala (L) seeds and their combination effects. Fitoterapia 2010; 81: 779-82. http://dx.doi.org/10.1016/j.fitote.2010.04.004

Im J-H, Jin Y-R, Lee J-J, et al. Antiplatelet activity of beta-carboline alkaloids from Perganum harmala: A possible mechanism through inhibiting PLCgamma2 phosphorylation. Vasc Pharmacol 2009; 50: 147-52. http://dx.doi.org/10.1016/j.vph.2008.11.008

Aarons DH, Rossi GV, Orzechowski RF. Cardiovascular actions of three harmala alkaloids: harmine, harmaline, and harmalol. J Pharm Sci 1977; 66: 1244-8. http://dx.doi.org/10.1002/jps.2600660910

Rodriguez E, Cavin JC, West JE. The possible role of Amazonian psychoactive plants in the chemotherapy of parasitic worms - a hypothesis. J Ethnopharmacol 1982; 6: 303-9. http://dx.doi.org/10.1016/0378-8741(82)90053-8

Hopp KH, Cunningham LV, Bromel MC, Schermeister LJ, Khalil SK. In vitro antitrypanosomal activity of certain alkaloids against Trypanosoma lewisi. Lloydia 1976; 39: 375-7.

Lala S, Pramanick S, Mukhopadhyay S, Bandyopadhyay S, Basu MK. Harmine: evaluation of its antileishmanial properties in various vesicular delivery systems. J Drug Target 2004; 12: 165-75. http://dx.doi.org/10.1080/10611860410001712696

Di Giorgio C, Delmas F, Ollivier E, Elias R, Balansard G, Timon-David P. In vitro activity of the beta-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum. Exp Parasitol 2004; 106: 67-74. http://dx.doi.org/10.1016/j.exppara.2004.04.002

Zhao T, He YQ, Wang J, Ding KM, Wang CH, Wang ZT. Inhibition of human cytochrome P450 enzymes 3A4 and 2D6 by beta-carboline alkaloids, harmine derivatives. Phytother Res 2011; 25: 1671-7. http://dx.doi.org/10.1002/ptr.3458

El Gendy MA, Soshilov AA, Denison MS, El-Kadi AO. Harmaline and harmalol inhibit the carcinogen-activating enzyme CYP1A1 via transcriptional and posttranslational mechanisms. Food Chem Toxicol 2012; 50: 353-62. http://dx.doi.org/10.1016/j.fct.2011.10.052

El Gendy MA, Soshilov AA, Denison MS, El-Kadi AO. Transcriptional and posttranslational inhibition of dioxin-mediated induction of CYP1A1 by harmine and harmol. Toxicol Lett 2012; 208: 51-61. http://dx.doi.org/10.1016/j.fct.2011.10.052

Kim DH, Jang YY, Han ES, Lee CS. Protective effect of harmaline and harmalol against dopamine- and 6-hydroxydopamine-induced oxidative damage of brain mitochondria and synaptosomes, and viability loss of PC12 cells. Eur J Neurosci 2001; 13: 1861-72. http://dx.doi.org/10.1046/j.0953-816x.2001.01563.x

Knoll J. (-) Deprenyl (Selegiline): past, present and future. An authoritative review of the pharmacological aspects of l-deprenyl (Selegiline). Neurobiology 2000; 8: 179-99.

Miralles A, Esteban S, Sastre-Coll A, Moranta D, Asensio V, Garcia-Sevilla J. High-affinity binding of, beta-carbolines to imidazoline I-2B receptors and MAO-A in rat tissues: Norharman blocks the effect of morphine withdrawal on DOPA/noradrenaline synthesis in the brain. Eur J Pharmacol 2005; 518: 234-42. http://dx.doi.org/10.1016/j.ejphar.2005.06.023

Ruiz-Durántez E, Torrecilla M, Pineda J, Ugedo L. Attenuation of acute and chronic effects of morphine by the imidazoline receptor ligand 2-(2-benzofuranyl)-2-imidazoline in rat locus coeruleus neurons. Br J Pharmacol 2003; 138: 494-500. http://dx.doi.org/10.1038/sj.bjp.0705052

Pereira M, Grubbs C, Barnes L, et al. Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane-induced colon cancer and 7,12-dimethylbenz[a]anthracene-induced mammary cancer in rats. Carcinogenesis 1996; 17: 1305-11. http://dx.doi.org/10.1093/carcin/17.6.1305

Caltagirone S, Ranelletti FO, Rinelli A, et al. Interaction with type II estrogen binding sites and antiproliferative activity of tamoxifen and quercetin in human non-small-cell lung cancer. Am J Respir Cell Mol Biol 1997; 17: 51-9.

Aviram M, Furhman B. Polyphenolic flavonoids inhibit macrophage-mediatedoxidation of LDL and attenuateatherogenesis. Atherosclerosis 1998; 137(Suppl 1): S45-S50.

Siess M, Leclerc J, Canivenclavier M, Rat P, Suschetet M. Heterogenous effects of natural flavonoids on monooxygenase activities in human and rat-liver microsomes. Toxicol Appl Pharmacol 1995; 130: 73-8. http://dx.doi.org/10.1006/taap.1995.1010

Agullo G, Gamet-Payrastre L, Manenti S, et al. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol 1997; 53: 1649-57. http://dx.doi.org/10.1016/S0006-2952(97)82453-7

Conseil G, Baubichon-Cortay H, Dayan G, Jault JM, Barron D, Di Pietro A. Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc Natl Acad Sci USA 1998; 95: 9831-6. http://dx.doi.org/10.1073/pnas.95.17.9831

Geleijnse JM, Launer LJ, Hofman A, Pols HA, Witteman JC. Tea flavonoids may protect against atherosclerosis: the Rotterdam Study. Arch Intern Med 1999; 159: 2170-4. http://dx.doi.org/10.1001/archinte.159.18.2170

Sesso HD, Gaziano JM, Buring JE, Hennekens CH. Coffee and tea intake and the risk of myocardial infarction. Am J Epidemiol 1999; 149: 162-7. http://dx.doi.org/10.1093/oxfordjournals.aje.a009782

Frias UA, Siligardi HMT, Mendes-Costa MC. Caracterização fitoquímica e determinação da atividade anticolinesterásica de Banisteriopsis sp. Proceedings of the Semana da Química 2011, May 23-26; Lavras (MG), Brazil.

Simoni IC, S. MP, Sciessere L, Hoe VMH, Takinami VH, Fernandes MJB. Evaluation of the antiviral activity of brazilian cerrado. Virus Rev Res 2009; 12: 1-17.

Queiroz, MMF, Pilon AC, Neto FC, et al. Detecção de constituintes micromoleculares majoritários presentes nas folhas de Banisteriopsis variabilis (Malpighiaceae) utilizando UHPLC-ESI-IT-EM. Proceedings of the 34th Reunião Anual da Sociedade Brasileira de Química 2011, May 23-26; Florianópolis (SC), Brazil.

Nolkemper S, Reichling J, Sensch KH, Schnitzler P. Mechanism of herpes simplex virus type 2 suppression by propolis extracts. Phytomedicine 2010; 17: 132-8. http://dx.doi.org/10.1016/j.phymed.2009.07.006

Debiaggi M, Tateo F, Pagani L, Luini M, Romero E. Effects of propolis flavonoids on virus infectivity and replication. Microbiologica 1990; 13: 207-13.

Chiang LC, Chiang W, Liu MC, Lin CC. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J Antimicrob Chemother 2003; 52: 194-8. http://dx.doi.org/10.1093/jac/dkg291

Kaul TN, Middleton E, Ogra PL. Antiviral effect of flavonoids on human viruses. J Med Virol 1985; 15: 71-9.

Dimova S, Mugabowindekwe R, Willems T, et al. Safety-assessment of 3-methoxyquercetin as an antirhinoviral compound for nasal application: effect on ciliary beat frequency. Int J Pharm 2003; 263: 8. http://dx.doi.org/10.1016/S0378-5173(03)00363-6

Salminen J-P, Karonen M. Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 2011; 25: 325-38. http://dx.doi.org/10.1111/j.1365-2435.2010.01826.x

Feeny P. Plant apparency and chemical defense. In: Wallace JW, Mansell RL (Eds.) Recent Advances in Phytochemistry. 10 v. New York: Plenum 1976; p. 1-40.

Bernays EA, Chapman RF. Chemicals in plants. In: Bernays EA, Chapman, RF (Eds). Host-plant selection by phytophagous insects. New York: Chapman & Hall 1994; p. 14-60.

Cronquist A. An Integrated System of Classification of Flowering Plants. New York: Columbia University Press 1981; p. 1262.

Oki Y. Interações entre larvas de Lepidoptera e as espécies de Malpighiaceae em dois fragmentos de Cerrado do Estado de São Paulo. [thesis]. Ribeirão Preto (SP): Universidade de São Paulo 2005; p. 145.

Aquino R, De Crescenzo S, De Simone F. Constituents of Banisteriopsis caapi. Fitoterapia 1991; 62: 453.

Pinho R, Oliveira A, Silva S. Potential oilseed crops from the semiarid region of northeastern Brazil. Bioresour Technol 2009; 100: 6114-7. http://dx.doi.org/10.1016/j.biortech.2009.06.010

Ma X-H, Yuan-Chang Z, Lei Y, De-Wu H, Chun-Xuan J. Studies on the effect of oleanolic acid on experimental liver injury. Yao Xue Xue Bao 1982; 17: 93-7.

Han DW, Ma XH, Zhao YC, Yin L. The protective effects of oleanolic acid on experimental cirrhosis. J Tradit Chin Med 1981; 3: 217-23.

Liu J, Liu YP, Klaassen CD. Protective effect of oleanolic acid against chemical-induced acute necrotic liver injury in mice. Zhongguo Yao Li Xue Bao 1995; 16: 97-102.

Shukla B, Visen PKS, Patnaik GK, et al. Hepatoprotective activity in the rat of ursolic acid isolated from eucalyptus hybrid. Phytother Res 1992; 6: 74-9. http://dx.doi.org/10.1002/(SICI)1099-1573(200005)14:3<163::AID-PTR588>3.0.CO;2-D

Gupta M, Bhalla T, Gupta G, Mitra C, Bhargava K. Anti-inflammatory activity of natural products - I. Triterpenoids. Eur J Pharmacol 1969; 6: 67-70.

Liu H. Oleanolic acid and ursolic acid: Research perspectives. J Ethnopharmacol 2005; 100: 92-4. http://dx.doi.org/10.1016/j.jep.2005.05.024

Downloads

Published

2012-09-19

How to Cite

Frias, U. . A. . de, Mendes Costa, M. C., Takahashi, J. A., & Oki, Y. (2012). Banisteriopsis Species: A Source of Bioactive of Potential Medical Application. International Journal of Biotechnology for Wellness Industries, 1(3), 163–171. https://doi.org/10.6000/1927-3037/2012.01.03.02

Issue

Section

Articles