Measurement Tools of Pediatric Nutrition and Health Suitable or Adaptable for Low- and Middle-Income Countries in Field Research Settings

Authors

  • Venus S. Kalami Tufts University, Boston, MA, USA and Stanford Children’s Health, Palo Alto, CA, USA
  • Laurie C. Miller Tufts University, Boston, MA, USA https://orcid.org/0000-0002-3586-2335
  • Lynne Ausman Tufts University, Boston, MA, USA https://orcid.org/0000-0001-8145-9590
  • Beatrice Rogers Tufts University, Boston, MA, USA

DOI:

https://doi.org/10.6000/1929-4247.2022.11.02.3

Keywords:

Pediatrics, field research, low- and middle-income countries, nutrition and body composition, gastrointestinal disease, neurodevelopment

Abstract

Background: Micronutrient status, body composition, gastrointestinal (GI) functioning, and neurological functioning are important facets of pediatric nutrition and health. When studied in low- and middle-income countries (LMIC), information about these elements is usually obtained via standardized surveys and traditional anthropometry. While convenient, these evaluations offer limited information that may be prone to error and bias. However, a variety of underutilized objective measurement tools exist which can promote a more objective, comprehensive, and deeper understanding of these aspects of pediatric nutrition and health in LMIC.

Objective: Identify field-friendly, relatively low-cost, and portable tools that provide objective measurements of micronutrient status, body composition, GI functioning, and neurological functioning in young children.

Methods: A narrative review of the literature was conducted to assess the state-of-the-art field-friendly research tools targeting micronutrient status, body composition, GI functioning, and neurological functioning in children in LMIC.

Results: A number of field-friendly tools addressing the domains of micronutrient status, GI health, body composition, and neurological functioning were identified. While many tools remain to be fully validated, these tools have yet to be used to their full potential in field-based pediatric nutrition and health research in LMICs.

Conclusions: More robust, field-friendly assessment methods will help to refine knowledge on the state of pediatric health of vulnerable children in LMIC. Such awareness could contribute to the design of interventions, programs and policies, and further research.

References

USAID. Demographic and Health Surveys Model Woman’s Questionnaire. USAID; 2019.

Multiple Indicator Cluster Survey: Questionnaire for Children Under Five. UNICEF; 2019.

Multiple Indicator Cluster Survey: Questionnaire for Children 5-17. UNICEF; 2019.

Murdoch DR, Sharples KJ, Prasad N, Crump JA. Community Prevalence of Fever and Relationship with Malaria Among Infants and Children in Low-Resource Areas. Am J Trop Med Hyg 2015; 93(1): 178-80. https://doi.org/10.4269/ajtmh.14-0646

Choi Y, El Arifeen S, Mannan I, Rahman SM, Bari S, Darmstadt GL, et al. Can mothers recognize neonatal illness correctly? Comparison of maternal report and assessment by community health workers in rural Bangladesh: Maternal recognition of neonatal illness. Trop Med Int Health 2010; 15(6): 743-53. https://doi.org/10.1111/j.1365-3156.2010.02532.x

Chung EO, Fernald LCH, Galasso E, Ratsifandrihamanana L, Weber AM. Caregiver perceptions of child development in rural Madagascar: a cross-sectional study. BMC Public Health 2019; 19(1): 1256. https://doi.org/10.1186/s12889-019-7578-3

Landry MJ, van den Berg AE, Asigbee FM, Vandyousefi S, Ghaddar R, Davis JN. Child Compared with Parent Perceptions of Child-Level Food Security. Curr Dev Nutr 2019; 3(10): nzz106. https://doi.org/10.1093/cdn/nzz106

Horton S, Mannar V, Wesley A. Micronutrient Fortification. Copenhagen Consensus; 2009.

Lee S, Srinivasan B, Vemulapati S, Mehta S, Erickson D. Personalized nutrition diagnostics at the point-of-need. Lab Chip 2016; 16(13): 2408-17. https://doi.org/10.1039/C6LC00393A

Krebs NF, Lozoff B, Georgieff MK. Neurodevelopment: The Impact of Nutrition and Inflammation During Infancy in Low-Resource Settings. Pediatrics 2017; 139(Supplement 1): S50-8. https://doi.org/10.1542/peds.2016-2828G

Beluska-Turkan K, Korczak R, Hartell B, Moskal K, Maukonen J, Alexander DE, et al. Nutritional Gaps and Supplementation in the First 1000 Days. Nutrients 2019; 11(12): 2891. https://doi.org/10.3390/nu11122891

Prado EL, Dewey KG. Nutrition and brain development in early life. Nutr Rev 2014; 72(4): 267-84. https://doi.org/10.1111/nure.12102

Pingali P, Aiyar A, Abraham M, Rahman A. Transforming Food Systems for a Rising India [Internet]. Cham: Springer International Publishing; 2019 [cited 2020 Feb 26]. (Palgrave Studies in Agricultural Economics and Food Policy). https://doi.org/10.1007/978-3-030-14409-8

Clarke ED, Rollo ME, Pezdirc K, Collins CE, Haslam RL. Urinary biomarkers of dietary intake: a review. Nutr Rev 2020; 78(5): 364-81. https://doi.org/10.1093/nutrit/nuz048

Maruvada P, Lampe JW, Wishart DS, Barupal D, Chester DN, Dodd D, et al. Perspective: Dietary Biomarkers of Intake and Exposure—Exploration with Omics Approaches. Adv Nutr 2020; 11(2): 200-15. https://doi.org/10.1093/advances/nmz099

Picó C, Serra F, Rodríguez AM, Keijer J, Palou A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019; 11(5): 1092. https://doi.org/10.3390/nu11051092

Stoltzfus RJ, Klemm R. Research, policy, and programmatic considerations from the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project.: 7.

Diana A, Haszard JJ, Purnamasari DM, Nurulazmi I, Luftimas DE, Rahmania S, et al. iron, zinc, vitamin A and selenium status in a cohort of Indonesian infants after adjusting for inflammation using several different approaches. Br J Nutr 2017; 118(10): 830-9. https://doi.org/10.1017/S0007114517002860

Namaste SM, Aaron GJ, Varadhan R, Peerson JM, Suchdev PS. Methodologic approach for the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project.: 15.

Garrett DA, Sangha JK, Kothari MT, Boyle D. Field-friendly techniques for assessment of biomarkers of nutrition for development. Am J Clin Nutr 2011; 94(2): 685S-690S. https://doi.org/10.3945/ajcn.110.005751

Vemulapati S, Rey E, O’Dell D, Mehta S, Erickson D. A Quantitative Point-of-Need Assay for the Assessment of Vitamin D3 Deficiency. Sci Rep 2017; 7(1): 14142. https://doi.org/10.1038/s41598-017-13044-5

Lee S, O’Dell D, Hohenstein J, Colt S, Mehta S, Erickson D. NutriPhone: a mobile platform for low-cost point-of-care quantification of vitamin B12 concentrations. Sci Rep 2016; 6(1): 28237. https://doi.org/10.1038/srep28237

Elom AK, Imane EM, Kaoutar B, Khalid EK, Asmaa EH, Mehdi A, et al. comparison of a fluorometric assay kit with high-performance liquid chromatography for the assessment of serum retinol concentration. Afr Health Sci 2015; 15(2): 641-6. https://doi.org/10.4314/ahs.v15i2.43

Parker M, Han Z, Abu-Haydar E, Matsiko E, Iyakaremye D, Tuyisenge L, et al. An evaluation of hemoglobin measurement tools and their accuracy and reliability when screening for child anemia in Rwanda: A randomized study. PLoS ONE 2018; 13(1): e0187663. https://doi.org/10.1371/journal.pone.0187663

Brindle E, Lillis L, Barney R, Bansil P, Lyman C, Boyle DS. Measurement of micronutrient deficiency associated biomarkers in dried blood spots using a multiplexed immunoarray. PLOS ONE 2019; 14(1): e0210212. https://doi.org/10.1371/journal.pone.0210212

Kartalov EP, Lin DH, Lee DT, Anderson WF, Taylor CR, Scherer A. Internally calibrated quantification of protein analytes in human serum by fluorescence immunoassays in disposable elastomeric microfluidic devices. Electrophoresis 2008; 29(24): 5010-6. https://doi.org/10.1002/elps.200800297

Watstein DM, Styczynski MP. Development of a Pigment-Based Whole-Cell Zinc Biosensor for Human Serum. ACS Synth Biol 2018; 7(1): 267-75. https://doi.org/10.1021/acssynbio.7b00292

Bhamla MS, Benson B, Chai C, Katsikis G, Johri A, Prakash M. Hand-powered ultralow-cost paper centrifuge. Nat Biomed Eng 2017; 1(1): 0009. https://doi.org/10.1038/s41551-016-0009

Li B, Qi J, Fu L, Han J, Choo J, deMello AJ, et al. Integrated hand-powered centrifugation and paper-based diagnosis with blood-in/answer-out capabilities. Biosens Bioelectron 2020; 165: 112282. https://doi.org/10.1016/j.bios.2020.112282

Bogoch II, Coulibaly JT, Rajchgot J, Andrews JR, Kovac J, Utzinger J, et al. Poor Validity of Non-invasive Hemoglobin Measurements by Pulse Oximetry Compared with Conventional Absorptiometry in Children in Côte d'Ivoire. Am J Trop Med Hyg 2017; 96(1): 217-20. https://doi.org/10.4269/ajtmh.16-0505

Young MF, Raines K, Jameel F, Sidi M, Oliveira-Streiff S, Nwajei P, et al. Non-invasive hemoglobin measurement devices require refinement to match diagnostic performance with their high level of usability and acceptability. PLOS ONE 2021; 16(7): e0254629. https://doi.org/10.1371/journal.pone.0254629

Mannino RG, Myers DR, Tyburski EA, Caruso C, Boudreaux J, Leong T, et al. Smartphone app for non-invasive detection of anemia using only patient-sourced photos. Nat Commun 2018; 9(1): 4924. https://doi.org/10.1038/s41467-018-07262-2

Fleming DEB, Bennett SR, Frederickson CJ. Feasibility of measuring zinc in human nails using portable x-ray fluorescence. J Trace Elem Med Biol 2018; 50: 609-14. https://doi.org/10.1016/j.jtemb.2018.04.025

Fleming DEB, Nader MN, Foran KA, Groskopf C, Reno MC, Ware CS, et al. Assessing arsenic and selenium in a single nail clipping using portable X-ray fluorescence. Appl Radiat Isot 2017; 120: 1-6. https://doi.org/10.1016/j.apradiso.2016.11.015

Fleming DEB, Crook SL, Evans CT, Nader MN, Atia M, Hicks JMT, et al. Portable X-ray fluorescence of zinc applied to human toenail clippings. J Trace Elem Med Biol 2020; 62: 126603. https://doi.org/10.1016/j.jtemb.2020.126603

World Health Organization (WHO). Double burden of malnutrition [Internet]. [cited 2021 Mar 27]. Available from: https://www.who.int/nutrition/double-burden-malnutrition/en/ #: ~: text=The%20double%20burden%20of%20malnutrition, populations%2C%20and%20across%20the%20lifecourse.

Sunuwar DR, Singh DR, Pradhan PMS. Prevalence and factors associated with double and triple burden of malnutrition among mothers and children in Nepal: evidence from 2016 Nepal demographic and health survey. BMC Public Health 2020; 20(1): 405. https://doi.org/10.1186/s12889-020-8356-y

Weber DR, Leonard MB, Zemel BS. Body Composition Analysis in the Pediatric Population 2014; 19.

Gilbert-Diamond D, Baylin A, Mora-Plazas M, Villamor E. Chronic inflammation is associated with overweight in Colombian school children. Nutr Metab Cardiovasc Dis 2012; 22(3): 244-51. https://doi.org/10.1016/j.numecd.2010.06.001

Wells JCK. Using Body Composition Assessment to Evaluate the Double Burden of Malnutrition. Ann Nutr Metab 2019; 75(2): 103-8. https://doi.org/10.1159/000503666

Singer K, Eng DS, Lumeng CN, Gebremariam A, Lee JM. The Relationship between Body Fat Mass Percentiles and Inflammation in Children. Obes Silver Spring Md 2014; 22(5): 1332-6. https://doi.org/10.1002/oby.20710

Branski LK, Norbury WB, Herndon DN, Chinkes DL, Cochran A, Suman O, et al. Measurement of Body Composition in Burned Children: Is There a Gold Standard? J Parenter Enter Nutr 2010; 34(1): 55-63. https://doi.org/10.1177/0148607109336601

Lee SY, Gallagher D. Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care 2008; 11(5): 566-72. https://doi.org/10.1097/MCO.0b013e32830b5f23

Lingwood BE, Storm van Leeuwen AM, Carberry AE, Fitzgerald EC, Callaway LK, Colditz PB, et al. Prediction of fat-free mass and percentage of body fat in neonates using bioelectrical impedance analysis and anthropometric measures: validation against the PEA POD. Br J Nutr 2012; 107(10): 1545-52. https://doi.org/10.1017/S0007114511004624

Lee LW, Liao YS, Lu HK, Hsiao PL, Chen YY, Chi CC, et al. validation of two portable bioelectrical impedance analyses for the assessment of body composition in school-age children. Cappello F, editor. PLOS ONE 2017; 12(2): e0171568. https://doi.org/10.1371/journal.pone.0171568

Sen J, Mondal N. Fat mass and fat-free mass as indicators of body composition among Bengalee Muslim children. Ann Hum Biol 2013; 40(3): 286-93. https://doi.org/10.3109/03014460.2013.764014

Bross R, Chandramohan G, Kovesdy CP, Oreopoulos A, Noori N, Golden S, et al. Comparing Body Composition Assessment Tests in Long-term Hemodialysis Patients. Am J Kidney Dis 2010; 55(5): 885-96. https://doi.org/10.1053/j.ajkd.2009.12.031

Ellis KJ. Selected Body Composition Methods Can Be Used in Field Studies. J Nutr 2001; 131(5): 1589S-1595S. https://doi.org/10.1093/jn/131.5.1589S

Chula de Castro JA, Lima TR de, Silva DAS. Body composition estimation in children and adolescents by bioelectrical impedance analysis: A systematic review. J Bodyw Mov Ther 2018; 22(1): 134-46. https://doi.org/10.1016/j.jbmt.2017.04.010

Choi A, Kim J, Jo S, Jee J, Heymsfield S, Bhagat Y, et al. Smartphone-Based Bioelectrical Impedance Analysis Devices for Daily Obesity Management. Sensors 2015; 15(9): 22151-66. https://doi.org/10.3390/s150922151

Demerath EW, Fields DA. Body composition assessment in the infant: Infant Body Composition Assessment. Am J Hum Biol 2014; 26(3): 291-304. https://doi.org/10.1002/ajhb.22500

Mckirdy S, Nichols B, Williamson S, Gerasimidis K. Handgrip strength as a surrogate marker of lean mass and risk of malnutrition in paediatric patients. Clin Nutr 2021; 40(9): 5189-95. https://doi.org/10.1016/j.clnu.2021.08.005

Lee SH, Gong HS. Measurement and Interpretation of Handgrip Strength for Research on Sarcopenia and Osteoporosis. J Bone Metab 2020; 27(2): 85-96. https://doi.org/10.11005/jbm.2020.27.2.85

Álvarez C, Guzmán-Guzmán IP, Latorre-Román PÁ, Párraga-Montilla J, Palomino-Devia C, Reyes-Oyola FA, et al. Association between the Sociodemographic Characteristics of Parents with Health-Related and Lifestyle Markers of Children in Three Different Spanish-Speaking Countries: An Inter-Continental Study at OECD Country Level. Nutrients 2021; 13(8): 2672. https://doi.org/10.3390/nu13082672

Otero J, Cohen DD, Herrera VM, Camacho PA, Bernal O, López-Jaramillo P. Sociodemographic factors related to handgrip strength in children and adolescents in a middle income country: The SALUS study: Sociodemographic Factors and Handgrip Strength. Am J Hum Biol 2017; 29(1): e22896. https://doi.org/10.1002/ajhb.22896

Wagner DR. Ultrasound as a Tool to Assess Body Fat. J Obes 2013; 2013: 1-9. https://doi.org/10.1155/2013/280713

Nolting L, Baker D, Hardy Z, Kushinka M, Brown HA. Solar-Powered Point-of-Care Sonography: Our Himalayan Experience: Solar-Powered Sonography. J Ultrasound Med 2019; 38(9): 2477-84. https://doi.org/10.1002/jum.14923

Gallien J, Sullivan A. Use of Solar Power Production for Point-of-Care Ultrasound: A Comparative Analysis. Prehospital Disaster Med 2019; 34(s1): s96-7. https://doi.org/10.1017/S1049023X19001997

Rykkje, Carlsen, Nielsen. Hand-Held Ultrasound Devices Compared with High-End Ultrasound Systems: A Systematic Review. Diagnostics 2019; 9(2): 61. https://doi.org/10.3390/diagnostics9020061

Schreiner PJ, Pitäniemi J, Pekkanen J, Salomaa VV. Reliability of near-infrared interactance body fat assessment relative to standard anthropometric techniques. J Clin Epidemiol 1995; 48(11): 1361-7. https://doi.org/10.1016/0895-4356(95)00052-6

Mustafa FH, Jones PW, McEwan AL. Near-infrared spectroscopy for body fat sensing in neonates: quantitative analysis by GAMOS simulations. Biomed Eng Online 2017; 16(1): 14. https://doi.org/10.1186/s12938-016-0310-y

Nassis GP, Sidossis LS. Methods for assessing body composition, cardiovascular and metabolic function in children and adolescents: implications for exercise studies: Curr Opin Clin Nutr Metab Care 2006; 9(5): 560-7. https://doi.org/10.1097/01.mco.0000241665.38385.5b

Mustafa FH, Bek EJ, Huvanandana J, Jones PW, Carberry AE, Jeffery HE, et al. Length-free near-infrared measurement of newborn malnutrition. Sci Rep 2016; 6(1): 36052. https://doi.org/10.1038/srep36052

Pinti P, Scholkmann F, Hamilton A, Burgess P, Tachtsidis I. Current Status and Issues Regarding Pre-processing of fNIRS Neuroimaging Data: An Investigation of Diverse Signal Filtering Methods Within a General Linear Model Framework. Front Hum Neurosci 2019; 12: 505. https://doi.org/10.3389/fnhum.2018.00505

Tinsley GM, Moore ML, Benavides ML, Dellinger JR, Adamson BT. 3-Dimensional optical scanning for body composition assessment: A 4-component model comparison of four commercially available scanners. Clin Nutr 2020; 39(10): 3160-7. https://doi.org/10.1016/j.clnu.2020.02.008

Heymsfield SB, Bourgeois B, Ng BK, Sommer MJ, Li X, Shepherd JA. Digital anthropometry: a critical review. Eur J Clin Nutr 2018; 72(5): 680-7. https://doi.org/10.1038/s41430-018-0145-7

Wong MC, Ng BK, Kennedy SF, Hwaung P, Liu EY, Kelly NN, et al. Children and Adolescents’ Anthropometrics Body Composition from 3‐D Optical Surface Scans. Obesity 2019; 27(11): 1738-49. https://doi.org/10.1002/oby.22637

Ng BK, Hinton BJ, Fan B, Kanaya AM, Shepherd JA. Clinical anthropometrics and body composition from 3D whole-body surface scans. Eur J Clin Nutr 2016; 70(11): 1265-70. https://doi.org/10.1038/ejcn.2016.109

Kennedy S, Smith B, Sobhiyeh S, Dechenaud ME, Wong M, Kelly N, et al. Digital anthropometric evaluation of young children: comparison to results acquired with conventional anthropometry. Eur J Clin Nutr [Internet] 2021 May 26 [cited 2021 Oct 24]; Available from: http://www.nature.com/articles/ s41430-021-00938-x

Shepherd JA, Heymsfield SB, Norris SA, Redman LM, Ward LC, Slater C. Measuring body composition in low-resource settings across the life course: Body Composition-Low-Resource Settings. Obesity 2016; 24(5): 985-8. https://doi.org/10.1002/oby.21491

Bhutta Z, Syed S. Diarrheal Diseases. Encycl Food Health 2016; 361-72. https://doi.org/10.1016/B978-0-12-384947-2.00223-3

Owino V, Ahmed T, Freemark M, Kelly P, Loy A, Manary M, et al. Environmental Enteric Dysfunction and Growth Failure/Stunting in Global Child Health. Pediatrics 2016; 138(6): e20160641-e20160641. https://doi.org/10.1542/peds.2016-0641

Corley DA, Schuppan D. Food, the Immune System, and the Gastrointestinal Tract. Gastroenterology 2015; 148(6): 1083-6. https://doi.org/10.1053/j.gastro.2015.03.043

Yoo BB, Mazmanian SK. The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity 2017; 46(6): 910-26. https://doi.org/10.1016/j.immuni.2017.05.011

Ngure FM, Reid BM, Humphrey JH, Mbuya MN, Pelto G, Stoltzfus RJ. Water, sanitation, and hygiene (WASH), environmental enteropathy, nutrition, and early child development: making the links: WASH and ECD: making the links. Ann N Y Acad Sci 2014; 1308(1): 118-28. https://doi.org/10.1111/nyas.12330

Houttu N, Kalliomäki M, Grönlund MM, Niinikoski H, Nermes M, Laitinen K. Body composition in children with chronic inflammatory diseases: A systematic review. Clin Nutr 2020; S0261561420300030. https://doi.org/10.1016/j.clnu.2019.12.027

Wang Y, Wang Y, Xu J, Ye C. Development of Multiple Cross Displacement Amplification Label-Based Gold Nanoparticles Lateral Flow Biosensor for Detection of Shigella spp. Front Microbiol [Internet] 2016 Nov 18 [cited 2020 Jan 20]; 7. https://doi.org/10.3389/fmicb.2016.01834

Nato F, Phalipon A, Nguyen LPT, Diep TT, Sansonetti P, Germani Y. Dipstick for Rapid Diagnosis of Shigella flexneri 2a in Stool. Fox D, editor. PLoS ONE 2007; 2(4): e361. https://doi.org/10.1371/journal.pone.0000361

Bhuiyan NA, Qadri F, Faruque ASG, Malek MA, Salam MA, Nato F, et al. Use of Dipsticks for Rapid Diagnosis of Cholera Caused by Vibrio cholerae O1 and O139 from Rectal Swabs. J Clin Microbiol 2003; 41(8): 3939-41. https://doi.org/10.1128/JCM.41.8.3939-3941.2003

Taneja N, Nato F, Dartevelle S, Sire JM, Garin B, Thi Phuong LN, et al. Dipstick Test for Rapid Diagnosis of Shigella dysenteriae 1 in Bacterial Cultures and Its Potential Use on Stool Samples. PLoS ONE [Internet] 2011 Oct 3 [cited 2020 Jan 20]; 6(10). https://doi.org/10.1371/journal.pone.0024830

Sayeed MDA, Islam K, Hossain M, Akter NJ, Alam MdN, Sultana N, et al. development of a new dipstick (Cholkit) for rapid detection of Vibrio cholerae O1 in acute watery diarrheal stools. PLoS Negl Trop Dis [Internet] 2018 Mar 14 [cited 2020 Jan 20]; 12(3). https://doi.org/10.1371/journal.pntd.0006286

George CM, Rashid M ur, Sack DA, Sack RB, Saif-Ur-Rahman KM, Azman AS, et al. Evaluation of Enrichment Method for Detection of Vibrio cholerae O1 using a Rapid Dipstick Test in Bangladesh. Trop Med Int Health TM IH 2014; 19(3): 301-7. https://doi.org/10.1111/tmi.12252

Duran C, Nato F, Dartevelle S, Thi Phuong LN, Taneja N, Ungeheuer MN, et al. Rapid Diagnosis of Diarrhea Caused by Shigella sonnei Using Dipsticks; Comparison of Rectal Swabs, Direct Stool and Stool Culture. PLoS ONE [Internet] 2013 Nov 22 [cited 2020 Jan 20]; 8(11). https://doi.org/10.1371/journal.pone.0080267

Fernández D, Valle I, Llamos R, Guerra M, Sorell L, Gavilondo J. Rapid detection of rotavirus in faeces using a dipstick system with monoclonal antibodies and colloidal gold as marker. J Virol Methods 1994; 48(2-3): 315-23. https://doi.org/10.1016/0166-0934(94)90130-9

Haddar C, Begaud E, Maslin J, Germani Y. [Point-of-care tests for the rapid diagnosis of shigellosis]. Bull Soc Pathol Exot 1990 2017; 110(1): 1-8. https://doi.org/10.1007/s13149-016-0538-6

Reis NM, Pivetal J, Loo-Zazueta AL, Barros JMS, Edwards AD. Lab on a stick: multi-analyte cellular assays in a microfluidic dipstick. Lab Chip 2016; 16(15): 2891-9. https://doi.org/10.1039/C6LC00332J

Ilboudo PG, Huang XX, Ngwira B, Mwanyungwe A, Mogasale V, Mengel MA, et al. Cost-of-illness of cholera to households and health facilities in rural Malawi. Lubell Y, editor. PLOS ONE 2017; 12(9): e0185041. https://doi.org/10.1371/journal.pone.0185041

Kalluri P, Naheed A, Rahman S, Ansaruzzaman M, Faruque ASG, Bird M, et al. Evaluation of three rapid diagnostic tests for cholera: does the skill level of the technician matter? Trop Med Int Health 2006; 11(1): 49-55. https://doi.org/10.1111/j.1365-3156.2005.01539.x

Laporte J, Savin C, Lamourette P, Devilliers K, Volland H, Carniel E, et al. Fast and Sensitive Detection of Enteropathogenic Yersinia by Immunoassays. J Clin Microbiol 2015; 53(1): 146-59. https://doi.org/10.1128/JCM.02137-14

Saidin S, Yunus MH, Othman N, Lim YAL, Mohamed Z, Zakaria NZ, et al. development and initial evaluation of a lateral flow dipstick test for antigen detection of Entamoeba histolytica in stool sample. Pathog Glob Health 2017; 111(3): 128-36. https://doi.org/10.1080/20477724.2017.1300421

Syed S, Ali A, Duggan C. Environmental Enteric Dysfunction in Children: A Review. J Pediatr Gastroenterol Nutr 2016; 63(1): 6-14. https://doi.org/10.1097/MPG.0000000000001147

Lauer JM, Duggan CP, Ausman LM, Griffiths JK, Webb P, Agaba E, et al. Biomarkers of maternal environmental enteric dysfunction are associated with shorter gestation and reduced length in newborn infants in Uganda. Am J Clin Nutr 2018; 108(4): 889-96. https://doi.org/10.1093/ajcn/nqy176

Crane RJ, Jones KDJ, Berkley JA. Environmental Enteric Dysfunction: An Overview. Food Nutr Bull 2015; 36(1_suppl1): S76-87. https://doi.org/10.1177/15648265150361S113

Etheredge AJ, Manji K, Kellogg M, Tran H, Liu E, McDonald CM, et al. Markers of Environmental Enteric Dysfunction Are Associated With Neurodevelopmental Outcomes in Tanzanian Children: J Pediatr Gastroenterol Nutr 2018; 66(6): 953-9. https://doi.org/10.1097/MPG.0000000000001978

Kosek M, Haque R, Lima A, Babji S, Shrestha S, Qureshi S, et al. Fecal Markers of Intestinal Inflammation and Permeability Associated with the Subsequent Acquisition of Linear Growth Deficits in Infants. Am J Trop Med Hyg 2013; 88(2): 390-6. https://doi.org/10.4269/ajtmh.2012.12-0549

Walson JL, Ahmed T, Kosek M, Mahfuz M, Haque R, John-Stewart GC, et al. Fecal Markers of Environmental Enteropathy and Subsequent Growth in Bangladeshi Children. Am J Trop Med Hyg 2016; 95(3): 694-701. https://doi.org/10.4269/ajtmh.16-0098

Singh A, Ghosh S, Ward H, Manary MJ, Rogers BL, Rosenberg IH. Biomarkers of environmental enteric dysfunction are differently associated with recovery and growth among children with moderate acute malnutrition in Sierra Leone. Am J Clin Nutr 2021; nqaa434. https://doi.org/10.1093/ajcn/nqaa434

Syed S, Iqbal NT, Sadiq K, Ma JZ, Akhund T, Xin W, et al. Serum anti-flagellin and anti-lipopolysaccharide immunoglobulins as predictors of linear growth faltering in Pakistani infants at risk for environmental enteric dysfunction. Mantis NJ, editor. PLOS ONE 2018; 13(3): e0193768. https://doi.org/10.1371/journal.pone.0193768

Gannon BM, Glesby MJ, Finkelstein JL, Raj T, Erickson D, Mehta S. A point-of-care assay for alpha-1-acid glycoprotein as a diagnostic tool for rapid, mobile-based determination of inflammation. Curr Res Biotechnol 2019; 1: 41-8. https://doi.org/10.1016/j.crbiot.2019.09.002

Fragkos KC, Forbes A. Citrulline as a marker of intestinal function and absorption in clinical settings: A systematic review and meta-analysis. United Eur Gastroenterol J 2018; 6(2): 181-91. https://doi.org/10.1177/2050640617737632

Momčilović S, Cantacessi C, Arsić-Arsenijević V, Otranto D, Tasić-Otašević S. Rapid diagnosis of parasitic diseases: current scenario and future needs. Clin Microbiol Infect 2019; 25(3): 290-309. https://doi.org/10.1016/j.cmi.2018.04.028

Rajchgot J, Coulibaly JT, Keiser J, Utzinger J, Lo NC, Mondry MK, et al. Mobile-phone and handheld microscopy for neglected tropical diseases. Lammie PJ, editor. PLoS Negl Trop Dis 2017; 11(7): e0005550. https://doi.org/10.1371/journal.pntd.0005550

Huang X, Xu D, Chen J, Liu J, Li Y, Song J, et al. Smartphone-based analytical biosensors. The Analyst 2018; 143(22): 5339-51. https://doi.org/10.1039/C8AN01269E

Bogoch II, Koydemir HC, Tseng D, Ephraim RKD, Duah E, Tee J, et al. Evaluation of a Mobile Phone-Based Microscope for Screening of Schistosoma haematobium Infection in Rural Ghana. Am J Trop Med Hyg 2017; 96(6): 1468-71. https://doi.org/10.4269/ajtmh.16-0912

Bitta M, Kariuki SM, Abubakar A, Newton CRJC. Burden of neurodevelopmental disorders in low and middle-income countries: A systematic review and meta-analysis. Wellcome Open Res 2017; 2: 121. https://doi.org/10.12688/wellcomeopenres.13540.1

Newton CR. Neurodevelopmental disorders in low- and middle-income countries. Dev Med Child Neurol 2012; 54(12): 1072-1072. https://doi.org/10.1111/j.1469-8749.2012.04384.x

Ertem IÖ. The international Guide for Monitoring Child Development: enabling individualised interventions 2017; 5.

Victora CG, Christian P, Vidaletti LP, Gatica-Domínguez G, Menon P, Black RE. Revisiting maternal and child undernutrition in low-income and middle-income countries: variable progress towards an unfinished agenda. The Lancet 2021; S0140673621003949. https://doi.org/10.1016/S0140-6736(21)00394-9

Black MM. Micronutrient Deficiencies and Cognitive Functioning. J Nutr 2003; 133(11): 3927S-3931S. https://doi.org/10.1093/jn/133.11.3927S

Bhutta ZA, Guerrant RL, Nelson CA. Neurodevelopment, Nutrition, and Inflammation: The Evolving Global Child Health Landscape. Pediatrics 2017; 139(Supplement 1): S12-22. https://doi.org/10.1542/peds.2016-2828D

Black MM, Walker SP, Fernald LCH, Andersen CT, DiGirolamo AM, Lu C, et al. Early childhood development coming of age: science through the life course. The Lancet 2017; 389(10064): 77-90. https://doi.org/10.1016/S0140-6736(16)31389-7

Olusanya BO, Davis AC, Wertlieb D, Boo NY, Nair MKC, Halpern R, et al. Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Glob Health 2018; 6(10): e1100-21. https://doi.org/10.1016/S2214-109X(18)30309-7

Suchdev PS, Boivin MJ, Forsyth BW, Georgieff MK, Guerrant RL, Nelson CA. Assessment of Neurodevelopment, Nutrition, and Inflammation From Fetal Life to Adolescence in Low-Resource Settings. Pediatrics 2017; 139(Supplement 1): S23-37. https://doi.org/10.1542/peds.2016-2828E

Kakooza-Mwesige A, Ssebyala K, Karamagi C, Kiguli S, Smith K, Anderson MC, et al. Adaptation of the “ten questions” to screen for autism and other neurodevelop-mental disorders in Uganda. Autism 2014; 18(4): 447-57. https://doi.org/10.1177/1362361313475848

Pavlakis AE, Noble K, Pavlakis SG, Ali N, Frank Y. Brain Imaging and Electrophysiology Biomarkers: Is There a Role in Poverty and Education Outcome Research? Pediatr Neurol 2015; 52(4): 383-8. https://doi.org/10.1016/j.pediatrneurol.2014.11.005

Katus L, Hayes N, Mason L, Blasi A, McCann S, Darboe M, et al. Implementing neuroimaging and eye-tracking methods to assess neurocognitive development of young infants in low- and middle-income countries. Gates Open Research 2019; 3(1113). https://doi.org/10.12688/gatesopenres.12951.1

Karatekin C. Eye-tracking studies of normative and atypical development. Dev Rev 2007; 27(3): 283-348. https://doi.org/10.1016/j.dr.2007.06.006

Forssman L, Ashorn P, Ashorn U, Maleta K, Matchado A, Kortekangas E, et al. Eye-tracking-based assessment of cognitive function in low-resource settings. Arch Dis Child 2017; 102(4): 301.1-302. https://doi.org/10.1136/archdischild-2016-310525

Li T, Zhou X. Battery-Free Eye Tracker on Glasses. In: Proceedings of the 24th Annual International Conference on Mobile Computing and Networking - MobiCom ’18 [Internet]. New Delhi, India: ACM Press; 2018 [cited 2020 May 30]. p. 67-82. https://doi.org/10.1145/3241539.3241578

Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 2012; 63(2): 921-35. https://doi.org/10.1016/j.neuroimage.2012.03.049

Vanderwert RE, Nelson CA. The use of near-infrared spectroscopy in the study of typical and atypical development. NeuroImage 2014; 85(0 1): 264-71. https://doi.org/10.1016/j.neuroimage.2013.10.009

Blasi, Lloyd-Fox, Katus, Elwell. fNIRS for Tracking Brain Development in the Context of Global Health Projects. Photonics 2019; 6(3): 89. https://doi.org/10.3390/photonics6030089

Lloyd-Fox S, Papademetriou M, Darboe MK, Everdell NL, Wegmuller R, Prentice AM, et al. Functional near-infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa. Sci Rep [Internet] 2014 Apr 22 [cited 2019 Nov 13]; 4. https://doi.org/10.1038/srep04740

Bortfeld H, Wruck E, Boas DA. Assessing Infants’ Cortical Response to Speech Using Near- Infrared Spectroscopy 2007; 17. https://doi.org/10.1016/j.neuroimage.2006.08.010

Gervain J, Mehler J, Werker JF, Nelson CA, Csibra G, Lloyd-Fox S, et al. Near-infrared spectroscopy: A report from the McDonnell infant methodology consortium. Dev Cogn Neurosci 2011; 1(1): 22-46. https://doi.org/10.1016/j.dcn.2010.07.004

Taylor MJ, Baldeweg T. Application of EEG, ERP and intracranial recordings to the investigation of cognitive functions in children. Dev Sci 2002; 5(3): 318-34. https://doi.org/10.1111/1467-7687.00372

Woodman GF. A Brief Introduction to the Use of Event-Related Potentials (ERPs) in Studies of Perception and Attention. Atten Percept Psychophys [Internet] 2010 Nov [cited 2020 Feb 2]; 72(8). https://doi.org/10.3758/BF03196680

Lu Z, O’Dell D, Srinivasan B, Rey E, Wang R, Vemulapati S, et al. Rapid diagnostic testing platform for iron and vitamin A deficiency. Proc Natl Acad Sci 2017; 114(51): 13513-8. https://doi.org/10.1073/pnas.1711464114

Srinivasan B, O’Dell D, Finkelstein JL, Lee S, Erickson D, Mehta S. ironPhone: Mobile device-coupled point-of-care diagnostics for assessment of iron status by quantification of serum ferritin. Biosens Bioelectron 2018; 99: 115-21. https://doi.org/10.1016/j.bios.2017.07.038

Srinivasan B, Finkelstein JL, O’Dell D, Erickson D, Mehta S. Rapid diagnostics for point-of-care quantification of soluble transferrin receptor. EBioMedicine 2019; 42: 504-10. https://doi.org/10.1016/j.ebiom.2019.03.017

Brindle E, Lillis L, Barney R, Hess SY, Wessells KR, Ouédraogo CT, et al. Simultaneous assessment of iodine, iron, vitamin A, malarial antigenemia, and inflammation status biomarkers via a multiplex immunoassay method on a population of pregnant women from Niger. PLoS ONE 2017; 12(10): e0185868. https://doi.org/10.1371/journal.pone.0185868

Fernald LCH, Kariger P, Engle P, Raikes A. Examining Early Child Development in Low-Income Countries: A Toolkit for the Assessment of Children in the First Five Years of Life [Internet]. World Bank; 2009 [cited 2019 Nov 13]. https://doi.org/10.1596/28107

Fernald LCH, Prado E, Kariger P, Raikes A. A Toolkit for Measuring Early Childhood Development in Low- and Middle-Income Countries.: 128.

Ledwidge P, Foust J, Ramsey A. Recommendations for Developing an EEG Laboratory at a Primarily Undergraduate Institution. The Journal of Undergraduate Neuroscience Education (JUNE) 2018; 17(1): 10.

Krigolson OE, Williams CC, Norton A, Hassall CD, Colino FL. Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research. Front Neurosci [Internet] 2017 Mar 10 [cited 2020 Feb 2]; 11. https://doi.org/10.3389/fnins.2017.00109

Downloads

Published

2022-05-23

How to Cite

Kalami, V. S., Miller, L. C., Ausman, L., & Rogers, B. (2022). Measurement Tools of Pediatric Nutrition and Health Suitable or Adaptable for Low- and Middle-Income Countries in Field Research Settings. International Journal of Child Health and Nutrition, 11(2), 80–97. https://doi.org/10.6000/1929-4247.2022.11.02.3

Issue

Section

General Articles