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Abstract: Background: Traditional Kaplan-Meier (KM) event rates are widely used for cardiovascular risk prediction and 
tend to overestimate absolute event risk for patients by censoring competing events, such as non-cardiovascular death. 
Competing risks analysis (CRA), which account for such terminal events, offers more accurate estimates. However, its 
application in a web-based health analytics remains limited. 

Methods: Using a simulated cohort (n = 2,500; 100 repetitions) and the 1999–2000 NHANES cohort (n = 2,480) with 
2019 National Death Index mortality linkage, the researcher compared KM estimates to CRA’s Cumulative Incidence 
Function (CIF), implemented via Aalen-Johansen estimators and Fine-Gray subdistribution hazard models. We assessed 
relative differences (bias) in 5-, 10-, 15-, and 20-year cardiovascular mortality predictions across risk strata. Findings 
informed a web-based calculator prototype that dynamically estimates age-specific KM and CIF probabilities while 
highlighting potential misclassification risks. 

Results: KM consistently overestimated cardiovascular mortality risk compared to CIF. In the NHANES cohort, KM 
estimated the 5-year risk to be 5.85% higher than the actual rate (4.37% vs. 4.13%) and 20-year risk by 28.3% (20.02% 
vs. 15.60%). In the simulated data, KM overestimated the 5-year risk by 7.63% (5.84% vs. 5.42%) and the 20-year risk 
by 31.17% (21.37% vs. 16.25%). KM-based models tend to misclassify a substantial portion of patients into higher-risk 
groups compared to CIF-adjusted models. 

Conclusion: This study demonstrates that Kaplan-Meier consistently overestimates cardiovascular mortality in 
comparison to competing risk methods across five time points, through using both simulated and nationally 
representative data. We quantify this overestimation and provide an online calculator that shows differences by age. Our 
tool improves the usability and interpretability of competing risks analysis for older adults in digital health settings, in 
contrast to tools like SCORE2. 

Keywords: Competing risks, Cardiovascular mortality, Web-based health analytics, NHANES, Clinical decision 
support. 

INTRODUCTION 

Clinical Importance of CVD Risk Prediction 

Cardiovascular disease (CVD) remains the leading 
cause of death worldwide, leading to 17.9 million 
deaths annually — about 32% of all deaths worldwide. 
Making well-informed clinical decisions and putting 
public health initiatives into action to mitigate this 
problem depend on having reliable risk prediction tools 
[1], [2].  

Limitations of Kaplan-Meier (KM) 

A common method in traditional survival analysis, 
particularly in CVD studies, for evaluating time-to-event 
outcomes is the Kaplan-Meier (KM) estimator. When it 
comes to competing risks, such as non-cardiovascular 
deaths, which can impede the occurrence of the 
primary event of interest - cardiovascular death - KM  
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techniques are inadequate. Relative difference (bias) 
risk estimates may result from this flaw, especially in 
groups where competing events are common [3]. 

The KM estimator states even censored individuals 
(including those with competing events) still have a 
chance of experiencing the main event of the study. 
This leads to inflated incidence rates (1). A similar issue 
arises in heart failure studies with cardiovascular 
mortality where KM-based estimates of death risk can 
be off by as much as 6-8% making them less accurate 
than methods that consider competing risks [4[. This 
misrepresentation is critical when it comes to risk 
stratification and treatment allocation in the context of 
prognostic modelling on digital health platforms. 
Overestimating a “single” event can lead to 
unnecessary interventions or misallocation of 
resources [5]. 

Competing Risks as a Solution (Fine & Gray, 1999) 

A stronger framework has been proposed which will 
incorporate Cumulative Incidence Functions (CIFs) and 
Fine-Gray Sub distribution Hazard Models. They 
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concentrate on competing events without depending on 
independence assumptions. The CIF ensures a more 
accurate estimation of the absolute risk of an event by 
competing risks and in turn better prediction of 
prognosis. For example, when comparing KM and CIF 
estimates among cohorts of cardiovascular disease 
(CVD), KM was observed to overestimate the 5-year 
cardiac mortality rate by 6.2% (43.0% compared to 
36.8%) [6]. Furthermore, results from the SCORE2 risk 
tool - identified as a competing risk - indicate that it 
may be more effective than traditional aging models 
such as Framingham in adjusting for non-CVD deaths, 
especially for younger and high-risk subjects [7]. 

Heart failure and coronary heart disease are just 
two of the conditions that fall under the umbrella term 
"CVD." The evaluation of these conditions can be 
significantly complicated by the existence of competing 
risks. For example, the risk of dying from non-
cardiovascular causes frequently exceeds the risk of 
dying from heart-related causes in patients with heart 
failure. This demonstrates how important it is to weigh 
these conflicting risks in order to make the appropriate 
diagnosis [8]. Likewise, for stroke survivors, we must 
take into account the risk of dying from other causes, 
such as cancer, in addition to the risk of having another 
stroke [9]. 

Gap in Web-Based Tools and Study Aim 

The interactive tools health analytics in this context 
are used to support the process of identifying risk by 
applying data and risk-stratification at an individual 
level. The majority of these platforms, however, 
continue to use KM-based estimates, which will be 
between 14% and 20% of high-risk patients [10]. 
Misdiagnosis can potentially lead to overtreatment or 
treatment that affects healthcare resources and 
expenses for patients. Competing risk approach has to 
be included in such platforms for continued accuracy 
and clinical decision support. 

The goal of this research, as well as the seemingly 
evident gaps in the past research, is founded on 
several core issues, specifically because there is more 
emphasis on competition risk: 

• Test for relative bias: In order to accurately predict 
risks, we need comprehensive studies comparing 
Kaplan-Meier (KM) and Competing Risk Analysis 
(CRA) methods, specifically in modelled 
cardiovascular cases where relative differences 
(bias) could be a problem. 

• Implications for digital health device 
recommendations: There is a need to identify and 
examine the ways in which such biases 
(differences) affect digital health devices, particularly 
among older individuals and those with complicated 
conditions. 

• Developmental Recommendations: We must advise 
how to enable the incorporation of CRA into real-
time risk prediction models with a goal of enhancing 
precision and dependability in any web-based 
health analysis. By filling these loopholes, this 
research will enhance the accuracy of digital 
platforms health tools and enable clinical practice in 
managing cardiovascular diseases. 

Future Directions in the Study of Competing Risks 

Rapid advancements in the field of competing 
hazards are providing new methods for evaluating 
dynamic risk factors and tailoring treatment for 
upcoming research. We can improve the predictive 
accuracy of competing risk models for individuals by 
combining lifestyle, genetic, and biomarker data. 
Furthermore, our risk estimates can be further refined 
by applying machine learning techniques to reveal 
intricate relationships between risk factors and 
competing events [11]. 

Integration with Modern Risk Prediction Tools 

Novel opportunities for adapting to competing risks 
are presented by recent developments in 
cardiovascular disease (CVD) risk prediction, 
especially using machine learning models. For 
example, machine learning-based models that used 75 
different inputs showed better discrimination (AUC 
0.74) than the WHO risk charts (AUC 0.51) in a study 
on a Sri Lankan cohort. The capacity of machine 
learning to take competing risks into account 
contributes to this improvement [12]. It's crucial to 
remember that there are population differences; for 
instance, in rural India, Globe-risk may perform better 
than WHO and Australian risk scores when the model 
is based on clinical criteria [13]. These results highlight 
the necessity of calibrating predictive algorithms in 
order to better handle competing risks and adjust to 
particular situations. 

METHODS 

NHANES Data Extraction and Preparation 

The 2019 mortality follow-up dataset from the 
National Center for Health Statistics (NCHS) was linked 
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to publicly available data from the 1999–2010 cycles of 
the National Health and Nutrition Examination Survey 
(NHANES) [14]. Real-world data has been used to 
validate the simulation results. Participants were 
defined as those who were 45 years of age or older at 
baseline with average age 64.14 years old. Mortality 
follow-up was available until December 31, 2019, with 
a follow-up period of 20 years allowed. 

The NHANES Demographics Files (DEMO) was 
retrieved for baseline and demographic data for each of 
the six survey cycles. The read_xpt() function in R was 
used to load the NHANES demographic files [15] listed 
below: 

r 

# Load the real NHANES demographic files 

demo_9900 <- read_xpt("DEMO.XPT")     # 1999–2000 

demo_0102 <- read_xpt("DEMO_B.XPT")   # 2001–2002 

demo_0304 <- read_xpt("DEMO_C.XPT")   # 2003–2004 

demo_0506 <- read_xpt("DEMO_D.XPT")   # 2005–2006 

demo_0708 <- read_xpt("DEMO_E.XPT")   # 2007–2008 

demo_0910 <- read_xpt("DEMO_F.XPT")   # 2009–2010 

These datasets were combined with the associated 
mortality file (NHANES_1999_2000_MORT_2019_ 
PUBLIC. dat) and pertinent examination datasets after 
being harmonized to guarantee consistent variable 
coding across cycles. SEQN, a unique respondent 
identifier, was used to merge the data. The resulting 
dataset served as the foundation for the survival 
analysis that contrasted competing risks and Kaplan-
Meier methods for estimating cardiovascular mortality 
[16]. 

From the date of the baseline interview to the date 
of death or censorship in 2019, the follow-up period 
was computed. The ICD-10 underlying cause codes 
from the mortality file were used to classify the cause of 
death; ICD-10 codes I00–I99 (diseases of the 
circulatory system) were used to define cardiac death 
[17]. 

After keeping participants who had eligstat = 1 
(eligible for mortality follow-up), we calculated the 
survival time (time) by converting the number of 
months from the interview to death or censoring to 
years (permth_exm / 12). Participants who were alive 
at the end of follow-up or lost to follow-up were 
considered administratively censored. 

By assessing the effect of competing risks on long-
term risk estimates, the analyses were intended to 

assist in the creation of precise risk prediction models 
for web-based health analytics, such as online 
cardiovascular risk calculators. 

Covariates such as comorbidities were not included 
in the survival analysis, as the primary aim was to 
isolate differences between Kaplan-Meier and 
competing risks methods in a structure consistent with 
the simulation study. 

Participants with incomplete survival time or cause 
of death information were excluded. To maintain the 
natural disease mix and support the analysis's 
estimator-focused goal, eligibility was limited to 
individuals with eligstat = 1 and no exclusion was 
based on pre-existing cardiovascular disease. 

Simulation Study Design 

A simulation of a synthetic cohort of 2500 
individuals (repeated 100 times) is conducted with ages 
sampled from a uniform distribution between 45 and 85 
years. Cardiac and non-cardiac death times were 
simulated using age-dependent exponential hazard 
functions. The exponential hazard function was chosen 
because it is straightforward and simple to understand 
in simulation-based comparisons of estimation 
techniques, even though Weibull and Gompertz 
distributions might more accurately represent actual 
aging-related mortality processes. This presumption 
prevents over parameterization and enables consistent, 
linear age effects across simulations. Previous 
simulation studies that looked at estimator bias have 
used similar simplifications [18, 19]. 

The cause-specific hazard rate for non-cardiac 
death was modelled as: 

λ!" !|  !"# = 0.04 + 0.08×
!"#
85

×0.30 

The term λ!" !|  !"#  represents the instantaneous 
hazard rate at time t for non-cardiac death in 
individuals of a given age. That means the risk of 
experiencing the event (e.g., non-cardiac death) at time 
t, conditional on survival up to t and the individual’s 
age. This linear specification of age: age_effect = 0.08× 
(age / 85) was chosen based on preliminary analyses 
of the NHANES 1999–2000 cohort, where the effect of 
age on cardiac death hazard was evaluated for linearity 
(see statistical analysis section). 

The age-independent component (or "intercept 
term") of the hazard function (0.04) corresponds to the 
minimum risk at younger ages (e.g., 45 years).  
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If we for example consider an individual for a 60-
year-old  

λ!" !|  60 = 0.04 + 0.08×
60
85

×0.30

= 0.04 + 0.0565 ×0.30 = 0.02895   

The hazard rate is then 2.9% per unit time (e.g., per 
year). This represents the instantaneous risk of non-
cardiac death for a 60-year-old, assuming they've 
survived up to time t. 

This formulation accounts for the increasing risk of 
non-cardiac mortality with aging, by scaling the base 
hazard using a linear function of age. The 
aforementioned term refers to an age-dependent 
hazard rate, normalized to a maximum age of 85 years, 
which rises in direct proportion to age. The entire 
expression is multiplied by a calibration factor of 0.30 to 
lower the non-cardiac death rate in relation to the total 
event rate. This scaling accounts for the assumption 
that non-cardiac death, while influenced by age, plays 
a smaller role than cardiac death in the overall mortality 
of this synthetic cohort. This factor was selected 
heuristically to represent a plausible imbalance 
between competing risks and to make estimation bias 
easier to interpret, rather than being empirically derived 
from external datasets. We recognize that the absolute 
event rates might not correspond to those seen in real-
world cohorts, even though this decision facilitates a 
controlled comparison between Kaplan-Meier and 
competing risks approaches. However, this assumption 
has no effect on the internal validity of estimator 
comparisons. 

By adjusting this multiplier, the model maintains a 
realistic balance between competing risks, allowing for 
clearer comparison of estimation bias between Kaplan-
Meier and competing risks methods. Without this factor, 
the initial hazard rates derived from the baseline and 
age terms might have resulted in an unrealistic number 
of non-cardiac deaths compared to cardiac deaths in 
the simulation. 

The cardiac death hazard was defined as a 
proportion of the non-cardiac hazard: 

λ! !|  !"# = 0.40×λ!" !|  !"#  

This method was applied to the simulated data in 
order to preserve a consistent and comprehensible 
structure of competing risks. In order to ensure that 
cardiac events are less common than non-cardiac 
events, the simulation introduces a controlled level of 
competition between causes of death by modelling 

cardiac mortality as 40% of the non-cardiac hazard 
across all ages. 

The simulation is made simpler by this proportional 
relationship while maintaining a realistic risk disparity, 
which is frequently seen in older populations where 
non-cardiac causes (such as cancer and respiratory 
diseases) frequently account for the majority of deaths. 
More importantly, this structure allows for clear 
evaluation of bias (differences) and misclassification in 
Kaplan-Meier estimates, which assume independence 
of competing events, versus methods that properly 
account for competing risks like the cumulative 
incidence function (CIF) [20]. 

The event time for each person was calculated as 
the lowest of the administrative censoring time, non-
cardiac death time, and cardiac death time. A uniform 
distribution of administrative censoring times was 
sampled: 

!!"#$%&  ~!"#$%&'(17, 21) 

This range was chosen to represent the actual 
follow-up duration seen in the NHANES dataset, where 
the longest follow-up period was just over 20 years (up 
to about 20.57 years). The external validity of the 
simulation results was improved by matching the 
censoring distribution with the empirical data, which 
guaranteed that the simulated risk estimates were 
assessed over a similar time horizon [21]. 

The event type was assigned based on which time 
was earliest: 

• If !!"#$%&   < min  (!!"!#$%&'$#  , !!"#$%"!  ): censored 
(event =0) 

• If !!"#$%"!   < !!"!#$%&'$#  and !!"#$%"! <    !!"#$%&  : 
cardiac death (event =1) 

• If !!"!#$%&'$#   < !!"#$%"!  and !!"!#$%&'$# <    !!"#$%&  : 
non-cardiac death (event =2) 

The simulation was designed to generate an 
outcome distribution reflective of NHANES data, 
ensuring its suitability for comparing Kaplan-Meier (KM) 
and cumulative incidence function (CIF) estimates. 

Additionally, the number of individuals at risk at 5, 
10, 15 and 20 time point was evaluated to assess the 
precision of long-term estimates.  

STATISTICAL ANALYSIS 

The statistical methods in this study were applied to 
evaluate and enhance the accuracy of risk estimates 
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for potential integration into web-based health analytics 
platforms, where precise predictions are essential for 
user-facing tools like digital risk assessment 
applications (e.g., risk calculators, patient-facing apps). 

To evaluate whether the effect of age on the hazard 
of cardiac death was appropriately modelled as linear, 
we fitted Cox proportional hazards models including 
age as a linear term, a quadratic term, and as a natural 
cubic spline (with 3 degrees of freedom) to the 
NHANES cohort. Model fit was compared using 
likelihood ratio tests and Akaike Information Criterion 
(AIC), with statistical significance assessed at the 0.05 
level. 
Kaplan-Meier Estimation 

For the NHANES dataset, the Kaplan–Meier (KM) 
estimator is used to calculate the cumulative incidence 
of cardiac death, treating non-cardiac deaths as 
censored.  

The KM estimator or survival probability is given as  

! ! =∏!!!!(1 −
!!
!!
  ), 

with warnings when competing risks exist (10). 

!!   : Represents subjects experiencing the event of 
interest (e.g., cardiovascular death) at time !! . That is if 
3 patients die from cardiac arrest at 12 months follow-
up then !!=3. and !! denotes subjects alive and 
uncensored just before the time !!. 

The same approach was applied to the simulated 
dataset to ensure comparability. While standard, this 
method does not account for the informative nature of 
competing events, potentially overestimating the risk of 
cardiac death. 

Cumulative Incidence Function (CIF) 

To obtain estimation of the cumulative incidence of 
cardiac death while properly accounting for the 
competing risk of non-cardiac death, the Aalen-
Johansen estimator using the cuminc() function from 
the cmprsk R package was used. The Aalen-Johansen 
estimator is a non-parametric method specifically used 
to estimate the Cumulative Incidence Function (CIF) in 
the presence of competing risks. 

The CIF estimates the probability of experiencing a 
specific event type (e.g., cardiovascular death) by time 
t, while accounting for competing risks (e.g., non-
cardiovascular death). Its formula is: 

CIF! ! λ!
!
! ! . ! !   !"  , 

where λ!(!) is the instantaneous rate (cause-specific 
hazard rate) of event k at time s conditional on 
surviving all events (including competing risks) up to s.  

! !  is the overall survival function at time s. This 
represents the probability of surviving up to just before 
time s without experiencing any of the competing 
events. 

This method was used for both NHANES and 
simulated datasets, directly estimating the probability of 
cardiac death in the presence of competing risks. 

Fine-gray Regression Model 

The Fine-Gray model is employed in its baseline 
form (without covariates) to estimate the sub-
distribution hazard of cardiac death for both NHANES 
and simulated datasets. This model corresponds 
directly to the cumulative incidence function (CIF) in the 
presence of competing risks.  

Although the Fine-Gray model is typically used for 
regression with covariates, in this study it was 
employed solely for estimating the sub-distribution 
hazard of cardiac death, allowing corroborating the 
Aalen-Johansen CIF estimates, ensuring consistency 
in competing risk assessments for web-based 
applications. 

Difference Validation 

The bias between methods was evaluated as the 
absolute difference between KM and CIF estimates at 
5 years and computed relative bias as: 

Relative  Diff. % =
!" − !"#

!!"
×100 

For clinical interpretation, the absolute difference 
(KM – CIF) was also reported, representing the 
overestimation in percentage points. 

The external validation was done using the 1999-
2000 cohorts of the National Health and Nutrition 
Examination Survey (NHANES), linked with the 
mortality follow-up data via the 2019 National Death 
Index (CDC, 2022; NCHS, 2021). This dataset furthers 
its evidence base by comparing real-world data and 
providing benchmarks against the simulated estimates. 
NHANES is a nationally representative survey widely 
used in epidemiological research, including studies of 
cardiovascular risk and mortality that incorporate 
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competing risks frameworks (e.g., [21, 22]). NHANES 
validation provided real-world benchmarks for 
competing risks approaches, enhancing their 
applicability to web-based health analytics platforms 
that require accurate risk predictions. 

Visualization 

Cumulative incidence curves from both the KM and 
CIF estimators were plotted to visually demonstrate the 
degree of overestimation attributable to ignoring 
competing risks. The vertical axis of the plots was 
standardized (0 to 0.25) to accommodate both 
NHANES and simulation KM and CIF estimates, 
facilitating visual comparisons for web-based risk 
visualization tools. 

Software 

All analyses were conducted using R (version 
4.3.1). The survival package (version 3.5-5) was used 
for Kaplan-Meier estimation, and the cmprsk package 

(version 2.2-11) was used for Cumulative Incidence 
Function (CIF) estimation. 

Prototype 

A web-based Cardiac Death Risk Calculator was 
created to enable interactive examination of Kaplan-
Meier (KM) and Cumulative Incidence Function (CIF) 
estimates for cardiac death risk. The calculator uses 
simulated data (n=2,500) generated via exponential 
survival times with age-dependent hazard rates for 
cardiac (hazard = 0.4 × non-cardiac hazard) and non-
cardiac events, averaged over 100 simulations to 
stabilize estimates, and NHANES data (n=2,480) 
processed similarly (see Supplement for details). KM 
estimates ignore competing risks (1 - S(t), where S(t) is 
the survival function), while CIF accounts for non-
cardiac deaths as competing events (F(t) = P(T ≤ t, 
event = cardiac)). Users can select an age point (45 to 
85 years) to view cardiac death risk for both datasets, 
providing personalized insights across a broad adult 
age range. The supplement contains the calculator as 

 
Figure 1: Preview of the Cardiac Death Risk Calculator, a web-based tool for estimating cardiac death risk. The calculator 
allows users to select a age point and compare KM and CIF-based risk estimates for Simulation and NHANES data. It hosted 
online and available for use at: https://drzaino.github.io/cardio-risk-calculator 
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an HTML file, accessible by copying the HTML code, 
pasting it into a text document, renaming it with a .html 
extension (e.g., calculator.html), and opening it in a 
web browser. Figure 1 displays a preview of the 
calculator. 

RESULTS 

Likelihood ratio tests comparing the linear age 
model to quadratic and spline models showed no 
statistically significant improvement (p = 0.19 and p = 
0.38, respectively). 

The linear model had the lowest Akaike Information 
Criterion AIC (2228.15) compared to quadratic 
(2228.42) and spline models (2230.19), supporting the 
linearity assumption. 

The spline-based hazard ratio curve (Figure 1) 
showed a monotonic increase in hazard with age 
without evidence of substantial nonlinearity, justifying 
the use of a linear age term in the simulation and 
survival models. 

Although there was no obvious indication of 
significant nonlinear deviations from linearity, a plot of 
the predicted hazard ratio for cardiac death by age 

using the spline model (Figure 2) revealed a monotonic 
increasing hazard with age and large confidence 
intervals at older ages. Extreme age effects should be 
interpreted with caution, as indicated by the broad 
confidence intervals for older ages. The formal tests do 
not indicate a statistically significant nonlinear effect 
beyond the linear term, even though the growth 
appears visually nonlinear. In this dataset, the linear 
age effect model is adequate and precise. 

NHANES Results 

Real-world estimates of the risk of cardiac death 
were supplied by the NHANES analysis, which was 
based on the 1999–2000 cohorts connected to 2019 
National Death Index mortality data. Table 1 lists the 
number of individuals at risk, the relative difference, 
and the Kaplan-Meier (KM) and cumulative incidence 
function (CIF) estimates for cardiac death at 5, 10, 15, 
and 20 years, along with the relative difference and 
number of participants at risk. 

At 5 years, the KM estimate of cardiac death risk 
was 0.0437, compared to the CIF estimate of 0.0413, 
yielding a relative bias of 5.85%. By 20 years, the KM 
estimate (0.2002) overstated the risk relative to CIF 
estimate (0.156), yielding relative bias of 28.30%. This 

 
Figure 2: Effect age on cardiac death in NHANES data. 

 

Table 1: Bias between KM and CIF Estimates in NHANES Data 

Time (Years) KM Estimate CIF Estimate Absolute Difference Relative Diff. (%) Number at Risk 

0 0 NA NA NA 2480 

5 0.0437 0.0413 0.0024 5.8501 2178 

10 0.091 0.0815 0.0095 11.7496 1800 

15 0.1413 0.119 0.0223 18.813 1469 

20 0.2002 0.156 0.0442 28.2992 551 



330     International Journal of Statistics in Medical Research, 2025, Vol. 14 Mohammad Zaino 

overestimation, driven by KM’s treatment of non-
cardiac deaths as censored, is substantial for clinical 
and policy applications.  

The absolute difference at 20 years (4.42 
percentage points) represents a clinically meaningful 
overestimation of cardiac death risk by KM. 

Figure 3 illustrates the cumulative incidence curves, 
with the KM curve (blue) consistently above the CIF 
curve (red), showing a vertical difference of 0.15 to 
0.25 in absolute terms.  

The uncertainty in risk estimates is represented by 
the 95% CIs, which are shaded regions surrounding 
each curve. The tendency of the KM method to 
overestimate the risk of cardiac death by censoring 
competing events is indicated by the narrower CIs of 
the KM estimates, which typically do not overlap with 
those of the CIF. 

The number of participants at risk decreased over 
time (Table 1), underscoring the need for caution in 
long-term risk predictions. 

Simulated Cohort Results 

A simulated cohort (n = 2500, repeated 100 times) 
was designed to reflect NHANES-like event 
distributions, enabling controlled comparisons of KM 
and CIF methods. Table 2 presents the descriptive 
statistics of the simulated cohort. 

With ages sampled between 45 and 85 to reflect 
older-adult demographics in the United States, the 
simulated cohort's mean age was 64.2 years. Using 
exponential cause-specific hazard functions that 
included age, event timings for both cardiac and non-
cardiac deaths were modelled. Administrative 
censoring times were uniformly sampled from 17 to 20 
years. During a 20-year follow-up, 979.5 (39.2%) of the 
participants died from non-cardiac causes, 1127 
(45.1%) were censored, and 392 (15.7%) died from 
heart causes, accounting for 28.6% of total fatalities. 
These ratios indicate the simulation's viability for 
assessing alternative risk assessment techniques and 
are consistent with NHANES findings. 

 
Figure 3: Cumulative incidence of cardiac death in NHANES data: KM vs CIF. 

Table 2: Plausibility of the Simulated Data 

Metric Value Comment 

Mean age 64.1 years Matches general older-adult population in NHANES, suitable for CVD analysis. 

Cardiac deaths 392.9 (15.7%) About 28.6% of all deaths, aligning with NHANES patterns for cardiac deaths. 

Non-cardiac deaths 979.5 (39.2%) Realistic given competing risks like cancer, infections, etc. 

Censored 1127 (45.1%) Reasonable for a 20-year follow-up with censoring from 17 to 21 years. 

Median follow-up 16.44 years Consistent with longitudinal cohort patterns. 
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At 5 years, there was a 7.63% relative difference 
between the CIF (Aalen-Johansen) estimate of cardiac 
death risk of 5.41% and the KM estimate of 5.84% 
(Table 3). The KM estimate (11.29%) was higher than 
the CIF estimate (9.78%) at 10 years, resulting in a 
15.29% relative bias. This overestimation results from 
the fact that CIF takes competing events into account 
and provides more precise risk estimates, while KM 
treats non-cardiac fatalities as censored and assumes 
ongoing risk for cardiac death. The Kaplan-Meier 
estimate indicates a 16.53% risk of cardiac death at 
time point 15 years, which is significantly higher than 
the CIF estimate. Since non-cardiac fatalities are 
appropriately taken into consideration as competing 
hazards, the Aalen-Johansen CIF estimate of 13.38% 
is lower and provides a more accurate risk estimate.  

For the 20-year time period and because it ignores 
competing hazards, the KM estimate of 21.37% keeps 
increasing, substantially inflating the probability of 
cardiac death. Because it takes into consideration the 
cumulative effect of non-cardiac mortality, the CIF 
estimate of 16.25% stays lower and stabilizes, 
providing a more accurate risk assessment. At this 
point in time, the relative difference rises to 31.17%, 
the greatest in the table, underscoring KM's increasing 
overestimation over extended follow-ups. This 
emphasizes how crucial CIF approaches are for 
predicting long-term risks when there are conflicting 
hazards, particularly in aging populations with a variety 
of mortality causes.  

The result in Table 3 indicates that the absolute 
difference of 5.12 percentage points at 20 years 
illustrates a clinically important gap that could affect 
patient risk classification and treatment decisions. 

Figure 4 displays the cumulative incidence of 
cardiac death over 20 years using KM and CIF 
methods in the simulated cohort. The KM curve rises 
more steeply, particularly beyond 5 years, while the CIF 

curve stabilizes earlier, reflecting proper adjustment for 
competing risks.  

Comparison of NHANES and Simulated Results 

KM overestimated cardiac death risk by 7.63% at 5 
years and 31.51% at 20 years. This larger bias reflects 
the simulation’s use of higher non-cardiac death rates 
(31.51% vs. 28.30%) and lower censoring rates (39.2% 
vs. 54.1%) compared to the NHANES data. In the 
NHANES cohort, the overestimation was also 
substantial, ranging from 5.85% at 5 years to 28.30% 
at 20 years.  

The discrepancy between Kaplan-Meier (KM) and 
cumulative incidence function (CIF) estimates 
increases over time due to the accumulation of non-
cardiac deaths, which are treated as censored in KM 
but appropriately accounted for in CIF. Across both 
datasets, this systematic overestimation led to a 
misclassification rate of substantial proportion in risk 
stratification, underscoring the importance of using 
appropriate competing risks methods in clinical 
prediction. 

A web-based cardiac death probability calculator 
was created to improve the usability and accessibility of 
these insights. Using this interactive tool, users can 
estimate their risk of cardiac death by choosing a 
starting age and an ending age, to estimate the risk of 
cardiac death using both KM and CIF methods. 

Based on either NHANES or simulated data the 
calculator dynamically shows the absolute probabilities 
as well as the relative difference between KM and CIF 
estimates. Personalized investigation of the variations 
in overestimation by KM by age range and data source 
is made possible by this user-driven feature. 

These results have significant implication for 
cardiovascular risk communication and digital health 
platforms, as does the associated web tool. Clinicians, 

Table 3: Comparison of Kaplan-Meier (KM) and Cumulative Incidence Function (CIF) Estimates for Cardiac Death Risk 
in a Simulation Sample (100 Simulations, Each with 2500 Subjects) 

Time  
(Years) 

Mean KM  
Estimate 

Mean CIF  
Estimate 

Mean Absolute 
Difference 

Mean Relative 
Difference (%) 

95% CI  
Lower Limit 

95% CI  
Upper Limit 

Number  
at Risk 

0 0 0 NA NA NA NA 2500 

5 0.0584 0.0542 0.0042 7.63 7.5077 7.7523 2026 

10 0.1129 0.0978 0.0151 15.4829 15.2903 15.6756 1639 

15 0.1653 0.1338 0.0315 23.5782 23.3211 23.8354 1328 

20 0.2137 0.1625 0.0512 31.532 31.1716 31.8924 268 
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researchers, and the general public can obtain more 
accurate and realistic risk assessments by integrating 
CIF estimates into online calculators, especially in 
aging populations where competing risks are 
substantial. By replicating and expanding upon patterns 
found in NHANES, the simulation further validates this 
strategy and highlights the importance of CIF 
techniques and interactive analytics in modern health 
decision-making environments. 

DISCUSSION 

The study's findings emphasize how critical it is to 
account for competing risks when estimating the 
probability of cardiac mortality, particularly in the 
context of web-based health analytics where accurate 
predicting are essential for tools that users interact 
with. In comparison to Cumulative Incidence Function 
(CIF) estimates, Kaplan-Meier (KM) estimates 
significantly overstated the risk of cardiac death across 
both the NHANES and simulated datasets, with relative 
differences (bias) growing over time. The NHANES 
cohort displayed a relative bias that climbed from 
5.85% at 5 years to 28.30% at 20 years, while the 
simulated cohort displayed an even higher bias, rising 
from 7.63% at 5 years to 31.53% at 20 years. The 
NHANES cohort showed a relative bias that increased 
from 5.85% at 5 years to 28.30% at 20 years. 

This systematic overestimation by Kaplan-Meier 
methods, leading to likely misclassification in risk 
stratification, align with prior research showing that 
ignoring competing risks results in significant bias and 
incorrect risk categorization in cardiovascular outcomes 
[23]. 

Our findings are consistent with new studies that 
showed how inaccurate KM is at predicting 
cardiovascular risk. In a study of older persons with 
heart failure, [20] compared the effectiveness of KM 
and CIF. They found that, because of the high rate of 
non-cardiovascular fatalities, KM underestimated the 
risk of cardiovascular mortality by 15–35% over a ten-
year period. We found that biases in the NHANES 
cohort increased from 11.75% after 10 years to 28.30% 
at 20 years, following a similar pattern. The significant 
disparities found in the simulated group (such as a 
31.53% bias after 20 years) further highlighted the 
applicability of Cumulative Incidence Function (CIF) 
approaches in situations when there are several 
causes of death.  

The design of this cohort, which incorporated a 
higher non-cardiac death rate compared to NHANES's 
28.30% to accentuate competing risk effects, 
highlighted this necessity. These results extend the 
findings of [24], who noted that competing risks 
significantly impact risk estimates in aging populations, 
particularly over extended follow-up periods, with 
biases exceeding 40% in cohorts with high non-cardiac 
mortality rates. 

The Aalen-Johansen CIF estimates were robustly 
corroborated by our study's application of the Fine-
Gray model, which was used in its baseline form to 
estimate the sub-distribution hazard of cardiac death. 
This strategy fits in with recent developments in 
competing risk methodologies, as Putter et al. [1] 
showed that Fine-Gray models outperform traditional 
Cox models in terms of calibration, improving the 
accuracy of cardiovascular risk predictions in the 

 
Figure 4: Average cumulative incidence of cardiac death from 100 simulated datasets (n = 2,500 per simulation). Because the 
curves represent mean estimates across replications, the corresponding 95% confidence intervals are extremely narrow and lie 
close to the curves, making them visually indistinguishable. 
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presence of competing events (C-index of 0.72 vs. 
0.65). The Fine-Gray model's consistency with CIF 
estimates supports its usefulness for web-based 
applications, where computational simplicity and 
interpretability are crucial for user-facing tools, even 
though our study did not include covariates. This 
methodological choice distinguishes our work from 
studies like those by Cooper et al. [23], which used 
covariate-adjusted Fine-Gray models to predict 
cardiovascular outcomes but did not focus on 
interactive visualization tools. 

Important information is also provided by the 
distinctions between the simulated and NHANES 
cohorts. Because of its design, which included a high 
non-cardiac death rate in simulated cohort the finding 
shows a relative bias (e.g., 31.51% at 20 years vs. 
NHANES’s 28.30%). It was able to thoroughly to 
assess CIF methods and validate their resilience in 
high-risk situations thanks to this controlled 
amplification of competing risks. These results are 
consistent with those of Van et al. [25], who showed 
using simulated data that CIF estimates are more 
stable than KM as a basis for risk prediction, even in 
cohorts with high competing event rates. However, this 
study goes further by validating these simulated 
insights against real-world NHANES data, enhancing 
the applicability of our findings to clinical and public 
health contexts. 

STRENGTHS AND CONTRIBUTIONS 

The usefulness of this study is supported by several 
significant advancements and discoveries, even in the 
face of well-established cardiovascular risk assessment 
instruments like SCORE2. First off, despite using 
competing risk models to generate risk estimates, 
SCORE2 acts as a relative "black box" in terms of 
elucidating the key differences between the Cumulative 
Incidence Function (CIF) and Kaplan-Meier (KM) 
approaches. It's interesting that it doesn't quantify the 
degree of overestimation in KM estimates or utilize 
representative real-world population data, such as the 
NHANES, to demonstrate this bias. By carefully 
illustrating the differences between these two strategies 
using precise simulations and real-world data analyses, 
our study, on the other hand, immediately closes this 
gap and provides a straightforward contrast that 
enhances methodological understanding. 

Second, this study provides important instructional 
and analytical data that programs like SCORE2 often 
take for granted. Many researchers and clinicians 
continue to use KM by default, despite the statistically 

demonstrated superiority of CIF in the presence of 
competing risks. This may be due to their incomplete 
understanding of the implications of competing risks 
and the bias (difference) that arises when applied to 
outcomes such as cardiovascular disease (CVD). Our 
results unequivocally demonstrate the degree of KM 
overestimation, particularly in older persons when 
competing hazards are more prevalent, with biases 
reaching 31.53% in NHANES and 28.20% in the 
simulated cohort at 20 years. This makes it clearer 
why, in certain populations, CIF is a crucial 
methodological option.  

Hageman et al. [20], who highlighted the need for 
tools that clearly explain the impact of methodological 
decisions on risk estimations, stated that this 
pedagogical focus is in line with current 
recommendations for increased transparency in risk 
prediction approaches. 

Thirdly, this work's main objective is a thorough 
methodological evaluation, which is different from the 
individual risk prediction goal of tools such as 
SCORE2. Using a meticulously built simulated dataset, 
our study conducts a thorough comparison of KM and 
CIF methodologies in order to clearly illustrate the 
implications of competing risks. Analysis of actual 
NHANES data, a methodological approach that is still 
comparatively rare in many applied health analytics 
publications, is used to further validate these findings. 
This dual approach mirrors the methodology of 
Livingstone et al. [25], who used simulated and real-
world data to validate competing risk models for stroke 
prediction, but our focus on cardiac death and web-
based visualization adds a unique dimension to the 
literature. 

Additionally, by applying these methods to a U.S. 
population using representative NHANES data, we 
provide crucial context that is typically lacking from 
European-centric tools like SCORE2. Because our 
research focuses on individuals aged 45 and above, a 
population where competing risks significantly influence 
the evaluation of CVD outcomes, our findings have 
direct relevance to U.S. health analytics and the 
creation of informed health policy. This focus on older 
persons is particularly relevant because recent studies 
have emphasized the growing burden of conflicting 
risks in aging populations, and few tools provide U.S.-
specific data to address this dilemma [26]. 

A key contribution of this research is the 
improvement of the Cardiac Death Risk Calculator, an 
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web-based tool that permits users to interactively 
discover the impact of competing risks on cardiac 
death danger estimates. Unlike many current 
cardiovascular risk calculators, inclusive of the ESC’s 
SCORE2 tool, which in most cases offer static 10-year 
risk estimates [27], our calculator offers a dynamic 
interface for evaluating KM and CIF estimates over 
multiple age 45 to 85 years old. This functionality 
addresses a gap in web-based health analytics by 
providing a practical resource for researchers and 
clinicians to evaluate the methodological implications of 
competing risks. Finally, the implications of our findings 
extend to the development and refinement of web-
based risk assessment tools. As hinted at in our title, 
this study lays the groundwork for destiny online risk 
calculators and dashboards to greater transparently 
visualize risk via explicitly displaying the differences 
between KM and CIF estimates, ultimately improving 
risk communication and clinical decision-making. 

Our findings have significant implications for the 
development of web-based health analytics systems 
from our findings. Accurate risk projections are 
essential for digital tools that are increasingly being 
utilized to inform clinical decision-making and public 
health activities, such as risk calculators and patient-
facing apps. These findings demonstrate that KM-
based models can inaccurately estimate cause-specific 
mortality risk in situations where there are significant 
competing risks, underscoring the importance of 
competing risks methodology in clinical prediction tools 
and real-world datasets. 

LIMITATIONS 

Using baseline assumptions, our main simulation 
contrasted on competing risk (CIF) and Kaplan-Meier 
(KM) estimations. We do admit, though, that by taking 
into consideration different circumstances, such 
different temporal distributions, unmodeled interactions, 
and missing data, more sensitivity analyses could 
improve our findings even more. These sophisticated 
simulations will improve the current work's clinical 
relevance in upcoming extensions or article 
modifications. Furthermore, our findings may not be as 
generalizable to more diverse populations because our 
use of a simple Fine-Gray model without covariates 
restricts its capacity to take into account individual risk 
factors like age, gender, or comorbidities.  

Additionally, although our results are more relevant 
for U.S. health analytics due to the use of NHANES 
data, their applicability to other populations with distinct 

demographic or health profiles, such as European or 
Asian cohorts, may be limited. Lastly, risk estimates 
from the Cardiac Death Risk Calculator are provided at 
specific age points 45 to 85 years, which might not fully 
represent the range of risk trajectories, especially for 
shorter or intermediate time frames that could be 
important in clinical settings. 

Such tools as demonstrated by our calculator, can 
provide more accurate estimates by prioritizing CIF 
approaches, particularly in aging populations where 
non-cardiac mortality is a significant competing risk 
(>10%). The World Health Organization recently 
suggested that competing risk frameworks be included 
into digital health technologies to improve the accuracy 
of cardiovascular risk assessments globally [2]. 
Furthermore, the inclusion of our calculator in the 
supplement gives researchers a practical tool to 
replicate and build upon our results, thereby could 
encourage the development of more complex risk 
prediction models that account for competing risks. 

Our calculator's focus on competing risks sets it 
apart from other modern tools. For instance, the 
QRISK4 tool, an improved version of the UK's QRISK3 
calculator, has many risk factors but does not explicitly 
model competing risks, which may lead to 
overestimation in older populations [28]. Similarly, the 
2023-released AHA PREVENT calculator leverages 
social determinants of health to improve risk prediction, 
although it still use traditional survival models that 
overlook competing events [29]. Although our tool's 
scope is more constrained, it provides a targeted 
method for understanding the consequences of 
conflicting risks, which could aid in the development of 
these more extensive calculators in the future. 

Furthermore, even though this study shows that 
Kaplan-Meier methods significantly overestimate the 
risk of cardiac death, the researcher did not assess the 
clinical ramifications of this overestimation, such as 
overtreatment or improper risk stratification. To 
measure the potential impact of such misestimating on 
clinical judgments and patient outcomes—especially in 
populations with high competing risk burdens—further 
research is required. 

In conclusion, our study provides a helpful web-
based tool to facilitate the application of CIF-based 
methodologies for accurate cardiac death risk 
assessment, particularly in situations where there are 
competing risks. With a primary focus on the effects of 
competing risks in older persons, this work integrates 
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real-world and simulated U.S. population data to give 
valuable insights for academics, physicians, and the 
future creation of more accurate and transparent risk 
communication technologies. Subsequent research 
endeavors may explore the application of these 
methodologies to diverse populations with varying risk 
profiles and the integration of covariate-adjusted Fine-
Gray models into web-based solutions. 

FUTURE RESEARCH DIRECTIONS 

Future research need to inspect the combination of 
covariate-adjusted Fine-Gray fashions into online risk 
calculators, on the way to account for individual risk 
factors along with age, sex, and comorbidities. As a 
result, risk assessment may also emerge as extra 
accurate and broadly relevant. Additionally, the Cardiac 
Death Risk Calculator should enhance clinical decision-
making via inclusive of dynamic threat trajectories and 
more unique time points (like 1-12 months periods), 
specifically for hazard tests with shorter periods. More 
validation of CIF-primarily based techniques throughout 
plenty of populations, along with non-U.S. Cohorts with 
distinct demographic and health profiles, would 
enhance the findings' global applicability. Finally, 
building on the limitations identified in this study, using 
advanced sensitivity analyses—like alternative event 
time distributions, non-linear covariate effects, and 
scenarios with missing data— could provide deeper 
insights into how are resilient competing risk models. 
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