
 International Journal of Statistics in Medical Research, 2025, 14, 501-507 501 

 
E-ISSN: 1929-6029/25 

Alpha Diversity Analysis of Microbiota Dysbiosis in Normal and 
Colorectal Cancer of Mice Feces 

Muhammad Iqbal1,*, M. Iqbal Rivai2, Rini Suswita2, Irwan1 and Avit Suchitra1 

1Anatomy Department, Faculty of Medicine, Andalas University, Indonesia 
2Division of Digestive Surgery, Surgery Department, Faculty of Medicine, Andalas University, Indonesia 

Abstract: Background: Colorectal cancer development is influenced by both environmental and genetic factors, with the 
gut microbiota playing a significant role. This research investigates how alterations in gut microbiota are associated with 
the incidence, progression, prognosis, and early detection of CRC.  

Methods: An experimental laboratory study was carried out using Sprague Dawley rats that were induced with 
azoxymethane (AOM) and Dextran Sodium Sulfate (DSS). The thirty rats were divided into three groups: normal, cancer-
induced, and treatment. The fecal microbiota profiles were examined through Next Generation Sequencing (NGS), and 
the data were analyzed for alpha diversity, highlighting the dynamics of the microbial community. 

Results: The cancer-induced group (K2 Plus) exhibited the highest microbial diversity across Shannon, Simpson, Chao1, 
and PD Whole Tree indices, while the treatment group (P2 Plus) demonstrated the lowest. 

Conclusion: These findings suggest that the increase in diversity observed in cancer-induced mice reflects disruption of 
community stability and blooming of pathobionts. Conversely, treatment with Lactococcus lactis D4 reduced diversity, 
potentially by selectively suppressing pro-inflammatory or pathogenic taxa, indicating a beneficial probiotic effect in 
mitigating dysbiosis associated with colorectal cancer. 
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INTRODUCTION 

Colorectal cancer (CRC) is a prevalent form of 
cancer that affects individuals globally and represents a 
major public health issue. The rates of CRC incidence 
and mortality show significant variation across different 
countries and regions, closely linked to the 
socioeconomic status of those areas. Regions with 
higher income levels typically report a greater number 
of new cases and fatalities, whereas lower-income 
areas tend to have fewer instances of this disease [1]. 

Environmental and genetic factors are the main 
drivers of CRC, leading to tumor formation in the 
epithelial cells of the colon and rectum. Among the 
environmental risk factors, the gut microbiota has been 
identified as a contributor to the development of CRC. 
Growing evidence indicates that gut microbiota 
significantly influences the onset, progression, and 
spread of CRC. Numerous studies have established a 
link between pathogenic bacteria and CRC, with 
Streptococcus infection being noted as a potential 
indicator of increased risk for CRC [2]. Furthermore, 
whole-genome sequencing has revealed elevated 
levels of Fusobacteria sequences in tissues affected by 
colorectal carcinoma. Other research has detected the 
presence of Enterotoxigenic Bacteroides fragilis and  
 

 

*Address correspondence to this author at the Anatomy Department, Faculty of 
Medicine, Andalas University, Indonesia; E-mail: dr.m.iqbal92@gmail.com 

Fusobacterium nucleatum in CRC tissues, with the 
latter being linked to increased microsatellite instability 
[3, 4]. In addition, research has shown that E. coli from 
phylogroup B2 is more frequently present in colorectal 
cancer tissues, producing cyclomodulin, which is 
crucial for mutations in the epithelial cells of the large 
intestine. Moreover, Zhao et al. analyzed fecal samples 
from patients with CRC and found elevated levels of 
Bacteroides fragilis, Enterococcus, Escherichia/ 
Shigella, Klebsiella, Streptococcus, and Peptostrepto-
coccus [5, 6]. 

Colorectal cancer is a multifaceted disease 
influenced by multiple factors, with its development 
involving several mechanisms, such as dysplasia and 
inflammation. The progression of CRC linked to 
inflammatory bowel disease (IBD-CRC) follows a well-
established pathway referred to as the 'inflammation-
dysplasia-carcinoma' sequence [7]. This sequence 
describes the transition from persistent inflammation to 
dysplasia and eventually to carcinoma. In relation to 
IBD, growing evidence indicates that IBD-CRC may 
arise and progress through a unique tumorigenic 
pathway, differing from that of sporadic colorectal 
cancer [8]. Persistent inflammation, a defining 
characteristic of IBD, is associated with the onset of 
CRC via several proinflammatory pathways. The 
inflammatory environment present in IBD fosters 
conditions that facilitate tumor development by 
activating these pathways, which are crucial for the 
initiation and advancement of CRC. Additionally, the 
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altered immune responses and immunological 
processes within the inflamed colonic mucosa 
significantly contribute to the carcinogenesis linked to 
inflammation [9].  

Research on colorectal cancer has been conducted 
using various cancer cell lines and multiple animal 
models to explore its molecular mechanisms, as well 
as potential preventive and treatment strategies. 
Colitis-associated CRC is a thoroughly examined 
condition characterized by the emergence of colon 
tumors in individuals with ulcerative colitis. To replicate 
this disease in animal studies, scientists often utilize a 
combination of azoxymethane (AOM) and dextran 
sodium sulfate (DSS) to provoke significant colonic 
inflammation that leads to tumor development. The 
process of administering AOM followed by DSS results 
in colonic inflammation and the formation of several 
tumors, mirroring the progression observed in human 
cases [10]. ALOX15, known for its role in suppressing 
inflammation and cancer, has been shown to impede 
the rapid progression of colorectal tumor development 
induced by AOM in the context of DSS-induced colitis 
when it is expressed in the epithelial cells of the colon 
[11]. Moreover, research indicates that the AOM/DSS 
model is extensively utilized to study colorectal 
carcinogenesis associated with inflammation, where 
AOM induces tumors in the context of an inflammatory 
trigger provided by DSS [12]. In addition, the AOM/DSS 
model has played a crucial role in assessing the 
protective effects of different substances against 
inflammation and tumor development in CRC [13]. 

The AOM/DSS model has been essential for 
elucidating the mechanisms involved in colitis-
associated colon cancer. This approach entails 
administering AOM followed by multiple doses of DSS, 
yielding important information about the regulation of 
this type of cancer [14]. Additionally, the AOM/DSS 
model has been employed to investigate the impact of 
various interventions, including dietary supplements 
and pharmaceutical agents, on the progression of 
colitis-associated cancer [15, 16]. Investigators have 
examined the functions of different proteins and 
signaling pathways, including lipin-1 and the Nrf2/ 
Keap1 pathway, in relation to colorectal cancer induced 
by the AOM/DSS model [17, 18]. Furthermore, the 
AOM/DSS model has been utilized to assess how 
various dietary elements, including foxtail millet and 
cocoa, influence colitis-associated colorectal cancer 
[15, 18]. 

The relationship between inflammation and 
dysplasia in the development of CRC is highlighted by 

the role of the gut microbiome. Research indicates that 
the microbiome can modify the inflammatory 
environment in the gut, which in turn influences the 
onset and advancement of CRC linked to colitis [19].  

Considering the link between gut microbiota and 
overall health, it is important to examine how 
alterations in gut microbiota relate to the onset, 
progression, prognosis, and early identification of 
diseases. Most research on gut microbiota relies on 
fecal samples, which are non-invasively collected and 
thought to represent variations in the colon's 
microbiota. Several studies have identified shifts in the 
fecal microbiome of CRC patients. Consequently, fecal 
analysis can serve as a screening tool for assessing 
CRC risk, facilitating timely interventions and improving 
clinical outcomes. Reliable screening biomarkers that 
enable early detection can significantly decrease CRC-
related mortality. Alongside conventional invasive 
endoscopic methods, various noninvasive tools for 
early CRC screening are available, including commonly 
used fecal immunochemical tests, which have proven 
effective in lowering CRC rates and mortality. 
Nonetheless, this method remains controversial 
because of its comparatively low sensitivity. As a result, 
there is a pressing need for effective, safe, cost-
effective, and highly sensitive non-invasive screening 
options for CRC [20]. Some studies have shown the 
potential to combine fecal microbiota data with fecal 
immunochemistry tests to improve CRC detection [21].  

This study aims to analyze the alpha diversity of gut 
microbiota in relation to the occurrence, development, 
and prognosis of CRC, as well as to explore its 
potential for early detection in colitis-associated CRC. 

MATERIALS AND METHODS 

This research was conducted as a laboratory 
experimental study employing a Randomized Control 
Group Posttest-Only Design, targeting Sprague Dawley 
rats aged 6 to 7 weeks. The experiment took place at 
Ina Lab Laboratory between May and October 2023. 
The inclusion criteria specified male Sprague Dawley 
rats weighing between 170 and 220 grams that 
displayed signs of colitis in the colon. Rats were 
excluded from the study if they experienced substantial 
weight loss, showed visible signs of illness or death, or 
had any anatomical irregularities. 

The ethical considerations for this study received 
approval from the Health Research Ethics Committee 
at the Faculty of Medicine, University of Andalas, under 
approval number 79/UN.162.KEP-FK/2023. 
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Animals 

The rats were divided into three groups: the normal 
rat group (K0), which included rats that were neither 
induced nor treated; the cancer rat group (K2 Plus), 
consisting of rats that were induced with AOM and DSS 
until cancer developed; and the treatment rat group (P2 
Plus), which comprised cancer-affected rats that 
received treatment with Lactococcus lactis D4. 

Preparation of Lactococcus lactis D4 

Lactococcus lactis D4 was obtained from Dadih, a 
type of fermented buffalo milk stored in bamboo tubes, 
as noted by Sukma (2017), and was later produced at 
the Faculty of Animal Science, Universitas Andalas. 
The bacteria were cultivated using the streak quadrant 
technique on MRS agar plates. To reduce the risk of 
contamination, the cultivation plates were tightly sealed 
before being incubated at 30°C for 48 hours. After the 
incubation period, the bacteria were prepared for 
inoculation by using an aseptic needle to collect a 
bacterial suspension from the agar, which was then 
added to 10 ml of MRS Broth and incubated at 30°C for 
an additional 24 hours. 

After completing the inoculation process, the L. 
lactis D4 culture was placed into microtubes, each 
holding 1 ml of the culture. Following this, 
centrifugation was performed to separate the 
supernatant from the pellet, and the supernatant was 
carefully discarded. 

Sample Collection 

A total of 30 Sprague Dawley rats, each weighing 
between 170 and 220 grams, were acclimatized in the 
laboratory for one week. Out of these, 20 rats were 
induced with intraperitoneal AOM at a dosage of 10 
mg/kgBW and received 2.5% DSS for five days during 
the first week of the study. At the start of the third 
week, two rats were euthanized using ether 
anesthesia, and their colon tissues were prepared 
histopathologically by a qualified anatomical pathologist 
to check for cancer presence. If cancer was confirmed, 
fecal samples were collected from the positive control 
group. Following this, ten rats from the treatment group 
were given Lactococcus lactis D4 rectally at a 
concentration of 8 x 109 CFU/mL for 14 days, after 
which fecal samples were collected from this group as 
well. Fecal samples of 5 mg each were then gathered 
from all groups for microbiota analysis of the intestinal 
contents using Next Generation Sequencing (NGS). 

Statistical Analysis 

Sequencing data were processed using the 
Novogene 16S Amplicon QIIME1 pipeline. Raw paired-
end Illumina reads (PE250) were merged and filtered to 
obtain Clean Tags. Chimeric sequences were identified 
and removed to produce Effective Tags for 
downstream analysis. Operational Taxonomic Units 
(OTUs) were clustered at 97% sequence identity using 
the UPARSE algorithm, and representative sequences 
for each OTU were taxonomically annotated against 
reference databases (QIIME v1.9.1). Alpha diversity 
was assessed using multiple indices, including 
Observed Species, Shannon, Simpson, Chao1, ACE 
(Abundance-based Coverage Estimator), Goods 
Coverage, and PD Whole Tree. Biodiversity curves 
(rarefaction and rank abundance curves) were also 
generated to evaluate sequencing depth and richness. 

Statistical significance of differences in microbial 
community structures among groups was evaluated 
using ANOSIM, MRPP, and related non-parametric 
tests as implemented in QIIME. Environmental factor 
correlations were further assessed using Canonical 
Correspondence Analysis (CCA) and Redundancy 
Analysis (RDA) where appropriate. 

RESULTS 

The findings of this study are displayed through 
NGS amplicon metagenomic sequencing outcomes, 
specifically focusing on the sequencing results and 
data processing. The data from the amplicon 
metagenomic sequencing is analyzed in terms of alpha 
diversity. 

Sequencing Results and Data Processing 

The sequencing results for the three groups of 
rats—P2 Plus, K2 Plus, and K0—demonstrate a 
comprehensive analysis of microbial diversity. In the P2 
Plus group, a total of 2,050,092 raw paired-end 
sequences were generated, leading to 200,022 
combined sequences and 194,959 qualified 
sequences, ultimately resulting in 183,258 effective 
sequences. The average length of these sequences 
was approximately 42,226 base pairs, with a GC 
content of 52.91%. The quality metrics were 
impressive, with Q20 and Q30 values at 98.10% and 
94.01%, respectively, yielding an effective percentage 
of 89.35%. For the K2 Plus group, 118,111 raw 
sequences were recorded, which were processed to 
yield 103,079 effective sequences. This group had an 
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average sequence length of 41,660 base pairs and a 
GC content of 53.37%, with quality scores of 98.27% 
for Q20 and 94.39% for Q30, resulting in an effective 
percentage of 87.27%. The K0 group exhibited 202,161 
raw sequences, leading to 174,420 effective 
sequences, with an average length of 41,977 base 
pairs and a GC content of 53.79%. The quality scores 
for this group were 98.18% for Q20 and 94.26% for 
Q30, resulting in an effective percentage of 86.28%. 
Overall, the results indicate a robust sequencing 
performance across all groups, showcasing varying 
levels of effective sequences and quality metrics. 

Alpha Diversity 

The Alpha Diversity results reveal significant 
differences in microbial community diversity among the 

three samples: P2 Plus, K2 Plus, and K0. The K2 Plus 
sample exhibited the highest observed species count at 
675, indicating greater microbial richness compared to 
P2 Plus (465 species) and K0 (598 species). This trend 
is further supported by the Shannon index, where K2 
Plus scored 6.959, reflecting the highest diversity in 
terms of species richness and evenness. The Simpson 
index also favored K2 Plus with a value of 0.982, 
suggesting a lower likelihood of dominance by any 
single species. Both the Chao1 and ACE estimators 
indicated that K2 Plus has the highest estimated total 
species richness, with values of 675.865 and 677.861, 
respectively. All samples demonstrated high Goods 
Coverage, indicating sufficient sampling to capture the 
majority of species present. Additionally, K2 Plus 
showed the highest phylogenetic diversity with a PD 
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Figure 1: Biodiversity curves. 
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Whole Tree value of 52.185, suggesting a more varied 
evolutionary history among its microbial species. In 
summary, K2 Plus stands out as the most diverse 
sample, while P2 Plus shows the least diversity across 
multiple metrics. 

Various alpha diversity indices are closely related to 
biodiversity curves (Figure 1) that visually represent 
these diversity metrics. The indices quantify different 
aspects of alpha diversity, including species richness, 
evenness, dominance, and phylogenetic breadth. The 
observed species curve corresponds to richness, while 
the Simpson index reflects evenness and dominance, 
and the Chao1 index estimates total species richness, 
including those not observed. 

DISCUSSION 

Sequencing Results and Data Processing 

This research utilized NGS amplicon metagenomic 
sequencing, an advanced technique that significantly 
enriches our comprehension of microbiota across 
diverse biological and clinical scenarios. The outcomes 
of the sequencing were articulated through the lens of 
alpha diversity. NGS amplicon metagenomic 
sequencing has markedly propelled microbiota 
research by facilitating the extensive characterization of 
microbial communities [22]. The careful choice of 
primers for amplicon sequencing, along with the 
employment of NGS technologies that produce short 
reads, can significantly influence the characterization of 
microbiota [23]. Targeted amplicon sequencing has 
been instrumental in elucidating microbial communities 
residing in diverse anatomical sites, investigating 
microbiota in relation to various pathological states, 
and examining the impact of environmental variables, 
including pesticides [24, 25]. The juxtaposition of 
amplicon sequencing with shallow metagenomic 
sequencing has yielded comprehensive understanding 
regarding the diversity and composition of microbiota 
[26, 27]. 

The findings derived from NGS amplicon 
metagenomic sequencing illuminate the microbial 
diversity, particularly when analyzing samples P2, K2, 
and K0. The examination of alpha diversity within these 
samples indicates unique microbiota dynamics. The 
effective integration and sequencing quality, 
encompassing parameters such as GC content, Q20, 
and Q30, are crucial for comprehending the reliability 
and precision of the acquired data. The comparative 
analysis of these samples yields significant insights into 

variations in microbial diversity, elucidating information 
regarding microbial composition and potential 
ecological interactions present within the samples [28-
30]. 

Moreover, the ramifications of these discoveries 
within a research framework are considerable. The 
insights derived from NGS amplicon metagenomic 
sequencing can inform subsequent research 
trajectories, encompassing the examination of the 
functional capabilities of the microbiota, the exploration 
of microbial interrelations, and the comprehension of 
microbiota dynamics as they respond to environmental 
alterations. These results also facilitate the 
implementation of longitudinal studies aimed at 
evaluating the temporal fluctuations of microbial 
diversity, as well as intervention studies designed to 
clarify the influence of specific environmental variables 
on microbiota structure and functionality [31, 32].  

Alpha diversity indices such as Shannon, Simpson, 
Chao1, and PD whole tree are essential for assessing 
biodiversity within ecological communities, measuring 
aspects like species richness, evenness, dominance, 
and phylogenetic breadth. These indices help 
researchers understand community structure, stability, 
and the presence of rare species, offering insights into 
ecosystem dynamics. For example, the Chao1 index 
estimates unseen species to provide a fuller picture of 
species richness [33], while the Simpson index 
measures species evenness and dominance [34]. 
Phylogenetic diversity goes a step further by 
considering evolutionary relationships, enriching our 
understanding of functional diversity within 
communities [35]. 

These indices play a critical role in evaluating 
ecological stability and resilience, with higher 
biodiversity often correlating with greater ecosystem 
stability [36]. They also inform conservation strategies, 
highlighting areas with high biodiversity that may need 
protection [34]. However, the uncritical use of these 
indices can lead to misinterpretations, underscoring the 
need for careful consideration of ecological context, 
history, and human impacts to ensure effective 
landscape planning and conservation efforts [37]. 

This study has several limitations. First, the 
relatively small sample size may limit statistical power. 
Second, only one animal model (AOM/DSS-induced 
CRC) was used, which may not fully replicate human 
CRC-associated dysbiosis. Third, the cross-sectional 
sampling design precluded evaluation of longitudinal 
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microbial dynamics. Future studies with larger cohorts, 
multiple models, and integration of host immune and 
metabolic parameters are warranted to validate and 
expand these findings. 

CONCLUSION 

Cancer-induced mice in this study displayed 
unexpectedly higher microbial diversity, likely reflecting 
community disruption and blooming of pathobionts, 
while treatment with Lactococcus lactis D4 reduced 
diversity, potentially through selective suppression of 
pro-inflammatory or pathogenic species. These findings 
highlight the complexity of interpreting diversity metrics 
in colorectal cancer and suggest that Lactococcus 
lactis D4 may beneficially modulate dysbiosis. Further 
work is needed to explore the underlying mechanisms 
and evaluate translational relevance in human CRC. 
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