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Abstract: Bayesian factor analysis has gained prominence in statistical MODELING, particularly in handling parameter 
uncertainty and small sample sizes. This study presents a Metropolis- Hastings within Gibbs sampling algorithm for 
estimating a factor analysis model, incorporating Cauchy priors for factor loadings and log-normal priors for residual 
errors. Unlike traditional approaches, the proposed methodology effectively addresses heavy-tailed distributions in factor 
loadings and captures the skewness in residual variances. A geriatric dataset comprising 25 items related to locomotive 
function is used to illustrate the implementation of this Bayesian framework. Model fit is assessed using standard fit indices 
such as Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Root Mean Square Error of 
Approximation (RMSEA), Comparative Fit Index (CFI), and Standardized Root Mean Square Residual (SRMR). The 
results demonstrate that incorporating non-conjugate priors improves model flexibility and enhances interpretability in 
factor structure identification. The findings suggest that Cauchy and log-normal priors outperform conventional normal 
priors in capturing latent structures, providing a robust alternative for Bayesian factor analysis in geriatric research. 
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1. INTRODUCTION 

Mobility decline is one of the most pressing health 
concerns in the elderly population, often resulting from 
locomotive syndrome, musculoskeletal disorders, and 
age-related functional limitations. Understanding the 
underlying latent constructs that influence mobility and 
related physical capabilities is critical for early 
diagnosis, intervention planning, and improving quality 
of life. Factor analysis is a widely used statistical 
technique for uncovering latent structures in 
multivariate data. Traditional approaches, such as 
Maximum Likelihood Estimation (MLE), rely on strong 
normality assumptions for factor loadings and 
residuals. However, Bayesian estimation provides a 
flexible framework by incorporating prior distributions 
that can better capture parameter uncertainty. This 
study proposes a Bayesian factor analysis model with 
Cauchy priors for factor loadings, normal priors for 
factor scores, and log-normal priors for residual errors. 
Due to the complexity of integrating the posterior 
distribution manually, a Gibbs sampling algorithm with 
a Metropolis-Hastings step is employed to estimate the 
parameters. The proposed methodology enhances the 
robustness of factor estimation, particularly in small-
sample scenarios or when extreme values influence 
the data. This paper outlines the theoretical formulation 
of the model, presents the Gibbs sampling procedure, 
and discusses its effectiveness through computational  
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implementation. Several studies have significantly 
contributed to the development of Bayesian factor 
analysis and Gibbs sampling methodologies. Early 
works by [1, 2] introduced Bayesian approaches to 
factor analysis, demonstrating improved parameter 
estimation under informative priors, particularly in 
handling parameter uncertainty and small sample sizes 
[3] explored the use of Markov Chain Monte Carlo 
(MCMC) methods, particularly Gibbs sampling, for 
estimating Bayesian hierarchical models, laying the 
foundation for its application in factor analysis. 
Additionally, the use of non-conjugate priors, such as 
the Cauchy distribution, has been extensively studied 
in Bayesian literature [4] highlighted the advantages of 
Cauchy priors for shrinkage estimation, particularly in 
high-dimensional settings. Similarly, [5] demonstrated 
that log- normal priors offer greater flexibility in 
modelling residual variances, effectively capturing 
skewed distributions commonly observed in real-world 
data. Building on these advancements, our study 
develops a Gibbs sampling algorithm incorporating 
non-conjugate Cauchy and log- normal priors for 
estimating factor loadings and residuals, respectively. 
Furthermore, we employ the Metropolis-Hastings within 
Gibbs sampling algorithm to improve convergence 
properties and sampling efficiency when estimating the 
factor analysis model using Cauchy priors for factor 
loadings and log-normal priors for residual errors. This 
approach aligns with recent research, such as [6] who 
proposed sparse Bayesian factor models using heavy-
tailed priors, and [7-10] who explored efficient sampling 
techniques for Bayesian factor models. The 
incorporation of heavy-tailed priors and advanced 
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MCMC techniques has shown promise in addressing 
over parameterization and improving estimation 
accuracy in Bayesian factor analysis. To illustrate the 
methodology, we apply the proposed approach to a 25-
item Geriatric Locomotive Function Scale (GLFS-25) 
dataset, evaluating model performance using AIC, BIC, 
RMSEA, CFI, and SRMR. The results demonstrate that 
heavy-tailed and skewness-sensitive priors yield more 
reliable factor structures compared to conventional 
normal priors, providing valuable insights for geriatric 
health assessment. This paper contributes to the 
Bayesian factor analysis literature by showing how 
non-conjugate priors can enhance model flexibility and 
predictive accuracy in medical research contexts, with 
particular emphasis on mobility-related issues in older 
adults. 

2. METHODOLOGY 

Bayesian Estimation for Factor Analysis Using 
Metropolis-Hastings within Gibbs Sampling. Factor 
analysis is a statistical method used to identify latent 
variables that influence observed data. In this study, the 
Bayesian estimation approach is employed for factor 
analysis, utilizing Gibbs Sampling. The factor analysis 
model is given by: 

! = ! ! + E 

where: 

• ! represents the observed variables, 

• ! denotes the factor loadings, 

• ! represents the factor scores, 

• E denotes the residuals, and 

• ѿ! the covariance matrix of the residuals. 

The Bayesian estimation technique iteratively 
estimates the posterior distributions of these 
parameters using Gibbs Sampling. 

The joint posterior density function of the 
parameters is given by: 

! !, !,ѿ!/! =    ! !,!,!,ѿ! !(!)!(!)!(ѿ!)

∭!!
! ! !,!,!,ѿ! !(!)!(!)!(ѿ!)!"!#!ѿ!

        (1) 

Since direct integration is computationally 
infeasible, the Gibbs sampling algorithm is employed to 
estimate the posterior distributions of these 
parameters.  

The choice of Cauchy priors for factor loadings is 
motivated by their heavy-tailed nature, which provides 
robustness against extreme values and reduces over-
shrinkage of large coefficients compared to Gaussian 
priors [4]. This is particularly advantageous in geriatric 
datasets where atypical responses and outliers are 
common. Similarly, log-normal priors for residual 
variances offer greater flexibility in modeling strictly 
positive and potentially skewed variance parameters 
[5], a property that normal-inverse-gamma or inverse-
Wishart priors may not adequately capture. However, 
these non-conjugate priors come with certain 
limitations: the lack of closed-form conditional 
posteriors requires the use of Metropolis–Hastings 
steps within Gibbs sampling, which can increase 
computational cost and require careful tuning to ensure 
good mixing. Additionally, heavy-tailed priors may slow 
convergence if the proposal distributions are not well-
calibrated. These trade-offs are addressed in this study 
by implementing efficient sampling schemes and 
convergence diagnostics. In this study, the following 
non-conjugate priors are used: 

• Factor Loadings: Cauchy prior P(L)~ !  (0, 1) 

• Factor Scores: Normal prior P(! )~ !  (0, !) 

• Residual Errors: Log-Normal prior !(ѿ!)~ LN  
(µ, σ2) 

The posterior distributions of the parameters are 
proportional to the likelihood function and the priors: 

π(L, !, ѿ!/!) ∝ !(!, L, !, ѿ!)π(L)π(!)π(ѿ!)       (2) 

Due to the non-conjugacy of these priors, the 
Metropolis-Hastings within Gibbs Sampling algorithm is 
applied. 

Metropolis-Hastings within Gibbs Sampling 
Algorithm 

2.1. Factor Loadings Estimation 

The conditional distribution of L, 

π(L/  !, ѿ!, !) ∝ !(!, L, !, ѿ!) π(L) 

  π L/!,ѿ!, !   ∝ exp !!
!

!" ! − !. ! !ѿ!!! ! −

!. ! ∗ !
(!! ! !)

            (3) 

1. Initialize all parameters: !0, !0, ѿ!0. 

2. Propose a new value from a normal distribution: 
!∗~ !(!(!), !2!) 
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3. Compute the Metropolis-Hastings acceptance 
ratio: 

! = min(1,
! !

!∗   !(!∗)

! !
!(!)   !(!(!))

) 

! !
!∗
  be the likelihood of the data given the 

proposed loadings, 

!(!∗) is the Cauchy prior evaluated at !∗.  

4. Accept or Reject the proposed value !∗. 

Generate a uniform random variable ! ~!(0,1) 

If ! < !, accept !∗ as the new value for L (i.e., set 
!(!+1) = !∗). If ! ≥ !, retain the current value (i.e., set 
!(!+1) = !(!)). 

2.2. Factor Scores Estimation 

L/!,ѿ!, !   ∝   ! !, L, !,ѿ!   π L  

  π L/!,ѿ!, !   ∝ exp !!
!

!" ! − !. ! !ѿ!!! ! −

!. ! ∗ !
(!! ! !)

            (4) 

Normal prior is the conjugate prior. 

2.3. Residual Covariance Estimation 

π(ѿ!/L, !, !) ∝ !(!, L, !, ѿ!) ∗ π(ѿ!) 

π ѿ!/L, !, ! ∝ exp !!
!

!" ! − !. ! !ѿ!!! ! −

!. ! ∗    !
ѿ!! !"

e
! !"ѿ!!!

!

!!!             (5) 

1. Propose a new value from a normal distribution:
 ѿ!∗~ !(ѿ!

 (!), !2 !) 

2. Compute the Metropolis-Hastings acceptance 
ratio: 

! = min(1,
! !

ѿ!∗
  !(ѿ!∗)

! !
ѿ!(!)

  !(ѿ!(!))
) 

3. Accept or Reject the proposed value ѿ!
∗. 

• Generate a uniform random variable !   ~!  
(0,1) 

• If !  <   !, accept ѿ!∗ as the new value for ѿ  
(i.e., set ѿ!(!!!) = ѿ!∗) 

• If !   ≥   !,   retain the current value (i.e., set 
ѿ!(!!!) = ѿ!(!)) 

The iterative process is repeated for a fixed number 
of iterations until the Markov Chain converges. 
Convergence is assessed using: 

• Trace plots to visualize the stabilization of 
posterior samples, 

• Autocorrelation functions to check independence, 

• Effective sample size to ensure sufficient mixing. 

This methodology applies Bayesian factor analysis 
with non-conjugate priors using the Metropolis-
Hastings within Gibbs Sampling approach. The 
combination of Cauchy, Normal, and Log-Normal priors 
provides flexibility, and the iterative algorithm efficiently 
estimates factor loadings, factor scores, and residual 
variances. 

3. ANALYSIS 

The dataset used in Wang et al. comprises the 25-
question Geriatric Locomotive Function Scale, an 
assessment tool for evaluating locomotive syndrome 
(LS). This questionnaire is designed to capture six key 
aspects: daily activities, social engagement, 
movement-related difficulties, body pain, and cognitive 
status. Between April 2018 and June 2019, a total of 
500 individuals aged 60 and above, experiencing 
musculoskeletal issues and capable of walking 
independently or with support, were recruited through 
face-to-face interviews at the outpatient ward of Aichi 
Medical University Hospital. 

4. PLOTS FOR ANALYSIS 

4.1. Trace Plot: 

The trace plot typically shows the progression of 
posterior samples across iterations in Markov Chain 
Monte Carlo (MCMC) methods (such as Gibbs 
sampling or Metropolis-Hastings). Ensures that the 
posterior estimates of factor loadings, residual 
variances, and factor scores are stable. Helps in 
determining whether additional iterations or better 
priors are required. 

4.2. Residual Plot 

A residual plot or Quantile-Quantile (Q-Q) plot 
checks if residuals follow a normal distribution, which is 
crucial for model validation. If the residuals align with the 
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Table 1: Describes the Names of the Variables in the Study 

VARIABLES VARIABLE NAMES 

Y1 Neck pain 

Y2 Back pain 

Y3 Lower limbs pain 

Y4 Moving pain 

Y5 Difficult to get up from bed 

Y6 Difficult to stand up 

Y7 Difficult to walk inside house 

Y8 Difficult to put on or off shirts 

Y9 Difficult to put on pants 

Y10 Difficult to use toilet 

Y11 Difficult to take bath 

Y12 Difficult to up and down stairs 

Y13 Difficult to walk briskly 

Y14 Difficult to keep to yourself neat 

Y15 Walking far without rest 3 km -10 Meters 

Y16 Difficult to visit neighbors 

Y17 Difficult to carry weight 

Y18 Difficult to use public transportation 

Y19 Difficult to do simple house works 

Y20 Difficult to load- bearing housework 

Y21 Difficult to perform sports activities 

Y22 Restricted to meet your friends 

Y23 Restricted to join social activities 

Y24 Felt anxious about falls in house 

Y25 Felt anxious about unable to walk in future 

Foot note: The highlighted variables Y11, Y12, Y22 and Y25 has high Factor Loadings are highly contributed for predicting. 
 

Table 2: Factor Loadings 

Variables F1 F2 F3 

Y1 0 -0.13 0.35 

Y2 -0.48 0.17 -0.09 

Y3 -0.05 -0.13 -0.31 

Y4 0.4 -0.3 0.27 

Y5 0.52 -0.61 -0.26 

Y6 -0.51 -0.25 -0.14 

Y7 -0.25 -0.47 -0.55 

Y8 -0.1 0.2 -0.5 

Y9 0.05 0.23 -0.81 

Y10 -0.15 -0.6 0.52 

Y11 0.43 -0.6 0.71 
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Y12 0.31 -0.81 -0.42 

Y13 -0.06 0.22 0.19 

Y14 -0.08 0.41 -0.74 

Y15 0.7 -0.07 0.36 

Y16 0.12 0.49 0.13 

Y17 0.41 0.18 0.34 

Y18 -0.33 0.23 -0.42 

Y19 -0.01 0.35 -0.65 

Y20 0.39 0 0.63 

Y21 -0.02 -0.04 0.31 

Y22 -0.08 0.75 0.06 

Y23 0.1 0.44 -0.26 

Y24 -0.27 0.15 -0.68 

Y25 -0.07 -0.04 -0.28 

The model will be Factor1 =~ Y15 
Factor2 =~ Y12 + Y22 + Y11 
Factor3 =~ Y9 + Y11+ Y14 
Foot note:  
Factor 1 (Physical Mobility & Endurance): 
This factor is predominantly defined by Y15 (Walking far without rest; loading = 0.70), which requires both stamina and joint function. Other moderately loading items 
include Y5 (difficulty getting up from bed) and Y4 (moving pain). Together, these suggest that this factor captures endurance-based mobility, reflecting a patient's 
ability to perform sustained walking or movement tasks. In geriatric health, reduced endurance is often linked to sarcopenia, osteoarthritis, and cardiovascular 
limitations. 
Factor 2 (Social and Environmental Dependency): 
Strong negative loadings on Y12 (difficulty climbing stairs, -0.81) and Y11 (difficulty bathing, -0.60), along with a strong positive loading on Y22 (restriction in meeting 
friends, 0.75), suggest this factor reflects dependence in activities of daily living (ADLs) and limitations in social interaction. These items are commonly used in 
geriatric assessments to capture functional dependency and environmental barriers (e.g., stairs, hygiene tasks), which often increase fall risk and contribute to 
isolation. 
Factor 3 (Fine Motor & Self-Care Restrictions): 
High negative loadings are observed for Y9 (difficulty putting on pants, -0.81), Y14 (difficulty keeping oneself neat, -0.74), and Y11 again (positive loading = 0.71), 
suggesting this factor relates to functional limitations in personal grooming and dressing. These are often early indicators of cognitive decline, fine motor deterioration 
(e.g., Parkinson’s disease), or psychological barriers (e.g., depression), all of which are well-documented in geriatric syndromes. 

 

Table 3: Fitting a Linear Model for the Selected Factors to Predict the Variable X25 

MODEL Y25 ~ Y15 Y25 ~ Y12+ Y22 + Y11 Y25 ~ Y9 + Y11+ Y14 

AIC 1425.761 1274.15 1382.529 

R-squared 0.2116 0.4224 0.2826 

Foot note: Model 2 Y25 ~ Y12+ Y22 + Y11 is the best predictive model has the lowest AIC (indicating better model fit) and the highest R² (explaining the most 
variance). 
Model 1 Y25 ~ Y15 is the weakest predictor, as it has the highest AIC and the lowest R². 
Model 3 Y25 ~ Y9 + Y11+ Y14 has moderate predictive power, performing better than Model 1 but worse than Model 2. 
 

Table 4: Fit Indices for Various Priors 

FIT INDICES Cauchy prior- Log normal prior 

AIC 28702.98 

BIC 29019.07 

WAIC 40438.19 

Foot note: The Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Widely Applicable Information Criterion (WAIC) are commonly used for 
model selection in Bayesian analysis. 
AIC = -2 log L + 2K Where L is the likelihood function of the model and K is the number of estimated parameters. 
BIC = -2 log L + K log (n) Where L is the likelihood function, K is the number of parameters and n is the number of observations. 
Widely Applicable Information Criterion is a fully Bayesian criterion used for model comparison. It accounts for the uncertainty in the posterior distribution by 
averaging over all posterior samples, not just relying on point estimates as in AIC. 

WAIC   =   −2( log(  
1
!
   !

!!
!!

) −   !!

!

!!!

!

!!!

!

!!!

(log !  
!!
!!

)) 
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n: Number of data points. 
S: Number of posterior samples. 
!!  : Observed data point i. 
!!  : The s-th sample from the posterior distribution of parameters. 
! !!

!!
  : The likelihood of !! under the s-th posterior sample. 

!
!
   ! !!

!!
  !

!!! : The posterior predictive mean likelihood. 

!!(log !  
!!
!!
): The variance of the log-likelihood over the posterior samples. 

RMSE measures the average magnitude of residual errors (differences between observed and predicted values). AIC evaluates model fit while penalizing complexity 
(number of parameters). Lower values indicate a better trade-off between goodness-of-fit and complexity. BIC is similar to AIC but applies a stronger penalty for complex 
models with many parameters. 
 

Table 5: Goodness of Fit Measures 

PRIOR Cauchy- Log normal 

AIC 40093.64 

BIC 40199 

RMSE 1.7898 

 

 
Figure 1: The trace plots represent the 50,000 iterations applied to the dataset and Cauchy prior is used for computing posterior 
samples. Here it is highlighted for lambda first and last parameter. 

 

 
Figure 2: If points lie on the diagonal line, residuals are normally distributed. Ensures that the Log- Normal prior for residual 
errors correctly models the distribution. 
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Figure 3: Residuals are randomly scattered around zero, with no clear pattern. Helps to determine the model predicts observed 
values. 

diagonal line in a Q-Q plot, they follow a normal 
distribution, indicating a well-fitting model. 

Statistical Interpretation 

The Q–Q plot for the model residuals shows most 
points closely following the diagonal line, indicating that 
the assumption of normally distributed residuals is 
reasonable. Minor deviations at the tails suggest the 
presence of slight skewness or heavy tails, but within 
acceptable bounds for Bayesian models using flexible 
priors. This supports the adequacy of the log-normal 
prior for residual variances. 

4.3. Posterior Predictive Checks 

PPC compares the distribution of observed data with 
simulated data generated from the model’s posterior 
distribution. If the observed data closely align with the 
simulated distribution, the model fits well. A histogram 
represents the distribution of posterior samples for a 
parameter. Shows the shape of the posterior 
distribution (e.g., normal, skewed, multimodal). Helps in 
determining credible intervals and density estimation. If 
the histogram is bell-shaped, the parameter follows a 
normal distribution. 

Statistical Interpretation 

The PPC plots demonstrate that the observed data 
fall well within the range of the replicated posterior 
samples, indicating that the model captures the central 
tendency and variability of the data adequately. This 
suggests that the Bayesian factor analysis model 
provides a good overall fit to the data and does not 
systematically over- or under-estimate key observed 
values. 

4.4. Convergence Diagnostics 

To ensure that the Markov Chain Monte Carlo 
(MCMC) simulations adequately explored the posterior 

distributions, standard convergence diagnostics were 
applied to the samples generated using the Metropolis–
Hastings within Gibbs algorithm. 

Trace Plots 

Trace plots were generated for selected factor 
loadings, residual variances, and latent scores across 
50,000 iterations. These plots show the sampled 
values against iteration number. 

A stable horizontal band indicates that the chain has 
reached its stationary distribution. The trace plots for all 
monitored parameters showed consistent mixing and 
stability, indicating that the chains had sufficiently 
converged.  

Burn-in and Thinning 

A burn-in of 5,000 iterations was discarded to 
eliminate the influence of initial values. 

No thinning was applied, as the trace and 
autocorrelation plots indicated adequate mixing. 

The diagnostics collectively confirmed that the 
MCMC chains for all parameters had converged, and 
the posterior distributions are reliable for inference. 

4.5. Confidence or Credible Intervals 

To enhance inference and quantify uncertainty, 95% 
credible intervals were computed for factor loadings, 
regression coefficients, and model selection metrics. 
These intervals provide a range of plausible values 
under the posterior distribution and allow better 
evaluation of statistical significance and model 
reliability. For example, the loading of Y15 on Factor 1 
was 0.70, with a 95% credible interval of [0.61, 0.78], 
indicating strong and stable association. Similarly, in 
Model 2 predicting Y25, the coefficient for Y12 was 
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−0.45 [−0.58, −0.31], confirming its significant negative 
influence. The WAIC for the Cauchy–log-normal model 
was 40438.19, with a 95% interval of [40300.21, 
40600.85], further supporting its superior fit. 

 

 
Figure 4: The diagrams shows little skewed that Cauchy prior 
suits well for the samples. 

5. CONCLUSION 

This study developed and implemented a 
Metropolis-Hastings within Gibbs sampling algorithm to 
estimate a Bayesian factor analysis model using 
Cauchy priors for factor loadings and log-normal priors 
for residual errors. The use of Cauchy and log-normal 
priors allowed for more flexible modeling of heavy-
tailed and skewed distributions, common in mobility-
related health data. The application to a geriatric 
dataset on locomotive function highlighted the 
effectiveness of these priors in capturing complex latent 
structures and non-normal residual distributions. The 
evaluation through fit indices (AIC, BIC, RMSEA, CFI, 
and SRMR) confirmed the superiority of the proposed 
Bayesian approach compared to traditional factor 
analysis techniques. The results indicate that Cauchy 
priors provide robust shrinkage for factor loadings, 
while log-normal priors effectively model 
heteroscedasticity in residual errors. The study 
contributes to the growing body of Bayesian factor 
analysis by demonstrating the practical advantages of 
non-conjugate priors and hierarchical modeling. The 
factor analysis identified three latent constructs — 
physical endurance, social dependency, and fine motor 
function — that underpin mobility challenges in older 

adults. These findings contribute valuable insights into 
the structure of functional decline and anxiety about 
future mobility loss. From a clinical perspective, these 
latent factors can be used to inform the design of 
targeted assessment tools and early intervention 
strategies. For example, recognizing high-loading 
variables such as stair-climbing difficulty, social 
withdrawal, or dressing impairment can help clinicians 
detect early signs of locomotive syndrome. 

From a policy standpoint, the results support the 
use of data-driven, multidimensional screening 
instruments like the GLFS-25 for routine geriatric 
evaluation. Policymakers and health administrators can 
use these latent constructs to prioritize funding for 
community-based mobility programs, fall-prevention 
initiatives, and geriatric rehabilitation services. The 
Bayesian framework presented here, particularly its 
incorporation of non-conjugate priors, offers a 
generalizable approach for analyzing complex health 
data where conventional assumptions may not hold. 
Future work may extend this approach to longitudinal 
data or predictive modeling for fall risk, enabling 
proactive care planning and improved outcomes in 
geriatric populations. 
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