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Abstract: Introduction: This study aims to determine the stages of Alzheimer's disease (AD) using different machine 
learning algorithms, and compares the performance of these models. 

Methods: Demographic, genetic, and neurocognitive inventory data from the National Alzheimer's Coordinating Center 
(NACC) database as well as brain volume/thickness data from magnetic resonance imaging (MRI) scans were used. 
Deep Neural Networks, Ordinal Logistic Regression, Random Forest, Gaussian Naive Bayes, XGBoost, and LightGBM 
models were used to identify four different ordinal stages of AD. 

Results: Although the performance measures of the developed models were similar, the highest classification rate of AD 
stages was achieved by the Random Forest model (accuracy: 0.86; F1 score: 0.86; AUC: 0.95). The outputs of the 
model with the best performance were explained by the SHapley Addictive exPlanations (SHAP) method.  

Conclusions: This indicates that non-invasive markers and machine learning models can be used effectively in early 
diagnosis and decision support systems to predict stages of AD. 

Keywords: Alzheimer's Disease, Artificial Intelligence, National Alzheimer's Coordinating Center, Machine 
Learning, Explainable Artificial Intelligence, SHapley Addictive exPlanations, Artificial Learning Algorithm. 

1. INTRODUCTION 

Dementia, a condition that affects cognition and 
social skills, is one of the most rapidly spreading 
diseases in the world. The most common cause of 
dementia is Alzheimer's disease (AD), with a rate of 
approximately 60-80% [1]. Dementia and Alzheimer's 
disease, whose symptoms are worsened with age, are 
difficult to diagnose early and as of now, are not 
curable or reversible. According to the latest census 
report of the United Nations, people over the age of 65 
constitute 10% of the world population, and that 
number is expected to rise to 16% by 2050 [2]. Parallel 
to this aging population trend, the prevalence of AD is 
increasing worldwide as well [2]. Once diagnosed with 
Alzheimer's disease, the average remaining lifespan of 
patients is 4-8 years, although this can extend up to 20 
years depending on other factors [3]. 

The progression of Alzheimer's disease, which 
varies according to the age and health status of the  
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person, is described as the atrophy and eventually 
death of brain cells. Brain changes begin in the years 
leading up to the first appearance of symptoms, 
including damage to neurons in other parts of the brain 
as the disease progresses [3, 4]. The disease, which 
begins to manifest itself with cognitive and behavioral 
disorders affecting the person's daily life activities, is 
categorized into four stages: questionable, mild, 
moderate, and severe [4]. Clinical findings, imaging 
methods, laboratory examinations, genetic tests, and 
neuropsychological inventories are used for diagnosis. 
Biomarkers also change throughout the stages of AD 
[5]. Neuropsychological assessments that can be 
performed in a short amount of time are used for the 
diagnosis of AD, particularly in the early stages. 
Genetic tests are also used as an aid to diagnosis, 
especially tests detecting the presence of ε2, ε3, and 
ε4 alleles of the Apolipoprotein E	
  (APOE) genotype [5]. 
MRI provides detailed visualization of the size and 
shape of the brain and brain regions. Positron emission 
tomography (PET) uses small amounts of radioactive 
material called tracers to measure specific activity, 
such as glucose utilization, in different brain regions. 
Cerebrospinal fluid (CSF) can be measured both by 
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taking fluid from brain samples and via MRI scans. 
CSF is used to measure amyloid β42 levels, amyloid 
β42/40 ratio (the main component of amyloid plaques 
in the brain), total tau and phosphorylated-tau protein 
levels (the main components of tau wrinkles in the 
brain), which are important biomarkers of Alzheimer's 
disease. The abnormal levels of amyloid deposits are 
also measured with amyloid PET or Tau PET scans [3]. 
Once the brain structure imaging is completed, the data 
obtained is employed in mathematical calculations 
such as those pertaining to volume, stroke volume, and 
insufficiency measurement. The development of 
diagnostic models continues to be a priority, with all 
imaging and volume values being utilized in this 
process [5]. 

Alzheimer's disease requires long-term care and 
causes social, economic, psychological, and physical 
problems not only to the patients themselves but also 
to their caregivers, their families, and to society. With 
the increase of the disease prevalence rate, many 
countries are creating prevention programs and plans, 
and using various methods for diagnosis [1, 3]. 
Although the number of people with AD in the aging 
world population is increasing, the underlying causes of 
the disease are not fully understood yet. Artificial 
intelligence-based studies on the subject and the 
opening of AD centers and databases to researchers 
contribute to the increase in research on the diagnosis 
and treatment of AD [6]. The main objective of this 
study is to determine the stages of AD using machine 
learning models trained/ based on the NACC dataset 
that could be proposed as a decision support system 
for physicians in the sense that it will help them to 
make better and faster decisions. 

2. MATERIALS AND METHODS 

2.1. Dataset  

We used patient data from the NACC, which 
collects standardized clinical and neuropathological 
research data from Alzheimer's Disease Research 
Centers (ADRCs) in the United States, creates imaging 
databases, and develops Uniform Data Set (UDS). 
Participants who applied to the ADRCs were patients 
and their relatives and were willing to participate in 
dementia research. Participants were recruited in 
accordance with the protocols of each center, and 
consent was obtained for data collection. Data were 
collected by clinicians or trained interviewers working in 
these centers [7, 8]. 

The data were selected from the UDS version of 
patients examined between June 9, 2005, and 
February 22, 2022, frozen in March 2022. The dataset 
of annual examination results filled in by specialists for 
the 45,100 ADRC patients followed at 37 different 
centers consists of electronic health records, digital 
biomarkers, digital neuropathology data, and genetic 
results in the UDS database and measurements from 
MRI overwritten images in the imaging database [7, 8].  

2.2. Data Preprocessing  

The dataset contains the results of a total of 
166,082 observations from repeated examinations of 
45,100 patients aged 18 to 110 years, who were each 
examined at least 1 and at most 17 times. In order to 
include patients with late (severe) stages of Alzheimer's 
disease, the most recent visit was selected from the 
repeated examinations, and a single observation result 
was retained from each patient. The dependent 
variable was the global Clinical Dementia Rating (CDR) 
score, which grades the Alzheimer's stage in patients 
over 45 years of age. CDR scale ratings are graded as 
0 = healthy, 0.5 = questionable, 1 = mild, 2 = moderate, 
and 3 = severe [9]. The number of patients with CDR 
scale ratings 2 and 3 was lower than the other groups. 
In our study, "moderate" and "severe" stages were 
combined to eliminate the imbalance of distribution 
between levels; similarly, to avoid confusion with 
decimal numbers, the value "0.5" was changed to "1." 
The final CDR scale ratings were therefore graded as 
0 = healthy, 1 =questionable, 2 = mild, 3 = moderate 
and severe. 

Of all the variables in the dataset, we examined the 
significance and association stages with the CDR scale 
ratings, and those found to be significant were selected 
as independent variables. All patients took a test, either 
the Mini-Mental State Examination (MMSE), used until 
2015, or the Montreal Cognitive Assessment (MoCA), 
rolled out in 2014. MoCA scores were converted to 
MMSE scores to compensate for the loss of information 
[10, 11]. The relevant score of the patient was 
calculated by summing the variables of the 10-section 
Functional Activities Questionnaire (FAQ) inventory, 
which examines the cognitive impairment status of the 
patients. The results of 12 different conditions 
considered by the Neuropsychiatric Inventory (NPI), 
which measures the severity of neuropsychiatric 
symptoms, were selected from the dataset, providing 
us with a total NPI score. Geriatric Depression Scale 
(GDS) scores indicating the result of depression 
screening were included in the dataset. To confirm the 
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diagnosis of the disease, APOE genotype analysis 
results were selected from the gene dataset and added 
as an independent variable. 

Although patients did not have MRI scans every 
time they were examined, 11,273 MRI results were 
available for a total of 7,328 patients, with repeat MRI 
scans for some patients. From the UDS and imaging 
databases, we selected patients with the highest CDR 
and at different AD stages, with a maximum of 180 
days between examination dates [12, 13]. The dataset 
contains a total of 155 measured values calculated 
from different regions of the brain. In order to correct 
the individual variability of brain structure 
measurements, normalization was achieved by dividing 
all measurement values by the total brain volume [14]. 
The significance of the normalized volumetric and 
thickness calculations was examined according to the 
CDR scale rating. The highly correlated measurements 
were eliminated, and the deviant values of the 
remaining 17 measurements were removed from the 
dataset. Missing data were filtered according to the 
independent variables identified. When patients with 
physical, cognitive, and behavioral health problems 
were excluded, a dataset of 1,543 patients 
(healthy = 967; questionable= 409; mild = 127; 
moderate-severe = 40) was obtained. 

2.3. Data Analysis 

In this study, we evaluated the performances of six 
models: Ordinal Logistic Regression (LR), Random 
Forest (RF), Gaussian Naive Bayes (NB), XGBoost, 
LightGBM, and Deep Neural Network (DNN). The 
dataset was converted to values between 0 and 1 by 
the min-max normalization method. The min-max 
normalization method, which was used to remove bias 
and equalize distances between variables, as the data 
were not normally distributed. For the DNN model, 70% 
of the dataset was allocated for training, 15% for 
validation, and 15% for testing, while for the other five 
models, 75% was allocated for training and 25% for 
testing. To address the high dimensionality of the MRI-
derived variables, we employed a two-step feature 
reduction strategy. First, we used Locally Linear 
Embedding (LLE) to project the original 155 volumetric 
and thickness measures onto a lower-dimensional 
manifold, capturing the most relevant non-linear 
structures in the data. After experimenting with different 
dimensionality settings (ranging from 5 to 15), we 
chose 7 dimensions based on the optimal trade-off 
between retaining variance and achieving high 
classification accuracy.  

In the second step, we utilized Recursive Feature 
Elimination (RFE) across the full predictor set—
including both MRI-derived features (transformed via 
LLE) and non-imaging variables such as the FAQ, 
MMSE, and APOE genotype. RFE systematically ranks 
features by their importance to the predictive model, 
iteratively pruning the least influential features. This 
approach ensured that only a parsimonious subset of 
high-impact features was retained for the final training 
and optimization. Empirically, we observed that 
increasing the number of features beyond 
approximately 25 did not yield further improvement in 
the model’s test accuracy, indicating that our feature 
reduction approach effectively mitigated overfitting and 
redundancy in the predictors. 

The results of LLE algorithm, which is one of the 
methods of reducing the multivariate measurements 
obtained from MRI scanners to a lower dimension by 
capturing high-dimensional non-linear features, were 
optimized and included in the models [15]. In addition 
to LLE, principal component analysis (PCA) and 
ISOMAP were also used for dimensionality reduction, 
but LLE was used because the data structure is both 
non-linear and performs better. The random grid search 
method was used in all model development processes 
to prevent overlearning and to determine which 
hyperparameters would provide the best model 
performance.  

Synthetic Minority Over-sampling Technique 
(SMOTE), an advanced resampling technique used to 
solve class imbalance problems, was applied. 
Sensitivity, specificity, precision, F1 score, accuracy, 
and Area Under the Curve (AUC) were calculated to 
compare the performance of the models. Accuracy 
gives a quick overview, but the F1 score helps balance 
precision and recall. For unbalanced data, sensitivity 
and specificity help understand how the model handles 
positive and negative classes. AUC shows how well the 
model separates classes, useful for choosing the right 
decision threshold. Contingency matrix and receiver 
operating characteristic curve (ROC) graph outputs 
were obtained. The features of the model with the best 
performance were explained with the SHAP analysis. 
Finally, the effect of the number of features selected by 
RFE on model test accuracy was plotted. 
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Data analysis was performed using the Python 
programming language (version 3.10) and the cloud-
based Google Colaboratory (colab) environment, as 
well as the Python libraries NumPy 1.23.0, Matplotlib 
3.6.0, Scikit-Learn 1.1.3, TensorFlow 2.10, Statsmodel 
0.13.5, and Pandas 1.5.0. 

3. RESULTS 

The model evaluation indicated that in the training 
dataset, the highest F1 score was achieved by 
XGBoost with SMOTE (0.89), followed by other models 
like DNN (0.86), LightGBM (0.86), and RF (0.86) when 
SMOTE was applied. Ordinal Logistic Regression (LR) 
and Gaussian Naïve Bayes (NB) performed better 
without SMOTE (0.84 and 0.83, respectively). The 
highest accuracy was also observed in XGBoost with 
SMOTE (0.89). DNN and LightGBM had improved 
accuracy with SMOTE, whereas RF maintained 
consistent accuracy (0.86) regardless of SMOTE. In 
the test dataset, Random Forest (RF) without SMOTE 
had the highest F1 score (0.86), outperforming 
XGBoost (0.85) and DNN (0.84). LR and NB had better 
F1 scores without SMOTE (0.85 and 0.85, 
respectively), while LightGBM performed the worst 

(0.83). Accuracy results followed a similar trend, with 
RF maintaining a stable accuracy of 0.86 and 
LightGBM showing the lowest accuracy (0.82–0.83). 
Overall, Random Forest emerged as the most effective 
model in the test dataset, excelling in both F1 score 
and accuracy. LightGBM was the least effective model 
based on these metrics. The best hyperparameters for 
RF: criterion='entropy', max_depth=5, max_features=7, 
min_samples_leaf=10, min_samples_split=13, n_ 
estimators=500. 

The performance metrics of the Random Forest 
model, which performed the best in the test dataset, 
are presented in Table 2 for 4 different classes. When 
these results are evaluated, it is worth pointing out that 
the performance is higher at the extremes (classes 0 
and 3), whereas for the classes in between, the 
performance for different metrics tends to be lower. 

Figure 1 presents the confusion matrices of CDR 
scale ratings and compares the performance of the 
standard and SMOTE-implemented versions of the 
Random Forest algorithm. Accordingly, out of 242 
healthy individuals, 231 were correctly predicted 
according to the standard RF model, while 213 were 
correctly predicted when SMOTE was applied. In the 
first matrix (RF), a relatively high correct classification 
rate (231 correct, 11 incorrect) is observed for class 0. 

Table 1: F1 Score and Accuracy Metrics of the Models 

 Training Test 

NonSMOTE SMOTE NonSMOTE SMOTE 

F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy 

DNN 0.82 0.83 0.86 0.85 0.83 0.84 0.84 0.85 

LR 0.84 0.83 0.81 0.81 0.85 0.84 0.79 0.80 

RF 0.86 0.86 0.86 0.86 0.86 0.86 0.83 0.83 

Gaussian NB 0.83 0.82 0.80 0.80 0.85 0.85 0.84 0.84 

XGBoost 0.88 0.87 0.89 0.89 0.84 0.84 0.85 0.85 

LightGBM 0.84 0.83 0.86 0.85 0.83 0.82 0.83 0.83 

 
Table 2: Performance of the RF Model at CDR Scale Rating 

 
CDR 

NonSMOTE 

Sensitivity Specificity Precision F1 score Accuracy AUC 

RF 

0 0.88 0.91 0.95 0.92 0.89 0.94 

1 0.80 0.88 0.66 0.72 0.87 0.88 

2 0.79 0.98 0.81 0.80 0.97 0.98 

3 1.00 0.99 0.70 0.82 0.99 1.00 

AUC = Area under the curve. 
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However, the correct prediction rates for classes 2 and 
3, which are undersampled due to imbalance, are 
significantly lower. In particular, class 3 is limited to only 
seven correct predictions. In the second matrix (RF-
SMOTE), with the application of SMOTE, the class 
imbalance was eliminated, and the correct prediction 
rates increased in classes with low number of samples 
(classes 2 and 3). The number of correct classifications 
for class 3 increased to 9. However, the number of 
incorrect predictions (29 incorrect) increased for class 
0. This suggests that while SMOTE improves 
performance in the minority classes, it may cause a 
slight performance degradation in the majority classes. 
Overall, the application of SMOTE made the model 
performance more balanced by reducing the effects of 
class imbalance. 

In addition, the graphs showing the loss and 
accuracy values at each epoch for the training and 
validation datasets in the DNN model are presented in 
Figure 2. It was found that the loss of the training and 
validation datasets were almost equal and less than 1 
for 100 epochs. In the model, the accuracy values of 
the training and validation datasets were between 0.75 
and 0.85 for 100 epochs. In the model with SMOTE, 
the training and validation datasets were very close to 

each other after 40 epochs, and both were at 0.80 and 
above towards the end. The training and validation loss 
started at a very high stage at the beginning and 
decreased rapidly. This shows that the model starts to 
learn the patterns in the dataset effectively at an early 
stage. From around epoch 20 onwards, both training 
and validation losses slow down to a steady decline. 
The fact that the training and validation curves are 
close to each other indicates that the model has a good 
generalization capacity and does not suffer from 
overfitting. Moreover, the low stage of validation loss 
indicates that the model can also be successfully 
applied on test data. These results indicate that the 
training process of the model is managed efficiently, 
and the hyperparameter choices are appropriate. 

Among the 155 measurements obtained from MRI 
scanners, 17 measurements were optimized with LLE 
algorithms, reduced to 7 dimensions, and included in 
the model. For the RF model, which performed best of 
all the models tested, SHAP analysis revealed that the 
variables with the highest contribution to the model 
were, in decreasing order, FAQ, MMSE, NPI, and 
INDEPEND, as shown in Figure 3. The SHAP results 
revealed that LLE_1, that included total cerebrospinal 
fluid volume (cm3) and left cuneus mean cortical 

 
Figure 1: RF model CDR scale rating confusion matrices. 

 
Figure 2: Training/Validation loss of DNN model. 
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thickness (mm), and LLE_5 that included total 
cerebrum volume (cm3) and left entorhinal mean 
cortical thickness (mm) measurements. 

 
Figure 3: SHAP values for the Random Forest model. 

The recursive feature elimination method was 
applied on the total feature set of 155 measurements 
and reduced to 22 MRI measurements. Then the RF 
model was developed after the LLE method was 
applied on these 22 MRI measures and the accuracy of 
the RF model was calculated as 0.89 for training and 
0.82 for testing. The effect of the number of features 
selected with the RFE method on the test accuracy of 
the model is shown in Figure 4. The graph reveals that 
initially, with a small number of features, the model 

accuracy is low (0.78). As the number of features 
increases, there is a clear increase in accuracy, 
reaching a maximum level of accuracy between 
approximately 10-25 features (0.84). This is a critical 
region for determining the optimal number of features. 
Beyond 30 features, the accuracy stabilizes and the 
variance increases, indicating that adding more 
features to the model does not contribute to better 
performance and instead creates excessive complexity. 
While the correlation between features may explain the 
initial low accuracy values, it appears that RFE 
effectively eliminates redundant features and optimizes 
the model.  

4. DISCUSSION AND CONCLUSION 

The main topic of this study is the use of machine 
learning models to determine different stages of AD, 
the most common cause of dementia and an 
irreversible neurodegenerative disease. For diagnosis, 
clinical findings, imaging methods, laboratory 
examinations, genetic tests, and neuropsychological 
inventories help detect the disease in machine learning 
models. For this purpose, a dataset of 45,100 patients 
(healthy = 15,837; questionable= 13,154; mild = 6,774; 
moderate-severe = 9,335) from the NACC database 
was used, and exclusionary factors were eliminated. 
The results of the clinical inventories, neurocognitive 
assessments, and the measurements of MRI images 
were evaluated in the added dataset, composing only 
about 3.42% of the entire database. It has been proven 
that women are twice as likely to have AD compared to 
men due to a longer life expectancy, higher rates of 
depression, lower education levels, lower stages of 
estrogen (the hormone that protects the mental acuity 
of the brain after menopause), and a stronger APOE ε4 
genotype [16]. In our study, the difference between 
genders was eliminated by proportioning the MRI 
measurements of the patients to their whole brain 
volumes. Other factors known to affect Alzheimer's 
disease are marital status, family history, smoking and 
alcohol use, cardiovascular risk factors, diabetes, 
hypertension, cholesterol, obesity, and head trauma. 
We could not include these variables in our models for 
two reasons: first, although some of them are signi-
ficant for the diagnosis of AD, they do not contribute to 
its classification; second, when all of these variables 
were included in the model, the number of participants 
meeting the required criteria dropped to zero due to 
missing data, leaving no usable sample for analysis. 

In this framework, LR, RF, Gaussian NB, XGBoost, 
LightGBM, and DNN models were developed and 

 
Figure 4: The RF model performance with respect to the 
recursive feature elimination method. 
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optimized by fine-tuning for multiple comparisons of 
four different ordinal stages of AD. The data used for 
the optimization were demographic, genetic, and 
neurocognitive inventory results of patients from the 
NACC database and brain volume/thickness 
measurements calculated from MRI scanners. In the 
models, divided between training/validation and test 
datasets, LLE (a dimensionality-reduction method for 
MRI measurements) and SMOTE techniques were 
used to overcome the problem of unbalanced 
distribution of the number of samples in each class. 
Although the models used are popular algorithms with 
good predictive power and processing speed, better 
results were obtained when the parameters were 
adjusted according to the data structure. 

The findings of our study revealed that the accuracy 
rate, F1 score, AUC value and sensitivity, specificity, 
and precision performance measures of each class of 
the developed models were similar and that it was the 
RF model without SMOTE. In addition, the contribution 
of the variables in the RF model in determining AD 
stages was explained by SHAP analysis. Accordingly, it 
was found that the most successful classifier of AD 
stages among the variables included in the model was 
the FAQ inventory. In our model, reduced from 155 to 
17 measurements using LLE algorithms, the most 
successful MR measurements in AD stages 
classification were found to be total cerebrospinal fluid 
volume, left cuneus mean cortical thickness, total 
cerebrum volume, and left entorhinal mean cortical 
thickness. In addition, a higher performance model was 
established by applying the dimension reduction 
method to the multidimensional dataset. In conclusion, 
the machine learning-based models employed in this 
study can be used to identify patients suspected of 
having AD in the early diagnosis process with cost-
effective and widely-used, non-invasive markers to 
predict at what stage of AD they may be. These models 
are generalizable, as the findings obtained show similar 
stages of performance for training and test datasets. 

Several other studies in the academic literature 
used machine learning techniques to diagnose or 
classify AD using both clinical inventory results and 
imaging methods. Yang et al. normalized the volumetric 
measurements of MRI and CSF images of 200 healthy, 
400 questionable and 200 Alzheimer's disease patients 
from the Open Access Series of Imaging Studies 
(OASIS) and Alzheimer's Disease Neuroimaging 
Initiative (ADNI) databases, then applied dimensionality 
reduction with the independent component analysis 
(ICA) method and compared the performance of the 

Support Vector Machine (SVM) algorithm to binarily 
discriminate the questionable and patient classes from 
the healthy class. Accordingly, the SVM algorithm was 
able to discriminate between the healthy from the 
questionable class with a maximum accuracy of 0.81 
and from the patient class with 0.89 [17].  

In another study, Zhang et al. proposed to combine 
MRI, PET, and CSF biomarkers from the ADNI 
database, and introduced a multimodal data fusion and 
classification method using a multicore SVM classifier 
to distinguish the patient or questionable class from the 
healthy class, integrating the three methods for the 
classification task [18]. A simple feature selection 
based on a t-test was used to select the most 
discriminative features; using the volumetric features 
extracted from the images, the best binary 
classification rate they obtained was 0.93 (sensitivity: 
0.93 and specificity: 0.93) for the SVM model with 10-
fold cross-validation. In another study, Wolz et al. 
compared the performance of two-class models built 
with Linear Discriminant Analysis (LDA) and SVM 
algorithm using age, gender, education level, MMSE, 
GDS, and MRI measurements of 66 healthy and 48 AD 
patients from the same database. They found the LDA 
model performed best in the classification of the 
healthy group versus the patient group (accuracy; 0.89; 
sensitivity: 0.93; specificity: 0.85) [19]. 

Liu et al. designed a study to classify Alzheimer's 
patients with DNN architecture using MRI and PET 
data from imaging methods. After processing the 
images in the ADNI database, they divided the original 
dataset into two parts: 90% training set and 10% test 
set. They calculated the performance metrics of the 
trained network for both binary and multiclass 
classification by selecting the number of neurons 
between 30 and 200 for two hidden layers using the 
softmax activation function in each layer and the 
relative weights of each nucleus by grid search with a 
learning rate of 0.1 at each step. They achieved an 
accuracy of 0.82 for the questionable class and 0.91 for 
the patient class compared to the healthy class, but 
only 0.54 for multiclass classification [20]. In another 
study, Ritter et al. constructed a dataset including 
demographics, neuropsychological tests (MMSE, GDS, 
NPI, ADAS, FAQ), medical history, baseline medical 
symptoms, genes, amyloid plaques, neurological and 
physical examinations, MRI, FDG-PET, CSF from the 
ADNI database of patients who did or did not convert to 
AD within 3 years. Missing data was completed using 
mean value and expectation maximization algorithms. 
With 10-fold cross-validation SVM, Decision Tree, and 



Determination of AD Stages by Artificial Learning Algorithms International Journal of Statistics in Medical Research, 2025, Vol. 14      539 

RF models, they achieved 0.73 accuracy (0.40 
sensitivity and 0.91 specificity) and overall, the highest 
score obtained by the SVM algorithm for binary 
classification into AD [21]. 

Khagi et al. used MRI images of 18 healthy, 16 
questionable, 12 mild, and 4 moderate Alzheimer's 
patients from the OASIS database to classify the 
images using a simple machine learning algorithm with 
deep layers feature extraction using Deep Neural 
Network architecture. After extracting the features of 
the images with the CNN layer, they used Mutinffs, 
ReliefF, Laplacian, and UDFS algorithms for feature 
selection. With K-Nearest Neighbor and SVM machine 
learning techniques, they obtained an accuracy of 0.99 
in the multiclass model with five-fold cross-validation in 
the dataset, which was divided into 70% training and 
30% test set [22]. Liu et al. evaluated the MRI data of 
119 healthy, 233 questionable, and 97 AD patients from 
the ADNI database. They combined the DesneNet 
model for learning image features based on segmented 
hippocampal regions with a multi-task CNN model for 
learning hippocampal segmentation and classifying 
disease status. With the features learned from these 
models, they correctly predicted questionable against 
healthy people with a rate of 0.76, and patients with a 
rate of 0.89 [23]. In a subsequent study, Liu et al. 
extracted an MRI dataset of 492 participants aged 18-
96 years from the OASIS database and developed a 
CNN model trained with Alexnet and GoogLeNet 
networks, and predicted healthy, questionable, and 
patient classes with an accuracy of 0.78, sensitivity of 
0.83, and specificity of 0.75 with multiple comparisons 
[24]. 

Using the NACC database, González et al. 
compared the AUC values of the models they 
developed based on RF algorithms for healthy, mild 
cognitive impairment, and dementia groups for 7,054 
participants with age, gender, education level, ethnic 
group, language, FAQ, and MoCA variables [25]. They 

optimized the number of trees and the number of 
attributes to split each node by dividing 20% (1,410) of 
the primary dataset into a test set and 80% (5,644) into 
a training set. They found the AUC of the highest-
performing model, including racial disparities corrected 
for demographic variables, to be 0.88 [25]. They 
predicted the highest diagnostic accuracy for the 
healthy (AUC = 0.91) and mild cognitive impairment 
(AUC = 0.84) groups, which they compared with other 
classes. The model they found to perform best was 
more successful in classifying dementia patients than 
those in the healthy group and more successful in 
classifying the mild cognitive impairment group than the 
findings in González et al. [25]. They emphasized the 
difficulty of separating the group with mild cognitive 
impairment from the healthy group, which resulted in 
misclassifying 217 people with mild cognitive 
impairment in their model and predicting that they were 
healthy [25]. 

In order to illustrate the robustness of our final 
models, Table 3 provides a comparative view of our 
best-performing classifier—Random Forest (RF)—
against empirical results from selected recent studies in 
the literature that used MRI-derived and clinical data to 
classify Alzheimer’s disease stages. The table displays 
accuracy, F1 score, and AUC values to facilitate direct 
comparison. As seen in Table 3, our final RF model 
yields favorable results—an accuracy of 0.86 and an 
F1 score of 0.86—while maintaining an AUC of 0.95. 
These findings align closely with or surpass other 
approaches in the literature, especially considering the 
complexity of the four-class classification task in our 
study. Our results underscore both the efficacy of the 
proposed feature reduction technique and the 
enhanced diagnostic precision contributed by 
integrating clinical, genetic, and neuroimaging 
information. 

Manca et al. investigated the neurocognitive effects 
associated with neuropsychological symptoms in 

Table 3: Comparison of our Final Random Forest Model with Selected Prior Work on MRI-Based and/or Clinical 
Classification of Alzheimer’s Disease 

Study Data Source Model Stages Accuracy F1 Score AUC 

Yang et al. (2011) OASIS & ADNI SVM Binary (Healthy vs. AD / MCI) 0.81–0.89 – – 

González et al. (2021) NACC Random Forest Binary (Healthy vs. 
MCI/Dementia) 0.82–0.91 – 0.84–0.88 

Khagi et al. (2019) OASIS CNN + KNN/SVM Multiclass (Healthy, MCI, AD) 0.99 – – 

Our Study NACC Random Forest  
(nonSMOTE) 

Multiclass (Healthy,  
3 AD stages) 0.86 0.86 0.95 

MCI: Mild Cognitive Impairment; AD: Alzheimer’s Disease; SVM: Support Vector Machine; CNN: Convolutional Neural Network. 
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sexual minority groups using the NACC database. 
They developed multivariate general linear models for 
cognitively healthy and impaired groups based on 
variables related to brain structures and cognitive 
performance in participants over 55 years of age [11]. 
Using MRI brain volume and thickness, total 
intracranial volume, total cerebrospinal fluid volume, 
total white matter volume, gray matter regions, 
volume/thickness measurements of frontal, parietal, 
occipital, and temporal cortex, MMSE and NPI 
inventories measuring cognitive performances, and 
demographic characteristics such as gender, education 
level, and APOE genotype, they showed that 
individuals with cognitive impairment in the same-sex 
relationship group had significantly smaller 
parahippocampal volumes than healthy individuals. 
Another significant discovery was that individuals in 
same-sex relationships had better episodic memory. In 
their study, they suggested that the observed 
differences in cognitive outcomes between relationship 
groups may be influenced by unexplored protective 
factors against cognitive decline rather than the type of 
relationship itself. They highlighted social support as a 
potential protective factor, warranting further 
investigation in future studies [11]. 

Data from the NACC dataset used in our study was 
classified as healthy, questionable, mild, and moderate-
severe stages of AD using six different machine 
learning models. For the first time in the literature, this 
dataset was applied to a multiclass classification 
method using a variety of machine learning algorithms 
with both clinical and MRI measurements. The models 
were compared with the performance metrics of the 
test sets. Using our proposed models based on the 
combination of cognitive and functional biomarkers and 
MRI measurements, we obtained successful results 
that will contribute to the literature on multiclass 
classification. The success rates of our models ranged 
from 0.83 to 0.86, while the AUC results ranged from 
0.92 to 0.96. The highest F1 score and accuracy rate 
were observed in the RF model, both with a rate of 
0.86. Random Forest often achieves high accuracy in 
our test data because it averages multiple decision 
trees, each trained on randomly sampled subsets of 
both data and features. This “bagging” and 
randomization reduce overfitting by ensuring the 
individual trees are less correlated. Additionally, 
Random Forest naturally models non-linear 
relationships without the need for extensive feature 
engineering, making it robust to noise and outliers. In 
our study, careful hyperparameter tuning—particularly 

regarding the number and depth of trees—further 
optimized performance. Finally, synergizing Random 
Forest with feature reduction (via Locally Linear 
Embedding and recursive feature elimination) 
minimized redundant variables, improving both the 
model’s interpretability and predictive power. In the 
same model, the accuracy rates for each stage of AD 
were 0.89, 0.87, 0.97, and 0.99, respectively. In the 
confusion matrices results of the models, it was 
observed that the number of incorrect predictions in all 
classes was both lower and closer to the limits. The 
contributions of the variables in our model to the model 
were also made more explainable by the SHAP 
analysis. Thus, it was shown more clearly which 
variable contributed to determining the stage of AD. 

However, as mentioned in the results section, the 
cases where the models give erroneous outputs are 
almost always in neighboring classes. Especially in 
diseases such as Alzheimer's disease, which is 
composed of many factors, high transitivity between 
classes is an expectable situation. On the other hand, 
the imbalance between classes seen in the dataset is 
one of the main limitations encountered in the model 
development process. In the future, in addition to the 
data augmentation methods used in this study, deep 
learning algorithms will be used for MRI and PET 
images. In addition, since the diagnoses become 
clearer during follow-up, longitudinal data of the same 
repeated patients will be used to predict changes in 
Alzheimer's stages using different machine learning 
techniques. When the findings and performance values 
obtained in this study are compared with other studies 
on the same dataset, two contributions are worth 
pointing out. First of all, the AUC values obtained in this 
study are higher compared to the outputs of the models 
developed by González et al. [24]. The main reason for 
this may be that the filters used in our study were used 
more effectively, and outliers were eliminated. Second, 
when the deep learning architecture performances 
used by Olaimat et al. are compared with the results of 
our study, it is seen that the model performances we 
developed are higher [26].  

In conclusion, Alzheimer's disease is a significant 
public health concern worldwide, requiring long-term 
care and increasing the responsibilities of caregivers as 
it gradually worsens. Many methods are used for 
diagnosis, and machine learning models are also used 
to detect and classify the disease. The main objective 
of this study is to develop successful models for 
disease detection with machine learning algorithms by 
using different feature transformation and engineering 
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methods in data science with volumetric, demographic, 
and other data of healthy, questionable, and 
Alzheimer's patients. In this context, our study 
contributes to the academic literature in terms of the 
performance of machine learning models developed 
outside of attribute engineering processes. 
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