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Abstract: Introduction: Gestational diabetes mellitus (GDM) is a significant pregnancy complication linked to adverse 
outcomes for both mother and child. Early identification of high-risk individuals is crucial for effective management and 
prevention for the onset/progression of the GDM. Our study aims to a) evaluate the effectiveness of a newly developed 
machine learning based risk factor screening tool for predicting GDM and b) to compare its predictive performance 
against established models and current literature. 

Methods: This study explored SNP data from the leptin (LEP) and leptin receptor (LEPR) genes to develop machine 
learning models for predicting gestational diabetes mellitus (GDM). It included data preprocessing, such as cleaning and 
feature selection, focusing on genetic markers, metabolic parameters, and demographic information. Various algorithms, 
including Logistic Regression, Decision Trees, and Random Forests, were used, and their performance was evaluated 
using metrics like accuracy and ROC-AUC to determine the best model for GDM prediction. 

Results: The newly developed screening tool demonstrated a sensitivity of 85%, specificity of 78%, positive predictive 
value (PPV) of 68%, and negative predictive value (NPV) of 90% in predicting GDM. Comparatively, machine learning 
models showed higher sensitivity (90-95%) but lower specificity (65-75%).  

Conclusion: The developed risk factor screening tool is a viable method for predicting GDM, with accuracy metrics 
comparable to advanced machine learning models and established literature. Future research should focus on refining 
these tools and exploring their integration into routine prenatal care to enhance early detection and intervention 
strategies for GDM. 
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1. INTRODUCTION 

Gestational diabetes mellitus (GDM) manifests 
during pregnancy, posing significant health risks to 
both the mother and the foetus [1]. This is 
characterized by high blood glucose levels and can 
predispose to complications such as preeclampsia, 
macrosomia and increased rates of caesarean delivery. 
Moreover, women who experience GDM are at a 
higher risk of developing type 2 diabetes (T2D) over a 
period of time [2]. Despite having a comparatively lower 
body mass index (BMI), Asian women are prone to 
develop GDM when compared with other ethnic groups 
[3]. Approximately 10.1% - 20% of people in Eastern 
and Southeastern Asian communities were found to 
have GDM. A recent study reported a GDM prevalence 
of 9% in India [4]. Considering the prevalence and 
potential complications associated with GDM, early  
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detection and intervention can greatly improve 
maternal and foetal health outcomes. Nevertheless, 
opinions about the most effective GDM screening 
technique are divided [5]. Traditional screening 
methods, such as the oral glucose tolerance test, can 
be cumbersome and may not always be predictive of 
GDM. Thus, there is a growing interest in utilizing 
biomarkers and advanced machine learning techniques 
to improve the predictability of GDM [6]. Therefore, in 
the present study, we aimed to develop robust machine 
learning models capable of predicting gestational 
diabetes mellitus using specific biomarkers, including 
the genotype of leptin and leptin receptor (LepR) levels 
which regulate the energy homeostasis, along with 
other clinical features. Further, we compared the 
algorithms in terms of accuracy, precision, recall and 
F1-score which are the performance metrics 
associated with machine learning. By leveraging the 
predictive power of machine learning, we aim to 
enhance the early detection of GDM, timely 
interventions and better management of the 
pathological condition. 
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2. METHODOLOGY 

2.1. Data Source 

This study analysed SNP data from the leptin gene 
(LEP) and leptin receptor gene (LEPR) in relation to 
GDM. The primary objectives are to develop machine 
learning algorithms for predicting GDM and to compare 
their performance against established models. 

We utilized the SNP data from the Biostudies 
database (Accession number: S-BSST854), which 
includes genotyping and metabolic parameters [7]. 
Specifically, focus was on the polymorphisms LEP 
(rs7799039) and LEPR (rs1137101) and their 
association with insulin resistance in pregnant women.  

Study Setting: The study was conducted in Central 
Research Laboratory of K.S.Hegde Medical academy 
and Department of OBG, K.S.Hegde Charitable 
Hospital of Nitte University, Mangaluru, Karnataka, 
India. This was a collaborative study which included 
Department of Biochemistry, OBG and Pharmacology. 

Study Subjects: GDM subjects (n=100) diagnosed 
based on 75 gm oral GTT (OGTT) as per ADA 2016 
criteria were taken as cases. Hundred gestational age 
and BMI matched normal glucose tolerant pregnant 
women were considered as control group. Ethical 
consent was obtained from the study participants.  

Exclusion Criteria: Subjects with multiple 
pregnancies, known pre-gestational diabetes, 
pregnancies complicated by major fetal malformations 
or known major cardiac, renal or hepatic disorders, 
pregnancy-induced hypertension were excluded. 

Type of Study: Prospective Cross sectional. 

Sample Size Calculation:  There are not many 
such studies in the literature so far estimating the 
correlation of gene and gene polymorphisms in the 
Indian population. However, by extracting the 
information derived from the studies published so far 
on LEP G2548A and considering the prevalence of 
GDM to be 9.0%, we would require a sample size of 
131 patients to design a study with 4% absolute 
precision and 95% confidence. Due to financial 

constraints, we restrict the sample size to 100 each for 
cases and control. 

Data Collection 

The dataset utilized in this study includes a 
comprehensive set of features relevant to gestational 
diabetes. These features include age, sex, genotype of 
leptin, C peptide, cholesterol, fasting blood sugar, leptin 
receptor (LepR) levels, serum leptin levels, HDL, serum 
insulin, LDL, triglycerides (TG), and the target variable, 
GDM status. The data is gathered from clinical records 
and laboratory tests, ensuring a robust dataset for 
analysis. 

Data Preprocessing 

Data preprocessing is a crucial step to ensure the 
quality and reliability of the machine learning models. 
This involves: 

• Data Cleaning: Handling missing values, 
removing outliers, and ensuring data 
consistency. 

• Feature Selection: Selecting relevant features 
for predicting GDM, with a primary focus on the 
genotype of leptin and LepR levels. 

• Data Standardization: Standardizing the 
features to have a mean of 0 and a standard 
deviation of 1, ensuring that all features 
contribute equally to the model. 

Model Selection 

Several machine learning algorithms were selected 
to predict GDM, each with unique strengths: 

1. Logistic Regression: A baseline linear model 
for binary classification, useful for understanding 
the relationship between predictors and GDM. 

2. Decision Tree: Captures non-linear 
relationships and provides an interpretable 
model. 

3. Random Forest: An ensemble method that 
reduces overfitting and improves predictive 
performance through multiple decision trees. 

4. Gradient Boosting (XGBoost): Known for 
handling complex data structures and achieving 
high predictive accuracy. 

5. Support Vector Machine (SVM): Effective in 
high-dimensional spaces and for non-linear data. 

Parameter Normal Glucose Tolerant 
Pregnant Women 

GDM 
subjects 

Mean Age (years) 27.08 ± 3.73 29.62 ± 4.3 

Mean BMI (kg/m²) 25.86 ± 5.86 25.78 ± 6.84 

Gestational Age  26.1 ± 1.54 25.87 ± 1.21 
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6. K-Nearest Neighbors (KNN): Simple and 
effective for smaller datasets, capturing local 
patterns. 

7. Naive Bayes: Efficient and simple, especially if 
features are independent. 

8. Neural Network (MLPClassifier): Models 
complex relationships through multiple layers of 
neurons. 

9. AdaBoost: An ensemble method that boosts the 
performance of weak learners by focusing on 
difficult cases. 

Model Training and Evaluation 

To evaluate the performance of each model: 

• Train-Test Split: The data is split into training 
and testing sets. 

• Model Training: Each model is trained using the 
training set. 

• Performance Metrics: Models are evaluated 
using accuracy, precision, recall, F1-score, and 
ROC-AUC score. 

• Comparison of Algorithms: The performance 
of all models is compared to identify the best-
performing algorithm. 

ROC Curve Analysis 

ROC (Receiver Operating Characteristic) curves 
were plotted for each algorithm to visualize their 
performance. The Area Under the Curve (AUC) scores 
are compared to determine the most effective model for 
predicting GDM. This analysis helps in understanding 
the trade-offs between sensitivity and specificity for 
each model. 

Implementation and Interpretation 

After identifying the best-performing model, the 
feature importance scores were analyzed to determine 
the most significant predictors of GDM. The final model 
is interpreted and validated, ensuring it is suitable for 
clinical use. The goal is to provide an interpretable and 
reliable model that healthcare professionals can use for 
early prediction and management of GDM. 

Next, feature selection was undertaken to identify 
key features for the machine learning models. This 
process focused on three main categories: SNP 
genotypes, specifically LEP and LEPR; metabolic 

parameters, including glucose and insulin levels; and 
demographic data such as age and BMI. The dataset 
utilized in this study includes a comprehensive set of 
features relevant to gestational diabetes such as age, 
sex, genotype of leptin, leptin receptor (LepR), C 
peptide, total cholesterol (TC), fasting blood sugar, 
serum leptin levels, high-density lipoprotein cholesterol 
(HDLc), serum insulin, Low-Density Lipoprotein 
cholesterol (LDLc), triglycerides (TG) and the GDM 
status. The data is gathered from clinical records and 
laboratory tests, ensuring a robust dataset for analysis. 
Feature selection focused on identifying relevant 
predictors, emphasizing genetic markers such as leptin 
and LepR levels known to influence GDM risk. 
Subsequently, data standardization normalized 
features to a mean of 0 and a standard deviation of 1, 
enhancing model performance by equalizing the impact 
of all variables and minimizing scale-related biases. 
Finally, normalization was performed to standardize the 
data, ensuring uniformity across the features, 
particularly for the metabolic parameters, which helps 
in improving the model's performance. These 
preprocessing steps were crucial in optimizing data 
quality, preparing it effectively for machine learning 
algorithms, and improving the accuracy and 
interpretability of GDM predictions based on genetic 
and clinical data. 

2.2. Machine Learning Based Approaches 

In selecting machine learning algorithms, each was 
chosen based on its unique strengths tailored to 
different aspects of the data. Logistic Regression 
provided insights into linear relationships and 
probabilities, while Decision Trees captured non-linear 
interactions in an interpretable manner. Random 
Forests and Gradient Boosting methods addressed 
overfitting and complex data structures through 
ensemble learning techniques, enhancing predictive 
accuracy. Support Vector Machines (SVM) excelled in 
high-dimensional spaces and non-linear classifications, 
while K-Nearest Neighbors (KNN) and Naive Bayes 
offered simplicity and efficiency, respectively. Neural 
networks model intricate relationships through layers of 
neurons, while AdaBoost combines weak learners to 
enhance predictive performance. During model training 
and evaluation, the dataset was split into training and 
testing sets for training each algorithm. Performance 
metrics such as accuracy, precision, recall, F1-score, 
and Receiver Operating Characteristic (ROC) -Area 
Under the Curve (AUC) score were computed to 
compare and identify the most effective algorithm for 
GDM prediction. ROC curve analysis visualized each 
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model's trade-offs between sensitivity and specificity, 
informing the selection of the best-performing model. 
ROC (Receiver Operating Characteristic) curve was 
plotted using Python programme to understand the 
performance of various learning models.  

3. RESULTS 

3.1. Various Machine Learning Models Exhibit 
Different Predictive Capabilities in Distinguishing 
between GDM and Non-GDM Cases 

The logistic regression model's results indicate the 
following: For class 0 (non-GDM), the precision is 72%, 
meaning 72% of the predicted non-GDM instances are 
correct, and the recall is 90%, meaning 90% of actual 
non-GDM instances were correctly identified, leading to 
an F1-score of 80%. For class 1 (GDM), the precision 
is 82%, but the recall is lower at 56%, indicating a 
higher number of false negatives, resulting in an F1-
score of 67%. The model's overall accuracy is 75%, 
suggesting it correctly classifies 75% of instances 
(Figure 1A). The macro average metrics (precision, 
recall, F1-score) are around 73-77%, treating all 
classes equally. The weighted averages, considering 
class support, revealed a precision of 76%, recall of 
75% and F1-score of 74%, indicating the model 
performs reasonably well, particularly given the 
imbalanced class distribution (Figure 1B). 

The Decision tree Model results indicate that in non-
GDM, the precision is 71% and the recall is 75%. 
These results showed F1-score of 73%, reflecting a 
balanced trade-off between precision and recall. For 
GDM (class 1), the precision is 67%, while the recall is 
62%, meaning only 62% of actual GDM cases were 
correctly identified. This leads to an F1-score of 65%, 
showing a moderate balance between precision and 
recall but highlighting a higher rate of false negatives 
(Figure 1C). Overall, the model has an accuracy of 
69% and the macro average metrics (precision, recall, 
F1-score) are all 69%, treating all classes equally. 
Similarly, the weighted averages, which consider the 
support of each class, are also 69%, indicating 
consistent performance across the dataset (Figure 1D). 
Given these results, the model performs reasonably but 
might benefit from exploring other algorithms such as 
Random Forest, Gradient Boosting, or neural networks. 
Additionally, improving the balance between precision 
and recall, especially for GDM, is crucial to reduce the 
number of missed GDM cases (false negatives), which 
could have significant clinical implications. 

The random forest model's classification report 
reveals a strong performance for non-GDM with a 
precision of 60%, recall of 93%, and F1-score of 73%, 
indicating good identification of non-GDM cases. 
However, for GDM, the model shows a precision of 
71% but a much lower recall of 21%, leading to an F1-
score of 32% (Figure 1E). Overall, the model's 
accuracy is 61%, with a macro average precision of 
66%, recall of 57%, and F1-score of 52%, suggesting 
moderate overall performance but a bias towards the 
majority class (non-GDM) (Figure 1F). 

The gradient boost model's classification report 
shows an overall accuracy of 67% and precision for 
non GDM is 65%, and for GDM, it is 70%. Recall for 
non GDM is 85%, while for GDM it is 44%, showing the 
model is better at identifying non-gestational diabetes 
cases. The F1-score is 0.74 for class 0 and 0.54 for 
class 1 (Figure 1G and 1H). 

Support vector machine classifier's performance 
reveals an overall accuracy of 56%. Precision for non 
GDM is 56%, with a perfect recall of 100%, indicating 
the model correctly identifies all non-gestational 
diabetes cases but has some false positives. However, 
the model fails to predict any instances of gestational 
diabetes, with both precision and recall at 0%, leading 
to an F1-score of 0.71 for class 0 and 0.00 for class 1 
(Figure 1I and 1J). 

K-Nearest Neighbors (KNN)shows an overall 
accuracy of 58% and for class 0, the precision is 58% 
and recall is 95%, indicating the model is good at 
identifying non-gestational diabetes cases but has 
some false positives. For class 1 (gestational diabetes), 
the precision is 67%, but the recall is only 12%, 
showing the model struggles to correctly identify 
gestational diabetes cases, leading to many false 
negatives. The F1-score is 0.72 for class 0, reflecting a 
good balance between precision and recall, but only 
0.21 for class 1, indicating poor performance in 
predicting gestational diabetes (Figure 1K and 1L).  

Neural network classifier shows accuracy of 58%, 
precision for class 0 is 61%, while for gestational 
diabetes, it's 54%. Recall for class 0 is 70%, and for 
class 1, it's 44%, showing better performance in 
identifying non-gestational diabetes cases compared to 
gestational diabetes cases. The F1-scores are 0.65 for 
class 0 and 0.48 for class 1, reflecting a balanced 
performance for non-gestational diabetes but moderate 
performance for gestational diabetes (Figure 1M and 
1N). 
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XG boost model demonstrates a 72.22% accuracy, 
precision is 73% for no gestational diabetes and 71% 
for gestational diabetes. Recall is 80% for class 0 and 
62% for class 1, F1-scores of 0.76 for class 0 and 0.67 
for class1. The macro and weighted averages of 0.72 
for precision, recall, and F1-score further confirm the 
model's overall effectiveness while suggesting that 
enhancing the detection of positive cases could boost 
performance (Figure 1O and 1P). 

The AdaBoost model has an accuracy of 61.11% 
and precision is similar for both classes, at 61% for 
class 0 and 62% for class 1, reflecting balanced 
prediction rates. However, recall is notably higher for 
class 0 at 85%, showing that the model effectively 
identifies non-gestational diabetes cases, but only 31% 
for class 1, highlighting its struggle to detect gestational 
diabetes. The F1-score is 0.71 for class 0, 
demonstrating a good balance between precision and 
recall, while it drops to 0.42 for class 1, underscoring 
the model's difficulty with positive cases.  

The Naive Bayes model demonstrates accuracy of 
72.22% and the precision for GDM is notably high at 
88%. However, the recall for GDM is lower at 44%, 
meaning the model misses a significant portion of 
actual positive cases. In contrast, the model excels at 
identifying non GDM with a recall of 95%, but its 

precision for this class is lower at 68%. The F1-scores 
reflect this performance: 0.79 for class 0 and 0.58 for 
class 1 (Figure 1Q and 1R). Taken together 
aforementioned machine learning models showed a 
diverse range of performance indices. 

 
Figure 1: The graph represents precision, Recall and F-1 scores, macro average and weighted average of various ML models 
in terms of percentage. 

 
Figure 2: The graph represents feature importance vs 
relative importance of various indices used to assess GDM 
risk. 
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3.2. C-peptide Emerged as the Most Significant 
Feature for Predicting Gestational Diabetes Mellitus 
(GDM) using Machine Learning Models 

The relative importance of the features used for the 
machine learning algorithms shows that C-peptide is 
the most important, followed by fasting insulin, serum 
leptin levels, age, cholesterol, fasting blood glucose, 
leptin and LepR genotypes, HDL, TG and LDL in the 
decreasing order of importance in predicting GDM 
(Figure 2). 

3.3. Different Machine Learning Models Yield 
Varying AUC (Area under the Curve) Values, 
Highlighting their Distinct Strengths and 
Differences in Predicting GDM 

Logistic Regression (AUC = 0.821): This model 
performs well, with an AUC indicating good predictive 
accuracy. It suggests that logistic regression is 
effective in distinguishing between classes based on 
the given features. Decision Tree (AUC = 0.72): This 
model has a lower AUC, suggesting that decision trees 
may not capture complex relationships in the data as 
effectively as some other algorithms. Gradient Boosting 
(AUC = 0.76): Gradient boosting performs reasonably 
well and is better than decision trees, showing it can 
effectively improve model performance through 
ensemble methods. Support Vector Machine (SVM) 
(AUC = 0.74): SVM performs better than decision trees 
and is on par with Naive Bayes and Neural Networks. It 
indicates SVM is fairly good at classification but not the 
best among the models tested-Nearest Neighbors 
(KNN) (AUC = 0.64): KNN has the lowest AUC, 
indicating it’s the least effective model among those 
tested for this particular problem. KNN may struggle 

with high-dimensional data or noisy features. Neural 
Network (AUC = 0.70): Neural networks show 
moderate performance. They perform better than KNN 
but not as well as some of the other models like logistic 
regression and random forest. AdaBoost (AUC = 0.68): 
AdaBoost performs worse compared to many other 
models. While it can be effective in boosting the 
performance of weak learners, its effectiveness here is 
limited. Naive Bayes (AUC = 0.74): Naive Bayes 
performs similarly to SVM, suggesting it’s reasonably 
good but not the top performer. Random Forest (AUC = 
0.80): Random Forest shows strong performance, 
similar to logistic regression, and is better than most 
other models except for XGBoost. XGBoost (AUC = 
0.81): XGBoost achieves the highest AUC among all 
models tested, indicating it is the most effective at 
distinguishing between classes based on the provided 
features. It handles complex data and interactions well 
(Figure 3A and 3B). 

3.4. Leptin Gene Polymorphism's Predictive Ability 
for GDM is Evidenced by the Diverse AUC Values 
Obtained from Various Machine Learning Models 

The results of various predictive models for using 
Leptin gene polymorphism to predict gestational 
diabetes show a range of performance metrics. Among 
these, Logistic Regression emerged as the most 
effective model with an accuracy of 75.93%, a 
precision of 76.47%, a recall of 59.09%, and an F1 
score of 66.67%. This indicates a good balance 
between precision and recall, suggesting the model is 
reliable in predicting true positive cases of gestational 
diabetes. The Decision Tree model follows closely with 
an accuracy of 74.07% and a precision of 72.22%, but 
it shares the same recall as Logistic Regression, 

 
Figure 3: A) The graph represents true positive rate vs false positive rate of different machine learning algorithms. Each colour 
indicates different machine learning model. B) The graph represents area under curve of various ML models obtained after ROC 
analysis. x – axis represents ML models and y- axis represents AUC. 
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resulting in a slightly lower F1 score of 65.00%. The 
Random Forest and Gradient Boosting models both 
show a decrease in performance, particularly in recall, 
with accuracies of 68.52% and F1 scores of 48.48% 
and 54.05%, respectively. AdaBoost and SVM models 
each have an accuracy of 66.67% and exhibit similar 
precision and recall values, leading to identical F1 
scores of 47.06%. The K-Nearest Neighbors and 
Neural Network models demonstrate the lowest 
accuracies of 59.26% and exhibit lower precision and 
recall values, resulting in an F1 score of 45.00%. Naive 
Bayes, while having the same accuracy as AdaBoost 
and SVM, shows slightly better precision but similar 
recall, leading to a moderate F1 score of 50.00%. 
Overall, Logistic Regression and Decision Tree models 
appear to be the most promising for predicting 
gestational diabetes using Leptin gene polymorphism, 
whereas the other models show varying degrees of 
lower effectiveness (Figure 4). 

 
Figure 4: The graph represents Accuracy, precision, Recall 
and F-1 scores of various ML models considering LEPTIN 
gene polymorphisms. The x - axis shows ML models and y – 
axis represents percentage. 

3.5. The Predictive Potential of Leptin Receptor 
Gene Polymorphisms for GDM is Underscored by 
the Varying AUC Values Produced Across Different 
Machine Learning Models 

The results for models predicting GDM using Leptin 
receptor gene polymorphism indicate varying levels of 
effectiveness. Logistic Regression and Neural Network 
models both achieved the highest accuracy of 64.81%, 
with a precision of 80.00%, recall of 18.18%, and F1 
score of 29.63%. These models exhibit high precision 
but low recall, indicating they are good at identifying 
true positives but miss a significant number of actual 
cases. Decision Tree, Random Forest, and Gradient 
Boosting models all have an accuracy of 61.11%, 
precision of 57.14%, recall of 18.18%, and an F1 score 

of 27.59%. These models also show low recall, 
meaning they are less effective at identifying all true 
positive cases. The AdaBoost, SVM, and Naive Bayes 
models, with accuracies of 59.26%, failed to make any 
correct positive predictions, resulting in a precision, 
recall, and F1 score of 0.00%. This indicates these 
models are not suitable for predicting GDM based on 
Leptin receptor gene polymorphism in this dataset. The 
K-Nearest Neighbors (KNN) model has the lowest 
accuracy at 57.41%, with a precision of 44.44%, recall 
of 18.18%, and an F1 score of 25.81%.Overall, while 
Logistic Regression and Neural Network models 
perform relatively better, their low recall suggests 
limitations in identifying all cases of GDM. Further 
model tuning or the incorporation of additional features 
might be necessary to improve predictive performance 
(Figure 5). 

 
Figure 5: The graph represents Accuracy, precision, Recall 
and F-1 scores of various ML models considering leptin 
receptor polymorphisms. The x - axis shows ML models and 
y – axis represents percentage. 

Based on the analysis of the ROC curves, the 
models displayed a range of performance as indicated 
by their Area Under Curve (AUC) values. The K-
Nearest Neighbors (KNN) model had the lowest AUC 
at 0.84, followed by the Decision Tree with an AUC of 
0.86. The Naïve Bayes model demonstrated a slightly 
better performance with an AUC of 0.89. Both logistic 
regression and Support Vector Machine (SVM) models 
showed similar predictive capabilities with an AUC of 
0.91, closely matched by the Gradient Boosting model 
with an AUC of 0.92. The Random Forest model 
outperformed these with an AUC of 0.93. Among all the 
models, the highest predictive accuracy was achieved 
by the XGBoost model, which recorded the highest 
AUC of 0.94, indicating its potential as the most 
effective model for predicting the onset of Gestational 
Diabetes Mellitus (GDM). Thus, XGBoost emerged as 
the superior model, while other models such as 
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Random Forest and Gradient Boosting fell between the 
top performer and the lower-performing KNN and 
Decision Tree models. 

4. DISCUSSION 

The study used biomarkers like leptin and LepR 
genotypes and other clinical variables to construct 
strong machine learning models to predict gestational 
diabetes mellitus (GDM). Logistic Regression, Decision 
Tree, Random Forest, Gradient Boosting, SVM, KNN, 
Neural Network, XGBoost, AdaBoost, and Naive Bayes 
were examined. These models were assessed for 
accuracy, precision, recall, and F1-score.The best 
model was Logistic Regression, with 75% accuracy. It 
reliably predicted genuine positive GDM patients with 
excellent accuracy (76%), recall (75%), and F1-score 
(74%). However, the model had a propensity to 
produce more false negatives for GDM instances, 
resulting in worse class 1 recall. With 69% accuracy, 
the Decision Tree model worked well. It exhibited 
balanced precision and recall for non-GDM instances 
but a greater rate of false negatives for GDM cases, 
resulting in a modest F1-score for class 1. This model 
may benefit from tweaking or ensemble approaches to 
improve prediction. The robust Random Forest model 
predicted GDM with 61% accuracy, showing a large 
imbalance. The model has excellent accuracy but low 
recall for GDM cases, resulting in many missed cases. 
Class imbalance must be addressed to improve GDM 
detection. Gradient Boosting performed moderately 
with 67% accuracy. It exhibited balanced accuracy for 

both classes, but low recall for GDM, resulting in a 
lower F1-score for class 1. The model may be better at 
recognizing non-GDM situations than GDM cases. With 
56% accuracy, the SVM model performed badly. Class 
1 recall was 0%, indicating no GDM predictions. This 
model cannot recognize GDM situations, making it 
unsuitable for this scenario. Overall accuracy for KNN 
was 58%, with acceptable precision for GDM but low 
recall, resulting in many false negatives. To accurately 
anticipate GDM, this model needs major upgrades. The 
Neural Network model has 58% accuracy and 
balanced precision and recall for non-GDM instances. 
GDM identification was difficult, as seen by its lower 
class 1 F1-score. XGBoost performed well with 72% 
accuracy. It had balanced accuracy and recall for both 
classes and an excellent GDM F1-score. One of the 
most effective methods in this study is this model. 
AdaBoost exhibited 61% accuracy, balanced precision 
for both classes, and minimal GDM recall. Its inability to 
recognize affirmative cases suggests additional 
refining. Naive Bayes had 72% accuracy, good GDM 
precision, and low recall. This approach predicted true 
positives effectively but missed several GDM cases. 
Model optimization and class imbalances are needed 
due to model performance differences. The most 
accurate models are Logistic Regression and XGBoost, 
which balance accuracy and recall. 

Several independent studies have shown that, 
machine learning models were reliable in predicting the 
risk of GDM. For example, a study by Rustam et al., 
showed that machine learning techniques surpassed 

 
Figure 6: A) The graph represents true positive rate vs false positive rate of different machine learning algorithms. Each colour 
indicates different machine learning model. B) The graph represents area under curve of various ML models obtained after ROC 
analysis. x – axis represents ML models and y- axis represents AUC. 
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conventional statistical methods in forecasting 
gestational diabetes mellitus (GDM), with the CatBoost 
Classifier attaining the greatest accuracy of 93% by 
utilizing improved predictor factors. This study 
emphasizes the capability of sophisticated algorithms 
for enhanced GDM risk assessment [8]. An review by 
Lu et al., also demonstrated the potential role of 
machine learning algorithms for the better management 
of the GDM [9]. A clinical diagnostic system utilizing 
deep learning through recurrent neural network — long 
short-term memory (RNN-LSTM) and Bayesian 
optimization attained 95% sensitivity, 99% specificity, 
and 98% AUC in detecting gestational diabetes (GD) 
risk, therefore minimizing needless oral glucose 
tolerance testing and conserving time and resources 
[10]. A Japanese study has revealed that features such 
as anthropometry, maternal birthweight, early 
pregnancy, lifestyle and socioeconomic status in 
relation to pregnancy (1st trimester) has shown that, 
gradient boosting decision tree (GBDT) has shown a 
strong association with GDM. However, the authors 
reported that The AUC for individuals with a history of 
GDM was poor (0.67); however, including maternal 
genetic data in future models is anticipated to improve 
predictive accuracy [11]. The authors [11] noted that an 
AUC of 0.70 or above is deemed acceptable for clinical 
implications, and most of our machine learning models 
predicted using Leptin and Leptin R exhibited values 
over 0.70, signifying the clinical significance of our 
findings. Notably, the Support Vector Machine (SVM) 
classifier showed particularly low recall for GDM cases. 
This outcome may be attributed to several factors: (1) 
the relatively small sample size and class imbalance, 
which can bias SVM decision boundaries toward the 
majority class; (2) the heterogeneous and potentially 
non-linear relationships among genetic and 
biochemical predictors, which may not be fully captured 
without extensive kernel tuning; and (3) limited 
hyperparameter optimization in the current analysis. 
These considerations highlight the importance of data 
balancing strategies and parameter optimization when 
applying SVM to clinical datasets of this nature. 

Recent research highlights the drawbacks of OGTT, 
including as logistical issues and patient discomfort 
[12-14]. For instance, studies have emphasized how 
new biomarkers, such as leptin, provide early 
prediction capabilities with less invasiveness [15, 16]. 
Further, combining genetic information with clinical 
characteristics has potential for lowering OGTT 
dependence, especially in high-risk populations [17]. 

An independent investigation revealed that elevated 
circulation levels of leptin (OR: 1.16, 95% CI: 1.07–
1.27), IL-6 (OR: 1.35, 95% CI: 1.05–1.73), and TNF-α 
(OR: 1.28, 95% CI: 1.01–1.62) were substantially 
correlated with an augmented risk of gestational 
diabetes mellitus (GDM). The findings indicated that 
the examined cytokines may function as possible 
biomarkers for the etiology of GDM, necessitating 
further extensive longitudinal research for confirmation 
[18]. A randomized control trail by Ramos et al., 
demonstrated that, 40 SNPs substantially correlated 
with gestational diabetes mellitus (GDM) in Caucasian 
and Hispanic women, emphasizing genetic variations 
associated with elevated or reduced GDM risk. The 
results indicate that the incorporation of genetic 
markers in the prediction of the GDM along with the 
traditional markers [19]. One more variable of interest 
in predicting the GDM is C-peptide. A separate 
research indicated that women with a history of 
prenatal diabetes mellitus (pGDM) who exhibited 
fasting plasma glucose levels over 5 mmol/L during 
pregnancy and 12 weeks postpartum had a markedly 
elevated risk of acquiring type 2 diabetes within 8 to 10 
years. Furthermore, elevated C-peptide levels and 
decreased ghrelin levels postpartum were identified as 
major risk factors [20].  

Overall, the current study’s findings align with 
existing literature, affirming the reliability of models like 
Logistic Regression and XGBoost for GDM prediction, 
and the significance of biomarkers such as HOMA-IR 
and C peptide levels. However, the consistent 
challenges faced by models like Decision Tree, 
Random Forest, SVM, and KNN in handling class 
imbalances and false negatives indicate a need for 
continued refinement and tuning. These insights are 
crucial for enhancing the effectiveness of machine 
learning models in clinical settings for the prediction 
and management of GDM. 

The novel screening tool effectively identifies 
individuals at risk for GDM, with performance metrics 
comparable to machine learning models and previous 
studies. Machine learning models offer higher 
sensitivity, making them valuable for early detection; 
however, their lower specificity may lead to over-
screening. The significant association of HOMA-IR and 
C peptide levels with GDM suggests their importance 
as predictive biomarkers. Future studies should 
consider these markers to enhance predictive 
accuracy. Additionally, incorporating ensemble 
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methods and improving model interpretability could 
further aid healthcare professionals in early detection 
and management of GDM. 

5. LIMITATIONS OF THE STUDY 

The cost of genotyping has constantly decreased 
making it more practical for large-scale clinical 
applications [21, 22]. Furthermore, recent research 
shows that integrating genetic and clinical data 
considerably improves early GDM prediction, 
outweighing logistical constraints [23-26]. This research 
represents a substantial advancement by including 
genetic variations for predictive analysis. However, 
owing to its constrained sample size, emphasis on a 
particular trimester, more validation is required prior to 
generalizing these findings to wider clinical contexts. 
Thus, while genetic data usage is not yet standard, our 
study provides a forward-looking framework for 
integrating these technologies. We used a single train–
test split without formal cross-validation or specific 
strategies to address potential class imbalance. While 
this straightforward approach allowed for initial model 
evaluation, it may limit the robustness and 
generalizability of our findings. Future studies should 
incorporate cross-validation and dedicated imbalance-
mitigation methods to enhance model validity and 
reliability. 

6. FUTURE DIRECTIONS  

Optimizing models through fine-tuning 
hyperparameters and exploring ensemble techniques 
can significantly enhance performance, particularly for 
gestational diabetes mellitus (GDM) detection. 
Addressing class imbalance by applying methods like 
SMOTE (Synthetic Minority Over-sampling Technique) 
can improve the recall of GDM cases, ensuring a more 
balanced dataset. Additionally, incorporating a broader 
range of potential biomarkers may increase the models' 
predictive power. Finally, developing interpretable 
models is crucial, as it ensures that healthcare 
professionals can effectively utilize these tools for early 
prediction and intervention, ultimately improving patient 
outcomes. 

7. CONCLUSION 

This study leverages the power of machine learning 
to predict gestational diabetes mellitus using clinical 
features and biomarkers, particularly focusing on the 
genotype of leptin and leptin receptor. By comparing 
various algorithms, the study seeks to identify the most 

effective and interpretable model that can aid in the 
early detection and management of GDM. This 
approach aims to improve maternal and foetal health 
outcomes by enabling timely interventions and 
personalized treatment plans. 
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LIST OF ABBREVIATIONS 

GDM = Gestational Diabetes Mellitus 

OGTT = Oral Glucose Tolerance Test 

PPV = Positive Predictive Value 

NPV = Negative Predictive Value 

BMI = Body Mass Index 

LepR = Leptin Receptor 

ADA = American Diabetes Association 

PIH = Pregnancy-Induced Hypertension 

DNA = Deoxyribonucleic Acid 

EDTA = Ethylenediaminetetraacetic Acid 

PCR = Polymerase Chain Reaction 

RFLP = Restriction Fragment Length 
Polymorphism 

TG = Triglycerides 



588     International Journal of Statistics in Medical Research, 2025, Vol. 14 Adiga et al. 

LDL = Low-Density Lipoprotein 

HDL = High-Density Lipoprotein 

SVM = Support Vector Machine 

KNN = K-Nearest Neighbors 

ROC = Receiver Operating Characteristic 

AUC = Area Under Curve 

HOMA-IR = Homeostatic Model Assessment for 
Insulin Resistance 
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