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Abstract: The "Table 2 fallacy" represents a common methodological error in medical research, characterized by
indiscriminate statistical adjustment for multiple variables without considering their causal nature. This article examines
the theoretical foundations of the problem, distinguishing between studies with descriptive, predictive, and explanatory
objectives, and emphasizing how the research purpose should determine the adjustment strategy. We highlight the
fundamental role of Directed Acyclic Graphs (DAGs) in correctly identifying confounding, mediating, and colliding
variables, thus avoiding overadjustment and resulting biases. To illustrate these considerations, we present two practical
examples: the relationship between obesity and colorectal cancer, and between coffee consumption and breast cancer.
In the first case, we demonstrate how adjustment for intestinal dysbiosis (a mediator) can attenuate the association
between obesity and colorectal cancer, reducing the adjusted relative risk from 1.78 (95% CI: 1.20-2.65) to 1.49 (95%
Cl: 0.97-2.29) and eliminating statistical significance (p=0.072). In the second example, we show how including
insomnia (a collider) in the model can create artificial associations between coffee consumption and breast cancer,
dramatically increasing the adjusted relative risk to 1.94 (95% CI: 1.34-2.81) with high statistical significance (p<0.001),
when a correctly specified model shows no such association. We conclude that, in explanatory studies, it is essential to
develop causal reasoning prior to statistical analysis, using DAGs to guide the selection of adjustment variables. This
rigorous methodological approach prevents both the dilution of real causal effects and the generation of spurious

associations, increasing the internal validity of epidemiological findings and their utility for clinical decision-making.
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INTRODUCTION

The "Table 2 fallacy" describes a common error in
epidemiological and clinical studies where results of
multivariate models—typically presented in Table 2—
include inappropriate adjustments. The problem arises
when researchers control not only for confounding
variables but also for mediators (factors in the causal
pathway between exposure and outcome) or colliders
(variables influenced by multiple causes), distorting the
true magnitude of associations and leading to
erroneous causal conclusions [1].

While the scientific literature emphasizes adjusting
for confounders to isolate exposure effects, other
variable types are often incorrectly handled.
Inappropriate adjustment for mediators or colliders
causes overadjustment bias and generates spurious
associations, resulting in biased estimates that
compromise interpretation [2].
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This phenomenon affects any discipline that
employs multivariate analyses, including nutritional
epidemiology, oncology, public health, and clinical
research [3-5]. The root problem is the absence of a
solid causal framework and confusion between variable
types, which can lead to underestimating or
overestimating exposure effects, thereby compromising
internal validity.

This review explores the conceptual foundations of
the Table 2 fallacy, provides empirical evidence of the
issue, and offers practical recommendations for
prevention. Understanding variable types and applying
causal logic before statistical adjustment yields more
accurate estimates, thereby reinforcing research
validity and providing direct implications for clinical and
public health decision-making.

Theoretical and Conceptual Foundations

A key point often overlooked is aligning the study
objective with the statistical adjustment strategy
employed. In the medical literature, it is common to find
articles that mix descriptive, predictive, and explanatory
objectives, leading to confusion and unhelpful
conclusions [6]. Each of these purposes requires a
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distinct approach to variable selection and the
application of statistical models [7].

It is crucial to distinguish between two uses of the
term ‘"overfitting" that may cause confusion. In
predictive modeling and machine learning, "statistical
overfitting" refers to a model that fits the training data
too closely, capturing noise rather than true patterns,
thus performing poorly on new data [8]. In contrast,
"overadjustment bias" in causal inference—the focus of
this manuscript—occurs when controlling for variables
that mediate or collide causal pathways, thereby
distorting the true causal effect estimate. While both
involve "too much adjustment,” they represent
fundamentally different problems: statistical overfitting
is about prediction accuracy, whereas overadjustment
bias is about causal validity. Throughout this
manuscript, we use "overfitting" and "overadjustment”
to refer to the causal inference problem, not the
statistical prediction problem.

When the primary interest is to describe the
frequency of a disease or compare its distribution
among different groups (regions, socioeconomic levels,
etc.), the emphasis is not on isolating the "pure" effect
of a particular factor or establishing causality. In this
scenario, it is neither necessary nor advisable to
include numerous adjustment variables in the analysis,
as the objective is limited to showing reality as it is. For
example, suppose one wants to document the
prevalence of a disease in different regions. In that
case, it is sufficient to present the percentages or rates
for each area, without the need to correct for multiple
factors [9].

At the opposite end, when attempting to build a
predictive model—for example, to estimate the
probability that a patient will develop a certain
pathology—the selection of variables is justified mainly
by their ability to improve the accuracy of the
prediction. Here, the causal role of each variable is less
relevant; in fact, factors can be included that simply
increase the model's ability to "guess" the outcome,
even though their biological significance may be
uncertain. Even so, it is essential to explicitly state that
the objective is merely predictive so that these
associations are not confused with cause-effect
relationships [10].

Finally, in studies of an explanatory or etiological
nature, the priority is to understand why an outcome
occurs. Under this approach, the selection of variables
and the adjustment strategy must respond to causal

reasoning, with tools such as Directed Acyclic Graphs
(DAGs) guiding the choice of control factors. The goal
is to estimate the genuine effect of the exposure of
interest, minimizing the influence of other variables that
could distort the relationship being studied. This
perspective is of great value in the clinical field, where
elucidating the role of a risk factor can motivate
preventive interventions or guide therapeutic decision-
making [11, 12].

In summary, clarity regarding the objective type—
descriptive, predictive, or explanatory—is fundamental
for precisely selecting the variables to be included in
the statistical analysis. A merely associative study
without a well-defined purpose runs the risk of making
unnecessary adjustments or overlooking important
factors for the question posed. Having clear objectives
from the outset optimizes study design, facilitates the
interpretation of results, and produces more robust
knowledge applicable to medical practice [13].

This article emphasizes explanatory or etiological
studies, as they most frequently present the so-called
"Table 2 fallacy" by attempting to control for multiple
variables without adequate causal justification.
Precisely, in this type of study—where the aim is to
isolate the effect of a risk factor or estimate the
magnitude of a causal relationship—it is essential to
distinguish between confounding and overfitting and to
establish a solid conceptual model. At this point, DAGs
become relevant, as they facilitate the selection of
adjustment variables based on causal logic, preventing
both the omission of important confounders and
inappropriate adjustment for mediators or colliders.

The Role of Directed Acyclic Graphs (DAGs)

Designing a DAG is extremely useful in undertaking
an explanatory study that clarifies the causal
relationship between an exposure and an outcome.
These diagrams have the quality of presenting in a
visual and organized manner, in which variable
influences are always present in a unidirectional way
and without forming loops. In this way, the study's
causal hypothesis is captured, showing the possible
pathways through which exposure might affect the
outcome and the factors that may interfere with this
relationship [14].

Within this representation, variables can occupy
different positions. One of these is the confounding
variable, which is associated with both the exposure of
interest and the outcome, without being part of the
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Figure 1: Directed acyclic graph.

causal pathway between them. Its presence can mask
or exaggerate the existing relationship. A classic
example consists of studying the association between
coffee consumption (exposure) and lung cancer
(outcome): if smoking appears in the DAG as a factor
that influences coffee consumption and, at the same
time, increases the risk of lung cancer, it is identified as
a confounder. Adjusting for smoking in the analysis
allows for better isolation of the effect of coffee itself on
lung cancer [15, 16].

Another fundamental role that can be illustrated in a
DAG is that of the mediating variable, which forms part
of the causal pathway connecting the exposure to the
outcome. In graphical terms, the mediator receives an
arrow from the exposure and, in turn, points toward the
outcome. Adjusting for this variable can cause
overfitting when the main interest is knowing the total
effect of the exposure. For example, if studying the
association between obesity (exposure) and type 2
diabetes mellitus (outcome), insulin resistance, which is
caused by obesity and which, in turn, increases the risk
of diabetes, would be positioned as a mediator.
Including it in the model means underestimating the
true magnitude of the relationship between obesity and
diabetes if the objective is to understand the global
etiology of the disease [15, 16].

Finally, the DAG also facilitates the identification of
a "collider" or colliding variable, which arises when two
(or more) different causal factors converge on it [15,
16]. Visually, arrows directed toward the collider from
more than one variable can be distinguished.
Improperly adjusting for a collider can, paradoxically,
generate a spurious association that did not exist
before [17]. To give another specific example, this
happens if studying the relationship between
socioeconomic level and the presence of obesity, but a
variable that is a consequence of both (for example,

Mediator (M)

diet quality) is included in the adjustment, opening an
artificial pathway of association and distorting the
results instead of clarifying them.

In summary, developing a solid DAG coherent with
prior theory or biological evidence guides the
researcher on when it is appropriate or not to adjust for
certain variables. In this way, biases such as overfitting
or the appearance of spurious correlations are avoided,
and the "Table 2 fallacy" is prevented. This graphical
and logical-causal approach leads to more reliable
interpretations by clearly distinguishing whether a
variable should be treated as a confounder, mediator,
or collider, based on its position in the causal network.

To operationalize these concepts in practice, Figure
2 presents a decision tree that systematically guides
researchers through the process of identifying whether
a variable should be included in the adjustment set.
This tool assumes that a preliminary DAG has been
constructed based on subject-matter knowledge,
biological plausibility, and existing literature. The
decision tree should be used in conjunction with, not as
a replacement for, careful causal reasoning. Each
pathway through the tree leads to a clear
recommendation: adjust only for true confounders
(shown in green), while avoiding adjustment for
mediators, colliders, and unrelated variables (shown in
red/coral), thereby preventing the Table 2 fallacy.

Caption: Decision tree for determining adjustment
strategy in explanatory studies. Variables should be
classified based on their causal relationships
established through DAG construction, not their
statistical associations. Green endpoints indicate
variables requiring adjustment; red/coral endpoints
indicate variables that should not be adjusted to avoid
bias.
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Figure 2: Decision tree for variable adjustment in causal inference studies.

First Example: Obesity And Colorectal Cancer

Below, we present an applied example to illustrate
using a DAG in epidemiological research, focusing on
the relationship between obesity and colorectal cancer
(Figure 3). This association is particularly relevant due
to the sustained increase in obesity prevalence and the
high incidence of colorectal neoplasms worldwide.
Although the model we will describe is a simplified

version of reality, it offers a didactic guide to
understanding which variables to control for and which
we should not adjust based on their role as potential
confounders, mediators, or even colliders.

In the diagram, we position obesity as the exposure
that could trigger a carcinogenic process in the colon,
but we also recognize the importance of age as a key
confounder. With the passage of years, both the
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Figure 3: Directed acyclic graph of obesity as a risk for colorectal cancer.

probability of suffering from obesity and developing
colorectal cancer increase, so not adjusting for age
could distort the true association between obesity and
cancer. Another factor we consider is socioeconomic
status: people with lower socioeconomic status tend to
have a higher risk of obesity, partly due to limitations in
access to healthy foods and opportunities for physical
activity; at the same time, they could face greater
difficulties in accessing health services that favor
screening and early detection of cancer. Ultra-
processed food consumption is also relevant, as it
directly relates to a higher risk of obesity and,
potentially, to the presence of carcinogenic compounds
that increase the probability of developing a colorectal
tumor. Sex, for its part, is incorporated as another
factor that influences both susceptibility to obesity (due
to differences in fat distribution and metabolism) and
the probability of presenting colorectal cancer, perhaps
mediated by various hormonal aspects.

To represent a possible mediating pathway within
the relationship between obesity and colorectal cancer,
we add intestinal dysbiosis. Obesity could alter the
composition of the microbiota, triggering a state of
chronic inflammation and the production of
carcinogenic metabolites that, in turn, increase the risk
of colorectal neoplasia. Considering dysbiosis as a
mediator implies that if we adjust for this factor when
the interest is to estimate the total effect of obesity, we
would be underestimating its real contribution to
colorectal cancer, as we suppress part of the causal
pathway.

Next, two analyses perfectly illustrate the difference
between adjusting according to the DAG (avoiding over

adjusting for mediating or colliding variables) and an
"associated factors" approach in which almost any
related variable is introduced, even without
discriminating its role in the causal chain. Table 1 could
correspond to the DAG-based model, while Table 2

would reflect the expanded model of associated
factors.
Table 1: Adjusted Association between Obesity and

Colorectal Cancer Incidence Based on Dag-
Informed Confounding Control

Characteristic aRR* 95% CI p-value
Obesity
No Ref. — —
Yes 1.78 1.20 - 2.65 <0.001

*Obesity has been adjusted for age, sex, socioeconomic status, and ultra-
processed food consumption as identified through directed acyclic graph
analysis of causal pathways.

aRR: Adjusted risk ratio. 95% Cl: 95% Confidence Interval.

In Table 1, the adjustment is limited to those
variables considered true confounders in the DAG (for
example, age, socioeconomic status, ultra-processed
food consumption, or physical activity if they have been
identified as confounders, but intestinal dysbiosis is not
included as it is a possible mediator). Under this
scheme, the association between obesity and the
outcome (colorectal cancer) remains statistically
significant: obesity shows an aRR of 1.78 (95% CI:
1.20-2.65), indicating a substantial increase in relative
risk after considering the relevant confounders. This
finding supports the hypothesis that obesity plays a
pertinent role in the etiology of colorectal cancer, at
least in the context of the adjusted variables.
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In contrast, Table 2 illustrates the "associated
factors" approach, in which multiple variables are
introduced without a clear causal criterion, including
possible mediators (such as intestinal dysbiosis) or
variables that might not act as confounders. When
"adjusting for everything," the estimated effect of
obesity decreases to an aRR of 1.49 (95% CI: 0.97-
2.29) and loses statistical significance (p=0.072). From
a quick reading, one could erroneously conclude that
obesity "is not associated" with the outcome. However,
this drop in the strength of the association is largely
due to the inclusion of a possible mediating variable
(dysbiosis), "blocking" part of the real effect that obesity
exerts on colorectal cancer. This phenomenon
exemplifies the Table 2 fallacy or "overfitting." When
controlling for variables in the causal pathway, the
signal of the main exposure is diluted, and a
relationship that does exist can be masked.

Table 2: Comprehensive Multivariable Analysis of
Potential Risk Factors for Colorectal Cancer:
Fully Adjusted Poisson Regression Model

Characteristic aRR 95% CI p-value
Obesity
No Ref. — —
Yes 1.49 0.97-2.29 0.072
Age
<45 Ref. — —
245 445 289-7.16 | <0.001

Physical activity

No Ref. — —

Yes 1.23 0.80-1.90 0.354

Ultra-processed food consumption

No Ref. — —

Yes 1.28 0.94-1.75 0.111

Intestinal dysbiosis

No Ref. — —

Yes 1.52 0.96 - 2.40 0.074

Socioeconomic status

Low Ref. — —

Moderate/High 0.81

0.50-1.29 0.366

Alcohol consumption

Low Ref. — —

High 1.48

0.90 - 2.41 0.12

*Each factor has been simultaneously adjusted for all other variables in the
model, including obesity, physical activity, ultra-processed food consumption,
intestinal dysbiosis, socioeconomic status, and alcohol consumption.

aRR: Adjusted risk ratio. 95% Cl: 95% Confidence Interval.

Additionally, it is important to note that the other
variables presented in these "associated factors"
models should not even be reported or interpreted. The
common practice of presenting and interpreting all
model covariates as if they were "independently
associated factors" is conceptually flawed. Each
variable in the model fulfills different roles according to
the underlying causal structure (confounder, mediator,
or collider); therefore, interpreting their coefficients as
independent effects is meaningless. For example, the
coefficient of low physical activity or alcohol
consumption does not represent their true effect on
colorectal cancer, as this effect is distorted by the
inclusion of other variables in the causal pathway.
Researchers should avoid the temptation to interpret
these secondary coefficients and focus solely on
estimating the primary exposure, which is the objective
of an explanatory study.

In summary, Table 1 represents a model based on
the DAG, in which only confounders have been
identified and adjusted for, leaving out mediators. Table
2, for its part, presents a "multifactorial" analysis that
includes both confounders and mediators and other
variables of possible interest. Comparing both
estimates highlights the relevance of establishing a
causal framework before adjustment, avoiding the
Table 2 fallacy and reinforcing the validity of
conclusions about the association between obesity and
colorectal cancer.

Second Example: Coffee Consumption and Breast
Cancer

In this new example, we position coffee
consumption as an exposure factor in the relationship
with breast cancer, recognizing that multiple variables
can influence both coffee consumption and the
development or early detection of this neoplasm.
Through DAG, we identify which variables act as
possible confounders and which could function as
mediators or even colliders (Figure 4). This distinction
is fundamental for making justified decisions about
when statistical adjustment is appropriate and when not
to avoid underestimating or "inventing" associations.

First, we consider lack of physical activity (or low
activity), consumption of ultra-processed foods,
smoking, and socioeconomic status as possible
confounders between coffee consumption and breast
cancer. Physical activity and diet (represented here by
ultra-processed foods) are related not only to the risk of
chronic pathologies but also to behavioral patterns that
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Figure 4: Directed acyclic graph of coffee consumption as a risk for breast cancer.

may include coffee intake. Smoking, for its part, usually
has correlations with different habits, including coffee,
and is associated with a higher risk of various
neoplasms, including some types of breast cancer.
Socioeconomic status influences access to food and
general lifestyle while simultaneously conditioning the
probability of regularly consuming coffee and accessing
early cancer detection. All these variables were
selected in the DAG as genuine candidates for
confounding since they could distort the true
relationship between coffee consumption and the
neoplasm.

Similarly, night work is introduced as another factor
that may share pathways with coffee consumption
(e.g., higher intake in night workers) and is also
associated with a differentiated risk of certain cancers
due to alterations in circadian rhythms and rest habits.
The resulting DAG positions these variables as factors
to consider in the adjustment to isolate the specific
effect of coffee on colorectal cancer.

On the other hand, insomnia emerges as a possible
collider: it can be a consequence of (or be exacerbated
by) high coffee intake and, at the same time, be
associated with the appearance or perception of
symptoms that lead to an earlier diagnosis of cancer
(or with other stress and hormonal factors that affect
carcinogenesis). Adjusting for insomnia in the model,
when this variable receives causal arrows from coffee
consumption and the mechanisms that lead to cancer,
can introduce spurious associations, making it difficult
to interpret the real influence of coffee.

Under this approach, Table 3 shows the analysis in
which adjustment is made only for the confounders
identified through the DAG (smoking, socioeconomic
status, consumption of ultra-processed foods, low
physical activity, and night work), leaving out insomnia
due to its possible character as a collider. The aRR for
coffee consumption in this scenario is 1.26 (95% CI:
0.88—1.80), with a p-value of 0.206, which indicates
that there is no robust statistical evidence that coffee
increases or reduces risk, but the adjustment is
methodologically "clean" concerning the causal
objective.

As in the previous example, it is worth emphasizing
that these covariates serve exclusively as adjustment
factors to obtain an unbiased estimate of the exposure-
outcome relationship. Their individual coefficients
should not be interpreted as independent effects on
breast cancer, since their inclusion in the model is
solely justified by their role as confounders in the
causal framework, not as factors of interest whose
direct effects we aim to quantify.

Table 3: Adjusted Association between Obesity and
Breast Cancer Incidence Based on Dag-
Informed Confounding Control

Characteristic aRR* 95% CI p-value
Coffee consumption
No Ref. — —
Yes 1.26 0.88-1.80 0.206

*Coffee consumption has been adjusted for smoking, socioeconomic status,
ultra-processed food consumption, low physical activity, and night shift work as
identified through directed acyclic graph analysis of causal pathways.

aRR: Adjusted risk ratio. 95% Cl: 95% Confidence Interval.
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Conversely, Table 4 presents a model of
"associated factors," in which all variables are included
simultaneously, including insomnia (a possible collider).
The estimate for coffee consumption (aRR=1.94, 95%
Cl: 1.34-2.81) shows a significant increase in the
relative risk (p < 0.001), demonstrating how the
inclusion of a collider can create or amplify
associations that may not reflect the true causal effect.
This is particularly noteworthy compared to the more
conservative and methodologically sound estimate in
Table 1. Additionally, variables such as low physical
activity or socioeconomic status acquire a statistically
significant role consistent with their character as
genuine confounders. Still, the simultaneous presence

Table 4: Comprehensive Multivariable Analysis of
Potential Risk Factors for Breast Cancer: Fully
Adjusted Poisson Regression Model

Characteristic aRR 95% ClI p-value
Coffee consumption
No Ref. — —
Yes 1.94 1.34-2.81 | <0.001
Age
<45 Ref. — —
245 1.08 0.82-1.42 0.596
Insomnia
No Ref. — —
Yes 1.08 0.82-1.42 0.595
Smoking
Low Ref. — —
High 0.79 0.47-1.33 0.369
Socioeconomic status
No Ref. — —
Yes 1.89 147 -2.44 | <0.001

Ultra-processed food consumption

No Ref. — —

Yes 1.02 0.56 - 1.88 0.941

Low physical activity

No Ref. — —

Yes 1.58 1.18-2.12 0.002
Night shift work

No Ref. — —

Yes 1.64 0.95-2.80 0.073

*Each factor has been simultaneously adjusted for all other variables in the
model, including coffee consumption, insomnia (collider), smoking,
socioeconomic status, ultra-processed food consumption, low physical activity,
and night shift work.

aRR: Adjusted risk ratio. 95% Cl: 95% Confidence Interval.

of insomnia could distort the association pathways,
creating artificial relationships or magnifying existing
ones.

This contrast between a DAG-informed model
(Table 3) and an indiscriminate "multifactorial" model
(Table 4) illustrates the importance of defining, from the
beginning, how and why each variable enters the
adjustment. While the first approach is based on causal
reasoning that isolates only confounders, the second
adds a variable that may be a collider, opening the
possibility of artificial associations or additional biases.
In this case, we observe how conditioning on a collider
has dramatically altered our conclusions, suggesting a
strong harmful effect of coffee consumption that wasn't
evident in the properly specified model. This example
clearly demonstrates how the "Table 2 fallacy" can lead
to erroneous conclusions that might inappropriately
influence clinical practice or public health
recommendations.

DISCUSSION

The Table 2 fallacy remains a frequent challenge in
observational studies aimed at establishing causal
relationships. As demonstrated throughout this review,
the root problem lies in the inadequate differentiation
between confounding, mediating, and colliding
variables, leading many researchers to adjust "for
everything" and thereby distort or misrepresent the
associations under investigation.

Our examples illustrate two fundamentally different
analytical approaches. The DAG-informed approach
carefully selects adjustment variables based on their
causal role, while the "associated factors" model
indiscriminately includes multiple variables without
considering their position in the causal chain. Although
"associated factors" analyses may provide value in
exploratory research or hypothesis generation, they
carry substantial methodological risks when used for
causal inference.

Proper causal inference requires researchers to
establish the relationship between exposure and
outcome before analysis. DAGs, grounded in biological
plausibility, existing literature, and epidemiological
theory, clarify whether variables act as confounders
(affecting both exposure and outcome), mediators
(lying on the causal pathway), or colliders (influenced
by multiple causes). This distinction is crucial: adjusting
for confounders is necessary, but adjusting for
mediators attenuates true effects, while adjusting for
colliders creates spurious associations [17]. Without
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this framework, multivariate analyses that adjust "for
everything" risk nullifying real effects or generating
artificial correlations [3-5].

The "associated factors" approach suffers from
several fundamental flaws. First, including mediators or
colliders produces biased estimates that fail to capture
the true effect of the primary exposure. Second,
selecting variables based solely on statistical
significance promotes model instability and increases
the risk of chance findings. Third, this atheoretical
approach often ignores biological plausibility,
potentially overlooking important causal mechanisms
while emphasizing spurious relationships [15, 16].

Perhaps most critically, interpreting all coefficients
from indiscriminate models as "independent effects"
fundamentally misunderstands what such models
estimate. A single variable may simultaneously act as a
confounder for one relationship while serving as a
mediator or collider for another. Without a clear causal
framework, these coefficients lack coherent
interpretation and should not guide clinical or public
health decisions. The seemingly comprehensive Table
2 becomes a statistical amalgamation rather than a
meaningful analysis of causal relationships.

For explanatory studies, the methodology is clear:
construct a comprehensive causal framework before
analysis to identify true confounders while excluding
mediators and colliders. This approach yields the most
accurate estimation of causal effects. Even in
exploratory research, having a preliminary causal map
helps avoid basic methodological errors. In predictive
modeling, understanding each variable's causal role
helps determine whether its inclusion improves or
compromises prediction accuracy [3-5].

Therefore, the choice between DAG-informed and
"associated factors" approaches is not merely
methodological preference but determines the validity
of causal conclusions. Proper causal reasoning
maximizes internal validity and produces clinically
meaningful findings, while indiscriminate adjustment
undermines both scientific rigor and practical utility.
Understanding these distinctions is essential for
researchers, reviewers, and consumers of scientific
literature to properly evaluate and apply research
findings.

LIMITATIONS AND STRENGTHS

simulated
reflecting a

This methodological review
examples rather than empirical

uses
data,

practical constraint in causal research: most
observational datasets lack the complete variable sets
required for proper DAG implementation. Databases
are typically designed for descriptive or administrative
purposes, not for testing specific causal hypotheses,
often omitting crucial mediators or unmeasured
confounders. This limitation paradoxically reinforces
our argument—researchers frequently adjust for

"available" rather than T“appropriate" variables,
perpetuating the Table 2 fallacy. Additionally, while our
examples necessarily simplify complex causal

relationships for pedagogical clarity, this simplification
reflects proper methodology: the research question and
causal framework must be defined a priori, not
determined by available data.

Our approach has several strengths. First, by using
controlled examples, we can demonstrate the exact
magnitude of bias introduced by inappropriate
adjustment, something impossible with real data where
true causal effects are unknown. Second, our
framework emphasizes that the "associated factors"
approach is not merely suboptimal but
methodologically incorrect for causal inference—each
variable's role must be theoretically justified before
model inclusion. The decision tree (Figure 4)
operationalizes these concepts, requiring explicit
causal assumptions rather than hiding them behind
automated statistical procedures.

Finally, while uncertainty about causal relationships
exists in practice, this should be addressed through
sensitivity analyses with alternative DAG specifications,
not by abandoning causal reasoning altogether. The
common practice of presenting all adjusted coefficients
as independent effects when models include mediators
or colliders violates fundamental principles of causal
inference. Our contribution lies in clarifying these
principles and providing practical tools for their
implementation, addressing a persistent
methodological problem that undermines the validity of
many published findings.

CONCLUSIONS

In conclusion, the practical utility of causal reflection
lies not only in methodological soundness but
translates into more informed clinical or public health
decisions. By avoiding confusing mediators with
confounders and not introducing colliders into
adjustment models, it is ensured that the reported
associations reflect, with the greatest possible fidelity,
the underlying etiological relationships, which results in
real advances in knowledge and health action.
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PRACTICAL RESOURCES AND TOOLS

To facilitate the implementation of the
methodological approaches discussed in this
manuscript, we direct readers to established resources
for constructing and analyzing DAGs.

. DAGitty (www.dagitty.net): Web-based interface
requiring no programming knowledge, with
automatic generation of adjustment sets and R
code export capabilities [19].

. ggdag R package: For creating publication-
quality DAGs within R's ggplot2 framework [20]

i dagitty R package: For
diagrams and identifying
programmatically [19].

analyzing causal
adjustment sets

These tools can reproduce the examples presented
in this manuscript and assist researchers in developing
their own DAGs. Rather than providing code that may
become outdated, we encourage readers to consult the
comprehensive documentation and tutorials available
for each tool.
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