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Abstract: The "Table 2 fallacy" represents a common methodological error in medical research, characterized by 
indiscriminate statistical adjustment for multiple variables without considering their causal nature. This article examines 
the theoretical foundations of the problem, distinguishing between studies with descriptive, predictive, and explanatory 
objectives, and emphasizing how the research purpose should determine the adjustment strategy. We highlight the 
fundamental role of Directed Acyclic Graphs (DAGs) in correctly identifying confounding, mediating, and colliding 
variables, thus avoiding overadjustment and resulting biases. To illustrate these considerations, we present two practical 
examples: the relationship between obesity and colorectal cancer, and between coffee consumption and breast cancer. 
In the first case, we demonstrate how adjustment for intestinal dysbiosis (a mediator) can attenuate the association 
between obesity and colorectal cancer, reducing the adjusted relative risk from 1.78 (95% CI: 1.20–2.65) to 1.49 (95% 
CI: 0.97–2.29) and eliminating statistical significance (p=0.072). In the second example, we show how including 
insomnia (a collider) in the model can create artificial associations between coffee consumption and breast cancer, 
dramatically increasing the adjusted relative risk to 1.94 (95% CI: 1.34-2.81) with high statistical significance (p<0.001), 
when a correctly specified model shows no such association. We conclude that, in explanatory studies, it is essential to 
develop causal reasoning prior to statistical analysis, using DAGs to guide the selection of adjustment variables. This 
rigorous methodological approach prevents both the dilution of real causal effects and the generation of spurious 
associations, increasing the internal validity of epidemiological findings and their utility for clinical decision-making. 
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INTRODUCTION 

The "Table 2 fallacy" describes a common error in 
epidemiological and clinical studies where results of 
multivariate models—typically presented in Table 2—
include inappropriate adjustments. The problem arises 
when researchers control not only for confounding 
variables but also for mediators (factors in the causal 
pathway between exposure and outcome) or colliders 
(variables influenced by multiple causes), distorting the 
true magnitude of associations and leading to 
erroneous causal conclusions [1]. 

While the scientific literature emphasizes adjusting 
for confounders to isolate exposure effects, other 
variable types are often incorrectly handled. 
Inappropriate adjustment for mediators or colliders 
causes overadjustment bias and generates spurious 
associations, resulting in biased estimates that 
compromise interpretation [2]. 
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This phenomenon affects any discipline that 
employs multivariate analyses, including nutritional 
epidemiology, oncology, public health, and clinical 
research [3-5]. The root problem is the absence of a 
solid causal framework and confusion between variable 
types, which can lead to underestimating or 
overestimating exposure effects, thereby compromising 
internal validity. 

This review explores the conceptual foundations of 
the Table 2 fallacy, provides empirical evidence of the 
issue, and offers practical recommendations for 
prevention. Understanding variable types and applying 
causal logic before statistical adjustment yields more 
accurate estimates, thereby reinforcing research 
validity and providing direct implications for clinical and 
public health decision-making. 

Theoretical and Conceptual Foundations 

A key point often overlooked is aligning the study 
objective with the statistical adjustment strategy 
employed. In the medical literature, it is common to find 
articles that mix descriptive, predictive, and explanatory 
objectives, leading to confusion and unhelpful 
conclusions [6]. Each of these purposes requires a 



652     International Journal of Statistics in Medical Research, 2025, Vol. 14 Vera-Ponce et al. 

distinct approach to variable selection and the 
application of statistical models [7]. 

It is crucial to distinguish between two uses of the 
term "overfitting" that may cause confusion. In 
predictive modeling and machine learning, "statistical 
overfitting" refers to a model that fits the training data 
too closely, capturing noise rather than true patterns, 
thus performing poorly on new data [8]. In contrast, 
"overadjustment bias" in causal inference—the focus of 
this manuscript—occurs when controlling for variables 
that mediate or collide causal pathways, thereby 
distorting the true causal effect estimate. While both 
involve "too much adjustment," they represent 
fundamentally different problems: statistical overfitting 
is about prediction accuracy, whereas overadjustment 
bias is about causal validity. Throughout this 
manuscript, we use "overfitting" and "overadjustment" 
to refer to the causal inference problem, not the 
statistical prediction problem. 

When the primary interest is to describe the 
frequency of a disease or compare its distribution 
among different groups (regions, socioeconomic levels, 
etc.), the emphasis is not on isolating the "pure" effect 
of a particular factor or establishing causality. In this 
scenario, it is neither necessary nor advisable to 
include numerous adjustment variables in the analysis, 
as the objective is limited to showing reality as it is. For 
example, suppose one wants to document the 
prevalence of a disease in different regions. In that 
case, it is sufficient to present the percentages or rates 
for each area, without the need to correct for multiple 
factors [9]. 

At the opposite end, when attempting to build a 
predictive model—for example, to estimate the 
probability that a patient will develop a certain 
pathology—the selection of variables is justified mainly 
by their ability to improve the accuracy of the 
prediction. Here, the causal role of each variable is less 
relevant; in fact, factors can be included that simply 
increase the model's ability to "guess" the outcome, 
even though their biological significance may be 
uncertain. Even so, it is essential to explicitly state that 
the objective is merely predictive so that these 
associations are not confused with cause-effect 
relationships [10]. 

Finally, in studies of an explanatory or etiological 
nature, the priority is to understand why an outcome 
occurs. Under this approach, the selection of variables 
and the adjustment strategy must respond to causal 

reasoning, with tools such as Directed Acyclic Graphs 
(DAGs) guiding the choice of control factors. The goal 
is to estimate the genuine effect of the exposure of 
interest, minimizing the influence of other variables that 
could distort the relationship being studied. This 
perspective is of great value in the clinical field, where 
elucidating the role of a risk factor can motivate 
preventive interventions or guide therapeutic decision-
making [11, 12]. 

In summary, clarity regarding the objective type—
descriptive, predictive, or explanatory—is fundamental 
for precisely selecting the variables to be included in 
the statistical analysis. A merely associative study 
without a well-defined purpose runs the risk of making 
unnecessary adjustments or overlooking important 
factors for the question posed. Having clear objectives 
from the outset optimizes study design, facilitates the 
interpretation of results, and produces more robust 
knowledge applicable to medical practice [13]. 

This article emphasizes explanatory or etiological 
studies, as they most frequently present the so-called 
"Table 2 fallacy" by attempting to control for multiple 
variables without adequate causal justification. 
Precisely, in this type of study—where the aim is to 
isolate the effect of a risk factor or estimate the 
magnitude of a causal relationship—it is essential to 
distinguish between confounding and overfitting and to 
establish a solid conceptual model. At this point, DAGs 
become relevant, as they facilitate the selection of 
adjustment variables based on causal logic, preventing 
both the omission of important confounders and 
inappropriate adjustment for mediators or colliders. 

The Role of Directed Acyclic Graphs (DAGs) 

Designing a DAG is extremely useful in undertaking 
an explanatory study that clarifies the causal 
relationship between an exposure and an outcome. 
These diagrams have the quality of presenting in a 
visual and organized manner, in which variable 
influences are always present in a unidirectional way 
and without forming loops. In this way, the study's 
causal hypothesis is captured, showing the possible 
pathways through which exposure might affect the 
outcome and the factors that may interfere with this 
relationship [14]. 

Within this representation, variables can occupy 
different positions. One of these is the confounding 
variable, which is associated with both the exposure of 
interest and the outcome, without being part of the 
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causal pathway between them. Its presence can mask 
or exaggerate the existing relationship. A classic 
example consists of studying the association between 
coffee consumption (exposure) and lung cancer 
(outcome): if smoking appears in the DAG as a factor 
that influences coffee consumption and, at the same 
time, increases the risk of lung cancer, it is identified as 
a confounder. Adjusting for smoking in the analysis 
allows for better isolation of the effect of coffee itself on 
lung cancer [15, 16]. 

Another fundamental role that can be illustrated in a 
DAG is that of the mediating variable, which forms part 
of the causal pathway connecting the exposure to the 
outcome. In graphical terms, the mediator receives an 
arrow from the exposure and, in turn, points toward the 
outcome. Adjusting for this variable can cause 
overfitting when the main interest is knowing the total 
effect of the exposure. For example, if studying the 
association between obesity (exposure) and type 2 
diabetes mellitus (outcome), insulin resistance, which is 
caused by obesity and which, in turn, increases the risk 
of diabetes, would be positioned as a mediator. 
Including it in the model means underestimating the 
true magnitude of the relationship between obesity and 
diabetes if the objective is to understand the global 
etiology of the disease [15, 16]. 

Finally, the DAG also facilitates the identification of 
a "collider" or colliding variable, which arises when two 
(or more) different causal factors converge on it [15, 
16]. Visually, arrows directed toward the collider from 
more than one variable can be distinguished. 
Improperly adjusting for a collider can, paradoxically, 
generate a spurious association that did not exist 
before [17]. To give another specific example, this 
happens if studying the relationship between 
socioeconomic level and the presence of obesity, but a 
variable that is a consequence of both (for example, 

diet quality) is included in the adjustment, opening an 
artificial pathway of association and distorting the 
results instead of clarifying them. 

In summary, developing a solid DAG coherent with 
prior theory or biological evidence guides the 
researcher on when it is appropriate or not to adjust for 
certain variables. In this way, biases such as overfitting 
or the appearance of spurious correlations are avoided, 
and the "Table 2 fallacy" is prevented. This graphical 
and logical-causal approach leads to more reliable 
interpretations by clearly distinguishing whether a 
variable should be treated as a confounder, mediator, 
or collider, based on its position in the causal network. 

To operationalize these concepts in practice, Figure 
2 presents a decision tree that systematically guides 
researchers through the process of identifying whether 
a variable should be included in the adjustment set. 
This tool assumes that a preliminary DAG has been 
constructed based on subject-matter knowledge, 
biological plausibility, and existing literature. The 
decision tree should be used in conjunction with, not as 
a replacement for, careful causal reasoning. Each 
pathway through the tree leads to a clear 
recommendation: adjust only for true confounders 
(shown in green), while avoiding adjustment for 
mediators, colliders, and unrelated variables (shown in 
red/coral), thereby preventing the Table 2 fallacy. 

Caption: Decision tree for determining adjustment 
strategy in explanatory studies. Variables should be 
classified based on their causal relationships 
established through DAG construction, not their 
statistical associations. Green endpoints indicate 
variables requiring adjustment; red/coral endpoints 
indicate variables that should not be adjusted to avoid 
bias. 

 
Figure 1: Directed acyclic graph. 



654     International Journal of Statistics in Medical Research, 2025, Vol. 14 Vera-Ponce et al. 

First Example: Obesity And Colorectal Cancer 

Below, we present an applied example to illustrate 
using a DAG in epidemiological research, focusing on 
the relationship between obesity and colorectal cancer 
(Figure 3). This association is particularly relevant due 
to the sustained increase in obesity prevalence and the 
high incidence of colorectal neoplasms worldwide. 
Although the model we will describe is a simplified 

version of reality, it offers a didactic guide to 
understanding which variables to control for and which 
we should not adjust based on their role as potential 
confounders, mediators, or even colliders. 

In the diagram, we position obesity as the exposure 
that could trigger a carcinogenic process in the colon, 
but we also recognize the importance of age as a key 
confounder. With the passage of years, both the 

 
Figure 2: Decision tree for variable adjustment in causal inference studies. 
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probability of suffering from obesity and developing 
colorectal cancer increase, so not adjusting for age 
could distort the true association between obesity and 
cancer. Another factor we consider is socioeconomic 
status: people with lower socioeconomic status tend to 
have a higher risk of obesity, partly due to limitations in 
access to healthy foods and opportunities for physical 
activity; at the same time, they could face greater 
difficulties in accessing health services that favor 
screening and early detection of cancer. Ultra-
processed food consumption is also relevant, as it 
directly relates to a higher risk of obesity and, 
potentially, to the presence of carcinogenic compounds 
that increase the probability of developing a colorectal 
tumor. Sex, for its part, is incorporated as another 
factor that influences both susceptibility to obesity (due 
to differences in fat distribution and metabolism) and 
the probability of presenting colorectal cancer, perhaps 
mediated by various hormonal aspects. 

To represent a possible mediating pathway within 
the relationship between obesity and colorectal cancer, 
we add intestinal dysbiosis. Obesity could alter the 
composition of the microbiota, triggering a state of 
chronic inflammation and the production of 
carcinogenic metabolites that, in turn, increase the risk 
of colorectal neoplasia. Considering dysbiosis as a 
mediator implies that if we adjust for this factor when 
the interest is to estimate the total effect of obesity, we 
would be underestimating its real contribution to 
colorectal cancer, as we suppress part of the causal 
pathway. 

Next, two analyses perfectly illustrate the difference 
between adjusting according to the DAG (avoiding over 

adjusting for mediating or colliding variables) and an 
"associated factors" approach in which almost any 
related variable is introduced, even without 
discriminating its role in the causal chain. Table 1 could 
correspond to the DAG-based model, while Table 2 
would reflect the expanded model of associated 
factors. 

Table 1: Adjusted Association between Obesity and 
Colorectal Cancer Incidence Based on Dag-
Informed Confounding Control 

Characteristic aRR* 95% CI p-value 

Obesity    

No Ref. — — 

Yes 1.78 1.20 - 2.65 <0.001 

*Obesity has been adjusted for age, sex, socioeconomic status, and ultra-
processed food consumption as identified through directed acyclic graph 
analysis of causal pathways. 
aRR: Adjusted risk ratio. 95% CI: 95% Confidence Interval. 
 

In Table 1, the adjustment is limited to those 
variables considered true confounders in the DAG (for 
example, age, socioeconomic status, ultra-processed 
food consumption, or physical activity if they have been 
identified as confounders, but intestinal dysbiosis is not 
included as it is a possible mediator). Under this 
scheme, the association between obesity and the 
outcome (colorectal cancer) remains statistically 
significant: obesity shows an aRR of 1.78 (95% CI: 
1.20–2.65), indicating a substantial increase in relative 
risk after considering the relevant confounders. This 
finding supports the hypothesis that obesity plays a 
pertinent role in the etiology of colorectal cancer, at 
least in the context of the adjusted variables. 

 
Figure 3: Directed acyclic graph of obesity as a risk for colorectal cancer. 
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In contrast, Table 2 illustrates the "associated 
factors" approach, in which multiple variables are 
introduced without a clear causal criterion, including 
possible mediators (such as intestinal dysbiosis) or 
variables that might not act as confounders. When 
"adjusting for everything," the estimated effect of 
obesity decreases to an aRR of 1.49 (95% CI: 0.97–
2.29) and loses statistical significance (p=0.072). From 
a quick reading, one could erroneously conclude that 
obesity "is not associated" with the outcome. However, 
this drop in the strength of the association is largely 
due to the inclusion of a possible mediating variable 
(dysbiosis), "blocking" part of the real effect that obesity 
exerts on colorectal cancer. This phenomenon 
exemplifies the Table 2 fallacy or "overfitting." When 
controlling for variables in the causal pathway, the 
signal of the main exposure is diluted, and a 
relationship that does exist can be masked. 

Table 2: Comprehensive Multivariable Analysis of 
Potential Risk Factors for Colorectal Cancer: 
Fully Adjusted Poisson Regression Model 

Characteristic aRR 95% CI p-value 

Obesity 

No Ref. — — 

Yes 1.49 0.97 - 2.29 0.072 

Age    

< 45 Ref. — — 

≥ 45 4.45 2.89 – 7.16 < 0.001 

Physical activity 

No Ref. — — 

Yes 1.23 0.80 - 1.90 0.354 

Ultra-processed food consumption 

No Ref. — — 

Yes 1.28 0.94 - 1.75 0.111 

Intestinal dysbiosis 

No Ref. — — 

Yes 1.52 0.96 - 2.40 0.074 

Socioeconomic status 

Low Ref. — — 

Moderate/High 0.81 0.50 - 1.29 0.366 

Alcohol consumption 

Low Ref. — — 

High 1.48 0.90 - 2.41 0.12 

*Each factor has been simultaneously adjusted for all other variables in the 
model, including obesity, physical activity, ultra-processed food consumption, 
intestinal dysbiosis, socioeconomic status, and alcohol consumption. 
aRR: Adjusted risk ratio. 95% CI: 95% Confidence Interval. 

 

Additionally, it is important to note that the other 
variables presented in these "associated factors" 
models should not even be reported or interpreted. The 
common practice of presenting and interpreting all 
model covariates as if they were "independently 
associated factors" is conceptually flawed. Each 
variable in the model fulfills different roles according to 
the underlying causal structure (confounder, mediator, 
or collider); therefore, interpreting their coefficients as 
independent effects is meaningless. For example, the 
coefficient of low physical activity or alcohol 
consumption does not represent their true effect on 
colorectal cancer, as this effect is distorted by the 
inclusion of other variables in the causal pathway. 
Researchers should avoid the temptation to interpret 
these secondary coefficients and focus solely on 
estimating the primary exposure, which is the objective 
of an explanatory study. 

In summary, Table 1 represents a model based on 
the DAG, in which only confounders have been 
identified and adjusted for, leaving out mediators. Table 
2, for its part, presents a "multifactorial" analysis that 
includes both confounders and mediators and other 
variables of possible interest. Comparing both 
estimates highlights the relevance of establishing a 
causal framework before adjustment, avoiding the 
Table 2 fallacy and reinforcing the validity of 
conclusions about the association between obesity and 
colorectal cancer. 

Second Example: Coffee Consumption and Breast 
Cancer 

In this new example, we position coffee 
consumption as an exposure factor in the relationship 
with breast cancer, recognizing that multiple variables 
can influence both coffee consumption and the 
development or early detection of this neoplasm. 
Through DAG, we identify which variables act as 
possible confounders and which could function as 
mediators or even colliders (Figure 4). This distinction 
is fundamental for making justified decisions about 
when statistical adjustment is appropriate and when not 
to avoid underestimating or "inventing" associations. 

First, we consider lack of physical activity (or low 
activity), consumption of ultra-processed foods, 
smoking, and socioeconomic status as possible 
confounders between coffee consumption and breast 
cancer. Physical activity and diet (represented here by 
ultra-processed foods) are related not only to the risk of 
chronic pathologies but also to behavioral patterns that 
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may include coffee intake. Smoking, for its part, usually 
has correlations with different habits, including coffee, 
and is associated with a higher risk of various 
neoplasms, including some types of breast cancer. 
Socioeconomic status influences access to food and 
general lifestyle while simultaneously conditioning the 
probability of regularly consuming coffee and accessing 
early cancer detection. All these variables were 
selected in the DAG as genuine candidates for 
confounding since they could distort the true 
relationship between coffee consumption and the 
neoplasm. 

Similarly, night work is introduced as another factor 
that may share pathways with coffee consumption 
(e.g., higher intake in night workers) and is also 
associated with a differentiated risk of certain cancers 
due to alterations in circadian rhythms and rest habits. 
The resulting DAG positions these variables as factors 
to consider in the adjustment to isolate the specific 
effect of coffee on colorectal cancer. 

On the other hand, insomnia emerges as a possible 
collider: it can be a consequence of (or be exacerbated 
by) high coffee intake and, at the same time, be 
associated with the appearance or perception of 
symptoms that lead to an earlier diagnosis of cancer 
(or with other stress and hormonal factors that affect 
carcinogenesis). Adjusting for insomnia in the model, 
when this variable receives causal arrows from coffee 
consumption and the mechanisms that lead to cancer, 
can introduce spurious associations, making it difficult 
to interpret the real influence of coffee. 

Under this approach, Table 3 shows the analysis in 
which adjustment is made only for the confounders 
identified through the DAG (smoking, socioeconomic 
status, consumption of ultra-processed foods, low 
physical activity, and night work), leaving out insomnia 
due to its possible character as a collider. The aRR for 
coffee consumption in this scenario is 1.26 (95% CI: 
0.88–1.80), with a p-value of 0.206, which indicates 
that there is no robust statistical evidence that coffee 
increases or reduces risk, but the adjustment is 
methodologically "clean" concerning the causal 
objective. 

As in the previous example, it is worth emphasizing 
that these covariates serve exclusively as adjustment 
factors to obtain an unbiased estimate of the exposure-
outcome relationship. Their individual coefficients 
should not be interpreted as independent effects on 
breast cancer, since their inclusion in the model is 
solely justified by their role as confounders in the 
causal framework, not as factors of interest whose 
direct effects we aim to quantify. 

Table 3: Adjusted Association between Obesity and 
Breast Cancer Incidence Based on Dag-
Informed Confounding Control 

Characteristic aRR* 95% CI p-value 

Coffee consumption 

No Ref. — — 

Yes 1.26 0.88 - 1.80  0.206 

*Coffee consumption has been adjusted for smoking, socioeconomic status, 
ultra-processed food consumption, low physical activity, and night shift work as 
identified through directed acyclic graph analysis of causal pathways. 
aRR: Adjusted risk ratio. 95% CI: 95% Confidence Interval. 

 
Figure 4: Directed acyclic graph of coffee consumption as a risk for breast cancer. 
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Conversely, Table 4 presents a model of 
"associated factors," in which all variables are included 
simultaneously, including insomnia (a possible collider). 
The estimate for coffee consumption (aRR=1.94, 95% 
CI: 1.34–2.81) shows a significant increase in the 
relative risk (p < 0.001), demonstrating how the 
inclusion of a collider can create or amplify 
associations that may not reflect the true causal effect. 
This is particularly noteworthy compared to the more 
conservative and methodologically sound estimate in 
Table 1. Additionally, variables such as low physical 
activity or socioeconomic status acquire a statistically 
significant role consistent with their character as 
genuine confounders. Still, the simultaneous presence 

of insomnia could distort the association pathways, 
creating artificial relationships or magnifying existing 
ones. 

This contrast between a DAG-informed model 
(Table 3) and an indiscriminate "multifactorial" model 
(Table 4) illustrates the importance of defining, from the 
beginning, how and why each variable enters the 
adjustment. While the first approach is based on causal 
reasoning that isolates only confounders, the second 
adds a variable that may be a collider, opening the 
possibility of artificial associations or additional biases. 
In this case, we observe how conditioning on a collider 
has dramatically altered our conclusions, suggesting a 
strong harmful effect of coffee consumption that wasn't 
evident in the properly specified model. This example 
clearly demonstrates how the "Table 2 fallacy" can lead 
to erroneous conclusions that might inappropriately 
influence clinical practice or public health 
recommendations. 

DISCUSSION 

The Table 2 fallacy remains a frequent challenge in 
observational studies aimed at establishing causal 
relationships. As demonstrated throughout this review, 
the root problem lies in the inadequate differentiation 
between confounding, mediating, and colliding 
variables, leading many researchers to adjust "for 
everything" and thereby distort or misrepresent the 
associations under investigation. 

Our examples illustrate two fundamentally different 
analytical approaches. The DAG-informed approach 
carefully selects adjustment variables based on their 
causal role, while the "associated factors" model 
indiscriminately includes multiple variables without 
considering their position in the causal chain. Although 
"associated factors" analyses may provide value in 
exploratory research or hypothesis generation, they 
carry substantial methodological risks when used for 
causal inference. 

Proper causal inference requires researchers to 
establish the relationship between exposure and 
outcome before analysis. DAGs, grounded in biological 
plausibility, existing literature, and epidemiological 
theory, clarify whether variables act as confounders 
(affecting both exposure and outcome), mediators 
(lying on the causal pathway), or colliders (influenced 
by multiple causes). This distinction is crucial: adjusting 
for confounders is necessary, but adjusting for 
mediators attenuates true effects, while adjusting for 
colliders creates spurious associations [17]. Without 

Table 4: Comprehensive Multivariable Analysis of 
Potential Risk Factors for Breast Cancer: Fully 
Adjusted Poisson Regression Model 

Characteristic aRR 95% CI p-value 

Coffee consumption 

No Ref. — — 

Yes 1.94 1.34 - 2.81 < 0.001 

Age 

< 45 Ref. — — 

≥ 45 1.08 0.82 - 1.42 0.596 

Insomnia 

No Ref. — — 

Yes 1.08 0.82 - 1.42 0.595 

Smoking 

Low Ref. — — 

High 0.79 0.47 - 1.33 0.369 

Socioeconomic status 

No Ref. — — 

Yes 1.89 1.47 - 2.44 <0.001 

Ultra-processed food consumption 

No Ref. — — 

Yes 1.02 0.56 - 1.88 0.941 

Low physical activity 

No Ref. — — 

Yes 1.58 1.18 - 2.12 0.002 

Night shift work 

No Ref. — — 

Yes 1.64 0.95 - 2.80 0.073 

*Each factor has been simultaneously adjusted for all other variables in the 
model, including coffee consumption, insomnia (collider), smoking, 
socioeconomic status, ultra-processed food consumption, low physical activity, 
and night shift work. 
aRR: Adjusted risk ratio. 95% CI: 95% Confidence Interval. 
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this framework, multivariate analyses that adjust "for 
everything" risk nullifying real effects or generating 
artificial correlations [3-5]. 

The "associated factors" approach suffers from 
several fundamental flaws. First, including mediators or 
colliders produces biased estimates that fail to capture 
the true effect of the primary exposure. Second, 
selecting variables based solely on statistical 
significance promotes model instability and increases 
the risk of chance findings. Third, this atheoretical 
approach often ignores biological plausibility, 
potentially overlooking important causal mechanisms 
while emphasizing spurious relationships [15, 16]. 

Perhaps most critically, interpreting all coefficients 
from indiscriminate models as "independent effects" 
fundamentally misunderstands what such models 
estimate. A single variable may simultaneously act as a 
confounder for one relationship while serving as a 
mediator or collider for another. Without a clear causal 
framework, these coefficients lack coherent 
interpretation and should not guide clinical or public 
health decisions. The seemingly comprehensive Table 
2 becomes a statistical amalgamation rather than a 
meaningful analysis of causal relationships. 

For explanatory studies, the methodology is clear: 
construct a comprehensive causal framework before 
analysis to identify true confounders while excluding 
mediators and colliders. This approach yields the most 
accurate estimation of causal effects. Even in 
exploratory research, having a preliminary causal map 
helps avoid basic methodological errors. In predictive 
modeling, understanding each variable's causal role 
helps determine whether its inclusion improves or 
compromises prediction accuracy [3-5]. 

Therefore, the choice between DAG-informed and 
"associated factors" approaches is not merely 
methodological preference but determines the validity 
of causal conclusions. Proper causal reasoning 
maximizes internal validity and produces clinically 
meaningful findings, while indiscriminate adjustment 
undermines both scientific rigor and practical utility. 
Understanding these distinctions is essential for 
researchers, reviewers, and consumers of scientific 
literature to properly evaluate and apply research 
findings. 

LIMITATIONS AND STRENGTHS 

This methodological review uses simulated 
examples rather than empirical data, reflecting a 

practical constraint in causal research: most 
observational datasets lack the complete variable sets 
required for proper DAG implementation. Databases 
are typically designed for descriptive or administrative 
purposes, not for testing specific causal hypotheses, 
often omitting crucial mediators or unmeasured 
confounders. This limitation paradoxically reinforces 
our argument—researchers frequently adjust for 
"available" rather than "appropriate" variables, 
perpetuating the Table 2 fallacy. Additionally, while our 
examples necessarily simplify complex causal 
relationships for pedagogical clarity, this simplification 
reflects proper methodology: the research question and 
causal framework must be defined a priori, not 
determined by available data. 

Our approach has several strengths. First, by using 
controlled examples, we can demonstrate the exact 
magnitude of bias introduced by inappropriate 
adjustment, something impossible with real data where 
true causal effects are unknown. Second, our 
framework emphasizes that the "associated factors" 
approach is not merely suboptimal but 
methodologically incorrect for causal inference—each 
variable's role must be theoretically justified before 
model inclusion. The decision tree (Figure 4) 
operationalizes these concepts, requiring explicit 
causal assumptions rather than hiding them behind 
automated statistical procedures. 

Finally, while uncertainty about causal relationships 
exists in practice, this should be addressed through 
sensitivity analyses with alternative DAG specifications, 
not by abandoning causal reasoning altogether. The 
common practice of presenting all adjusted coefficients 
as independent effects when models include mediators 
or colliders violates fundamental principles of causal 
inference. Our contribution lies in clarifying these 
principles and providing practical tools for their 
implementation, addressing a persistent 
methodological problem that undermines the validity of 
many published findings. 

CONCLUSIONS 

In conclusion, the practical utility of causal reflection 
lies not only in methodological soundness but 
translates into more informed clinical or public health 
decisions. By avoiding confusing mediators with 
confounders and not introducing colliders into 
adjustment models, it is ensured that the reported 
associations reflect, with the greatest possible fidelity, 
the underlying etiological relationships, which results in 
real advances in knowledge and health action. 
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PRACTICAL RESOURCES AND TOOLS 

To facilitate the implementation of the 
methodological approaches discussed in this 
manuscript, we direct readers to established resources 
for constructing and analyzing DAGs. 

• DAGitty (www.dagitty.net): Web-based interface 
requiring no programming knowledge, with 
automatic generation of adjustment sets and R 
code export capabilities [19]. 

• ggdag R package: For creating publication-
quality DAGs within R's ggplot2 framework [20]  

• dagitty R package: For analyzing causal 
diagrams and identifying adjustment sets 
programmatically [19]. 

These tools can reproduce the examples presented 
in this manuscript and assist researchers in developing 
their own DAGs. Rather than providing code that may 
become outdated, we encourage readers to consult the 
comprehensive documentation and tutorials available 
for each tool. 
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