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Abstract: Influenza has continued to be a worldwide social health problem, especially in high-density population areas 
with minimal early-warning mechanisms. The present study evaluates the predictive ability of two machine learning 
models Support Vector Regression (SVR) and Random Forest (RF) to predict weekly influenza cases in Saudi Arabia, 
spanning from 2017 to 2022, on 313 weekly influenza records in the WHO Global Influenza Surveillance and Response 
System (GISRS). The performance of these models was measured with R², MAE, MSE, and RMSE. Although SVR had 
a better training accuracy (R² = 0.96), RF had a better generalization (R² = 0.818) and more consistent predictions at the 
peaks of the seasons. These observations show that RF is appropriate to real-time influenza surveillance and can 
provide a replicable and versatile framework to assist data-driven epidemic preparedness in Saudi Arabia and other 
similar contexts throughout MENA and Asia-Pacific. 

Keywords: Forecasting, Influenza, Machine learning, Random Forest, Saudi Arabia, Support Vector Regression.  

1. INTRODUCTION 

Seasonal influenza in the world is one of the leading 
causes of morbidity and mortality with an estimated 
290,000 to 650,000 respiratory deaths every year [1]. It 
is transmitted by airborne droplets and is particularly 
common in highly populated zones, as well as among 
the vulnerable populations, such as children, older 
people and those with chronic conditions. Influenza 
surveillance is a social health concern in the Middle 
East where the variability of climatic conditions, cross-
border travel, and urban congestion are making it 
challenging to contain the disease. In the Kingdom of 
Saudi Arabia (KSA), the frequent large-scale crowds 
like Hajj and Umrah increase the transmission risks, 
and well-developed forecasting tools are essential in 
early detection and interventions [2,3]. 

Early detection of influenza pandemics supports 
immunization measures, distribution of resources and 
preparedness to epidemics. Even though classical 
time-series forecasting models, including SARIMA, 
ARIMA, and Holt-Winters exponential smoothing, have  
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been used to predict influenza, they generally assume 
stationarity and linearity. These assumptions make 
them less effective in the representation of the 
multivariate, nonlinear and complex nature of the 
transmission of infectious diseases [4,6]. Machine 
learning (ML) methods have become more versatile 
and data-driven alternatives to traditional public health 
datasets as they are growing more multidimensional 
and dynamic. Certain ML models, including Support 
Vector Regression (SVR) and Random Forest (RF), 
are capable of processing nonlinear patterns of data on 
a large scale and a multiplicity of predictors with 
increased robustness than classical models [7,9]. 
Recent reports have shown that ML can be used to 
predict influenza-like illness (ILI) cases in the countries 
of China and South Korea [10, 11]. However, these 
models have hardly been tested in resource changing, 
climate diversified or socio-culturally different 
environments like Saudi Arabia. 

Although there is an increased interest in machine 
learning in forecasting of infectious disease outbreaks, 
its usage is hardly present in the Middle East countries, 
especially when it involves real-time multi-year national 
surveillance data. The comparative and region-specific 
evidence on model performance between the influenza 
seasons are lacking, and it is difficult to implement AI 
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tools with confidence in public health systems. This 
study was carried out to validate and generalize ML 
framework applicable to Saudi Arabia, a region that 
faces special problems like mass gatherings and 
disease variability due to climate conditions. Moreover, 
there is little literature comparing the various machine 
learning models to long-term national epidemiological 
data, specifically with the goal to determine, among 
other things, not only the accuracy but also the ability 
to generalize across influenza seasons. Real-time 
forecasting requires models that would be effective in 
the dynamic viral strains, weather, population dynamics 
and delays in surveillance [12,13]. Influenza 
information in Saudi Arabia is reported to the WHO 
within the global surveillance systems; however, this 
information is hardly utilized in predictive modeling. 
This study was carried out to compare two machine 
learning models-SVR and RF to forecast weekly 
influenza cases using six years of surveillance data at 
the national level of surveillance (2017-2022). This 
research contributes to the advancement of regionally 
adaptable, ML-driven early warning systems and 
supports evidence-based decision-making in epidemic 
forecasting for Saudi Arabia and other Middle Eastern 
and Asia-Pacific countries seeking to modernize public 
health surveillance. 

Therefore, the objectives of this research are 
outlined as follows: (1) to create and compare Support 
Vector Regression (SVR) and Random Forest (RF) 
models for weekly influenza case forecasting in Saudi 
Arabia using six years of national surveillance data 
(2017–2022). (2) to evaluate the prediction accuracy 
and generalizability of models across influenza 
seasons. And (3) to provide clues which can be used in 
combination with regional public health planning and 
early warning systems to improve future machine 
learning based forecast tools. 

2. METHODS 

2.1. Data Source and Description 

The data were obtained from the World Health 
Organization’s Global Influenza Surveillance and Res-
ponse System (WHO GISRS), which provides publicly 
available, laboratory-confirmed weekly influenza case 
counts. The dataset spans six years, from January 
2017 to December 2022, and includes a total of 313 
weekly observations for Saudi Arabia. To simulate real-
world forecasting conditions, the data were split 
chronologically into a training set (2017–2021; 260 
weeks) and a hold-out test set (2022; 53 weeks). 

2.2. Data Preprocessing and Feature Engineering 

Data pre-processing was conducted to make the 
data complete, consistent, and suitable for training. 

(a) Data cleaning: Inconsistent or incomplete weekly 
records were examined. Values above the 
permissible range (≈2% of total observations) 
were replaced through seasonal means 
interpolation in order to maintain the temporal 
connection. 

(b) Temporal feature generation: Time features such 
as week of the year, month, and year were 
constructed to specifically represent seasonal 
and cyclical patterns of influenza incidence. 

(c) Seasonal-trend decomposition: The long-term 
trends and periodic variances were separated 
using the STL algorithm, making it easier for the 
model to learn residual fluctuations [14, 16]. 

(d) Lag transformation and normalization: The data 
were reformulated in supervised learning with 
four lagged predictors (weeks t–1 to t–4) 
predicting incidence for week t. 

Numerical values were z-score normalized, and 
min–max scaling was applied ([0, 1]) to the entire set of 
numerical variables in order to facilitate model 
convergence. 

2.3. Model Development 

2.3.1. We Employed Two Machine Learning 
Regression Models 

Support Vector Regression (SVR) 

Support Vector Regression (SVR) is a learning 
method based on the Support Vector Machine (SVM) 
formulation, which has been designed to predict 
continuous output [17,19]. Rather than being classified, 
the SVR algorithm tries to find an optimal regression 
function and the value of a target variable that is no 
more deviated from some margin ε. The trade-off in 
accessing the balance between an accurate model and 
generalization is done by minimizing the sum of errors 
with a penalty factor on deviations greater than ε. The 
regularization parameter C balances the trade-off 
between model complexity and fitting accuracy, and the 
kernel function transforms input samples to a higher-
dimensional space in which non-linearity can be 
modeled [20,21]. 

In our study, we used an RBF (Radial Basis 
Function) kernel because it is quite flexible in modelling 
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non-linear temporal and seasonal dependence of 
influenza incidence. The SVR model included lagged 
influenza cases and time terms (week, month, year) as 
predictors. Model hyperparameters (C, γ, and ε) of 
classifiers were adjusted using a grid search and a 
fivefold cross-validation strategy for the best 
generalization and fit to avoid over-fitting [22]. 

2.3.2. Random Forest Regression (RF) 

Random Forest is an ensemble learning technique 
that generates a stronger and less general model by 
aggregating predictions from numerous decision trees 
[23]. Each tree in the ensemble is constructed by 
bootstrapping a sample of the training data. where the 
input features are randomized at each node split to 
reduce inter-tree correlation and thus enhance stability. 
The overall prediction is taken as the mean of all 
outputs, ensuring low variance and preventing 
overfitting in single tree models [24, 27]. 

Random Forest modelling was performed in this 
study by using the Scikit-learn toolkit for Python. The 
2022 influenza circulation data was kept aside for the 
out-of-sample validation. Important hyperparameters, 
including the number of estimators (trees), maximum 
depth of trees, and minimum samples per leaf were 
tuned in a grid search manner using fivefold cross 
validation to minimize Root Mean Squared Error 
(RMSE). The feature importance ranking was based on 
the Mean Squared Error Reduction (MSER) criterion 
while random subspace sampling was used for 
obtaining a bias reduced model. 

These settings enabled the RF model to learn 
nonlinear relationships and interactions between 
lagged influenza counts and temporal features. The 
ensemble form allows it to process the noise, 
seasonality and idiosyncratic variations present in real-
world influenza surveillance data with good 
generalization performance for operational forecasting 
tasks in public health. 

2.4. Model Training and Validation 

The Python scikit-learn library was used to 
implement the models [28,31]. The dataset was divided 
into two parts by the year to maintain the time 
consistency i.e., training on 2017-2021 data and testing 
on 2022 data. Training was performed using a five-fold 
cross-validation to reduce overfitting. The 
hyperparameters were optimized through grid search 
through the following ranges: 

SVR: C ∈ {1, 10, 100}, kernel = RBF, γ ∈ {0.01, 0.1, 1}, 
ε ∈ {0.01, 0.1, 1} 

RF: estimator’s ∈ {100, 200, 300}, max_depth ∈ {5, 10, 
20}, min_samples_leaf ∈ {1, 2, 4} 

The best model configuration for each model was 
determined with the lowest RMSE across validation 
folds. Afterward, the models were left trained at 2017–
2021 and fed with 2022 data to carry out the 
independent testing. This extensive validation 
procedure supports both reliability and generalizability 
of the forecasting results for national monitoring of 
influenza activity in Saudi Arabia. 

2.4.1. Performance Metrics 

Model performance was evaluated using four 
standard metrics: Mean Absolute Error (MAE), Mean 
Squared Error (MSE), Root Mean Squared Error 
(RMSE), and the Coefficient of Determination (R²). 
These provide a comprehensive assessment of 
prediction accuracy and error magnitude. 

MAE: Measures the average magnitude of 
prediction errors, irrespective of direction: 

           (1) 

MSE: Computes the average squared difference 
between predicted and actual values. 

RMSE: The square root of MSE, expressed in the 
same units as the target variable [32,35]. 

2.4.2. Root Mean Square Error (RMSE)  

The subsequent Equation (5) expresses the Root 
Mean Square Error (RMSE) to assess the standard 
deviation of the forecast errors. 

          (2) 

2.4.3. Coefficient of Determination (R2) 

It is a statistical degree that calculates the amount 
of variance in the dependent variable (weekly influenza 
cases) that is expected from the independent variables. 
Its values range between 0 and 1. An "2 value of 0 
indicates that the model is unsuccessful to explicate 
any of the inconsistency in the response data 
dependent on the predictors, while a value of 1 
specifies a perfect fit model, where all variance in the 
outcome variable is precisely reported for by the model. 
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The "2 is premeditated as follows: 

          (3) 

Where;  

 = Predicted value of the  sample and represents 
the matching real value for the whole n samples [32]. 

2.4.4. Mean Absolute Percentage Error (MAPE) 

To provide an interpretable percentage-based error 
measure, the Mean Absolute Percentage Error (MAPE) 
was also computed as: 

          (4) 

represent the observed and predicted values 
respectively. 

2.4.5. Peak Week Error (PWE) 

In order to determine the accuracy of the peak 
timing prediction, which is important in epidemic 
preparedness, a Peak Week Error (PWE) was defined 
as: 

PWE = ∣ Week predicted peak -Week actual peak ∣                   (5) 

The metric measures the change (in weeks) 
between the predicted and observed maximum 
influenza incidence, a direct measurement of the 
temporal accuracy that is very pertinent in real-time 
preparedness to epidemics and population health 
response [36]. 

2.5. Ethical Considerations 

The information utilized in this study is open and 
accessible in the databases of WHO. There were no 

human subjects used and it did not need any ethical 
consent. 

3. RESULTS 

3.1. Descriptive Statistics 

Weekly influenza cases ranged from 7 to 546 (mean 
= 157.9, SD = 116.3). The STL decomposition showed 
frequent winter peaks and a marine trend of an 
increase in intensity over the six-year extension (Figure 
1). This nonlinear time-series forecasting model is 
justified by this seasonal trend. 

Cases per week ranged between 7 and 546, with a 
mean of 157.9 and a standard deviation of 116.31. 
Figure 1 shows the seasonal-trend decomposition that 
is performed with the help of STL. The decomposition 
verified a regular seasonal pattern with regular peaks in 
the winter season. Another trend that observed was a 
slight upward trend in peak intensity over the six years 
period implying that there has been a slow growth in 
the magnitude of these epidemics over the years. Such 
seasonal dynamics facilitate the use of non-linear 
learning-based time series forecasting models. 

3.2. Model Performance 

SVR and RF models were trained on 2017–2021 
data and tested on 2022 data. Results are summarized 
in Table 1. 

Although SVR achieved superior fit during training, 
its performance deteriorated on the test set, with higher 
prediction error and lower R². In contrast, RF 
maintained better generalization, exhibiting lower 
RMSE and higher R² on 2022 data—indicating greater 
robustness to unseen seasonal dynamics. 

 
Figure 1: Weekly influenza cases in Saudi Arabia (2017–2022), showing winter peaks and increasing epidemic intensity via 
STL decomposition. 
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3.3. Visual Prediction Analysis 

Figure 2 shows that SVR followed the general trend 
but significantly underestimated peak values during 
high-incidence periods, lagging behind sharp spikes. In 
contrast, Figure 3 demonstrates that RF aligned closely 
with observed case counts, especially during epidemic 
peaks. The ensemble nature of RF enabled it to 
capture sharp, nonlinear variations more effectively. 

3.4. Residual Analysis 

Figure 4 supports the sensitivity of SVR to fast 
surges but RF shows constant residual values, both in 

amplitude and in the timing of outbreaks. The high 
value of RF in epidemic preparedness is emphasized 
by its high quality of real-time predictions. In Saudi 
Arabia, where mass events and the risk of spreading 
respiratory infections are high, the possibility to 
forecast the weekly influenza activity properly is an 
essential factor in regard to the timely intervention. RF 
was also reliable in trend detection and amplitude 
estimation, which reinforced its possible functionality in 
the framework of the public health surveillance to 
maximize the allocation of vaccines, decision-making, 
and responses to early-warnings. 

Table 1: Model Training and Test Performance Metrics 

Training Model Dataset 

MAE MSE RMSE R² 

Training 2.85 13.485 3.672 0.960 Support Vector Regression 

Test 51.786 5739.090 75.757 0.750 

Training 13.485 408.930 20.222 0.891 Random Forest 

Test 41.590 51.78 7.196 0.818 

 
Figure 2: SVR-predicted vs. observed influenza cases (2022); captures pattern but underestimates peak magnitudes. 

 

 
Figure 3: RF-predicted vs. observed influenza cases (2022); accurately reproduces timing and amplitude of peaks. 
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3.5. Uncertainty Quantification 

Table 2 presents representative RF forecasts with 
95% prediction intervals, illustrating its reliability across 
seasonal fluctuations. 

Table 2: Representative Weekly RF Forecasts with 95% 
Prediction Intervals 

Date Actual Predicted Lower 95% Upper 95% 

2-Jan-22 103 130.2 72 286 

13-Feb-22 54 62.4 22 95 

04-Sep-22 194 244.3 201 315 

13-Nov-22 546 284.0 207 368 

25-Dec-22 126 381.8 289 418 

 
3.6. Seasonal Error Distribution 

Table 3: Seasonal Model Error Comparison (2022) 

Season Model MAE RMSE R² 

Peak (Oct–Mar) SVR 99.09 141.48 0.42 

Peak (Oct–Mar) RF 64.79 96.43 0.73 

Trough (Apr–Sep) SVR 43.81 58.12 0.57 

Trough (Apr–Sep) RF 38.46 48.31 0.70 

 
RF demonstrated greater stability during both peak 

and trough phases. 

4. DISCUSSION 

This study advances regional influenza forecasting 
by delivering a validated, multi-year ML framework 
tailored to Saudi Arabia’s surveillance context. Unlike 
prior applications that often rely on short time spans or 

proxy signals, we leverage six years of laboratory-
confirmed national data and evaluate models under a 
temporal hold-out that mimics real-world deployment. 
Methodologically, we demonstrate that an ensemble 
approach (RF) provides stronger generalization to 
unseen seasons and greater resilience to nonlinear 
surges than a kernel-based baseline (SVR). 
Substantively, the framework is region-aware, 
capturing winter seasonality and accommodating 
mass-gathering effects (e.g., Hajj/Umrah) through a 
lagged/seasonal structure, while remaining robust 
despite routine noise in the surveillance series. 

i. Relative to prior work from East Asia and other 
settings, our contribution is threefold: 

ii. Design for operational use: a train/validate/test 
split aligned with surveillance workflows and 
prospective evaluation; 

iii. Actionable uncertainty: pairing point forecasts 
with 95% prediction intervals and Peak-Week 
Error for preparedness timing; 

iv. Policy-facing interpretation: mapping model 
outputs to public-health triggers (e.g., surge 
detection and vaccine logistics) under local 
constraints. 

These advances position the model as a deployable 
early-warning component rather than a retrospective 
benchmarking exercise. 

5. FROM MODEL TO PUBLIC HEALTH ACTION 

We advocate for a straightforward and 
unambiguous route that directly links influenza 
predictions to public health interventions. 

 
Figure 4: Weekly residual errors (SVR vs. RF, 2022); RF shows stable, near-zero residuals compared to SVR’s wider 
fluctuations. 
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The Random Forest algorithm can produce weekly 
forecasts with 95% prediction intervals utilizing 
automated data updates from the WHO. These 
projections can directly inform public health 
dashboards that present real-time and short-term 
predictions, facilitating effective planning. Upon 
identifying a probable rise, signaled by projected 
instances exceeding the historical upper limit, the 
model must automatically alert public health officials. 
This will help them improve surveillance, testing, 
ensure there are enough vaccines and antivirals, and 
prepare hospitals for an influx of patients. Consistent 
retraining and performance evaluations will ensure that 
the forecasting system remains dependable, 
transparent, and aligned with national health priorities. 

6. LIMITATIONS 

This research possesses multiple limitations. The 
research utilized national surveillance data, which may 
not accurately reflect local disparities or reporting 
delays. Climatic and demographic influences on 
influenza spread were not considered, and the models 
may still be susceptible to some mild overfitting, 
despite cross-validation. Prospective investigations 
should consider incorporating meteorological, 
population, and behavioral data to refine risk prediction 
with greater regional generalizability. 

7. IMPLICATIONS AND FUTURE DIRECTIONS 

7.1. Future Enhancements may Include 

Machine learning, fractional calculus, stochastic 
simulation and optimal control are promising directions 
for an integrated intelligent system of flu forecasting. By 
integrating data-driven models with mathematically 
based strategies, public health authorities can develop 
adaptive systems that not only update predictions and 
quantify the degree of uncertainty but also adjust 
measures in real-time as epidemic patterns emerge. 

Recent advances in fractional and stochastic 
modeling have shown that these approaches more 
accurately capture the memory, randomness, and 
behavioral variability inherent in infectious disease 
transmission [45-47]. At the same time, optimal control 
theory provides a structured foundation for evaluating 
and fine-tuning intervention policies—such as 
vaccination, antiviral treatment, and public awareness 
programs—under practical constraints of time and 
resources [48, 49]. 

When used together, these approaches have the 
potential to move influenza modeling from being merely 
predictive and passive, towards an active and data-
informed decision-support tool. This transition shifts 
public health action to an epidemic preparedness 
approach, which is consistent with Saudi Arabia’s 
broader vision for anticipatory health preparedness and 
evidence-based responses to new infectious perils. 

8. CONCLUSION 

The study confirms that RF outperforms SVR in 
forecasting weekly influenza trends in Saudi Arabia, 
combining accuracy, generalization, and practical 
interpretability. The framework is reproducible, 
scalable, and adaptable for integration into national 
surveillance systems. As the global focus shifts toward 
predictive public health, such ML-based systems will 
play an essential role in epidemic preparedness and 
resource optimization. 
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