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Abstract: Influenza has continued to be a worldwide social health problem, especially in high-density population areas
with minimal early-warning mechanisms. The present study evaluates the predictive ability of two machine learning
models Support Vector Regression (SVR) and Random Forest (RF) to predict weekly influenza cases in Saudi Arabia,
spanning from 2017 to 2022, on 313 weekly influenza records in the WHO Global Influenza Surveillance and Response
System (GISRS). The performance of these models was measured with R2, MAE, MSE, and RMSE. Although SVR had
a better training accuracy (R? = 0.96), RF had a better generalization (R? = 0.818) and more consistent predictions at the
peaks of the seasons. These observations show that RF is appropriate to real-time influenza surveillance and can
provide a replicable and versatile framework to assist data-driven epidemic preparedness in Saudi Arabia and other

similar contexts throughout MENA and Asia-Pacific.
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1. INTRODUCTION

Seasonal influenza in the world is one of the leading
causes of morbidity and mortality with an estimated
290,000 to 650,000 respiratory deaths every year [1]. It
is transmitted by airborne droplets and is particularly
common in highly populated zones, as well as among
the vulnerable populations, such as children, older
people and those with chronic conditions. Influenza
surveillance is a social health concern in the Middle
East where the variability of climatic conditions, cross-
border travel, and urban congestion are making it
challenging to contain the disease. In the Kingdom of
Saudi Arabia (KSA), the frequent large-scale crowds
like Hajj and Umrah increase the transmission risks,
and well-developed forecasting tools are essential in
early detection and interventions [2,3].

Early detection of influenza pandemics supports
immunization measures, distribution of resources and
preparedness to epidemics. Even though classical
time-series forecasting models, including SARIMA,
ARIMA, and Holt-Winters exponential smoothing, have
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been used to predict influenza, they generally assume
stationarity and linearity. These assumptions make
them less effective in the representation of the
multivariate, nonlinear and complex nature of the
transmission of infectious diseases [4,6]. Machine
learning (ML) methods have become more versatile
and data-driven alternatives to traditional public health
datasets as they are growing more multidimensional
and dynamic. Certain ML models, including Support
Vector Regression (SVR) and Random Forest (RF),
are capable of processing nonlinear patterns of data on
a large scale and a multiplicity of predictors with
increased robustness than classical models [7,9].
Recent reports have shown that ML can be used to
predict influenza-like illness (ILI) cases in the countries
of China and South Korea [10, 11]. However, these
models have hardly been tested in resource changing,
climate diversified or socio-culturally different
environments like Saudi Arabia.

Although there is an increased interest in machine
learning in forecasting of infectious disease outbreaks,
its usage is hardly present in the Middle East countries,
especially when it involves real-time multi-year national
surveillance data. The comparative and region-specific
evidence on model performance between the influenza
seasons are lacking, and it is difficult to implement Al
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tools with confidence in public health systems. This
study was carried out to validate and generalize ML
framework applicable to Saudi Arabia, a region that
faces special problems like mass gatherings and
disease variability due to climate conditions. Moreover,
there is little literature comparing the various machine
learning models to long-term national epidemiological
data, specifically with the goal to determine, among
other things, not only the accuracy but also the ability
to generalize across influenza seasons. Real-time
forecasting requires models that would be effective in
the dynamic viral strains, weather, population dynamics
and delays in surveillance [12,13]. Influenza
information in Saudi Arabia is reported to the WHO
within the global surveillance systems; however, this
information is hardly utilized in predictive modeling.
This study was carried out to compare two machine
learning models-SVR and RF to forecast weekly
influenza cases using six years of surveillance data at
the national level of surveillance (2017-2022). This
research contributes to the advancement of regionally
adaptable, ML-driven early warning systems and
supports evidence-based decision-making in epidemic
forecasting for Saudi Arabia and other Middle Eastern
and Asia-Pacific countries seeking to modernize public
health surveillance.

Therefore, the objectives of this research are
outlined as follows: (1) to create and compare Support
Vector Regression (SVR) and Random Forest (RF)
models for weekly influenza case forecasting in Saudi
Arabia using six years of national surveillance data
(2017-2022). (2) to evaluate the prediction accuracy
and generalizability of models across influenza
seasons. And (3) to provide clues which can be used in
combination with regional public health planning and
early warning systems to improve future machine
learning based forecast tools.

2. METHODS

2.1. Data Source and Description

The data were obtained from the World Health
Organization’s Global Influenza Surveillance and Res-
ponse System (WHO GISRS), which provides publicly
available, laboratory-confirmed weekly influenza case
counts. The dataset spans six years, from January
2017 to December 2022, and includes a total of 313
weekly observations for Saudi Arabia. To simulate real-
world forecasting conditions, the data were split
chronologically into a training set (2017-2021; 260
weeks) and a hold-out test set (2022; 53 weeks).

2.2. Data Preprocessing and Feature Engineering

Data pre-processing was conducted to make the
data complete, consistent, and suitable for training.

(a) Data cleaning: Inconsistent or incomplete weekly
records were examined. Values above the
permissible range (=2% of total observations)

were replaced through seasonal means
interpolation in order to maintain the temporal
connection.

(b)  Temporal feature generation: Time features such
as week of the year, month, and year were
constructed to specifically represent seasonal
and cyclical patterns of influenza incidence.

(c) Seasonal-trend decomposition: The long-term
trends and periodic variances were separated
using the STL algorithm, making it easier for the
model to learn residual fluctuations [14, 16].

(d) Lag transformation and normalization: The data
were reformulated in supervised learning with
four lagged predictors (weeks t-1 to t-4)
predicting incidence for week t.

Numerical values were z-score normalized, and
min—max scaling was applied ([0, 1]) to the entire set of
numerical variables in order to facilitate model
convergence.

2.3. Model Development

2.3.1. We Employed Two Machine Learning
Regression Models

Support Vector Regression (SVR)

Support Vector Regression (SVR) is a learning
method based on the Support Vector Machine (SVM)
formulation, which has been designed to predict
continuous output [17,19]. Rather than being classified,
the SVR algorithm tries to find an optimal regression
function and the value of a target variable that is no
more deviated from some margin €. The trade-off in
accessing the balance between an accurate model and
generalization is done by minimizing the sum of errors
with a penalty factor on deviations greater than €. The
regularization parameter C balances the trade-off
between model complexity and fitting accuracy, and the
kernel function transforms input samples to a higher-
dimensional space in which non-linearity can be
modeled [20,21].

In our study, we used an RBF (Radial Basis
Function) kernel because it is quite flexible in modelling
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non-linear temporal and seasonal dependence of
influenza incidence. The SVR model included lagged
influenza cases and time terms (week, month, year) as
predictors. Model hyperparameters (C, y, and ¢€) of
classifiers were adjusted using a grid search and a
fivefold cross-validation strategy for the best
generalization and fit to avoid over-fitting [22].

2.3.2. Random Forest Regression (RF)

Random Forest is an ensemble learning technique
that generates a stronger and less general model by
aggregating predictions from numerous decision trees
[23]. Each tree in the ensemble is constructed by
bootstrapping a sample of the training data. where the
input features are randomized at each node split to
reduce inter-tree correlation and thus enhance stability.
The overall prediction is taken as the mean of all
outputs, ensuring low variance and preventing
overfitting in single tree models [24, 27].

Random Forest modelling was performed in this
study by using the Scikit-learn toolkit for Python. The
2022 influenza circulation data was kept aside for the
out-of-sample validation. Important hyperparameters,
including the number of estimators (trees), maximum
depth of trees, and minimum samples per leaf were
tuned in a grid search manner using fivefold cross
validation to minimize Root Mean Squared Error
(RMSE). The feature importance ranking was based on
the Mean Squared Error Reduction (MSER) criterion
while random subspace sampling was used for
obtaining a bias reduced model.

These settings enabled the RF model to learn
nonlinear relationships and interactions between
lagged influenza counts and temporal features. The
ensemble form allows it to process the noise,
seasonality and idiosyncratic variations present in real-
world influenza surveillance data with good
generalization performance for operational forecasting
tasks in public health.

2.4. Model Training and Validation

The Python scikit-learn library was used to
implement the models [28,31]. The dataset was divided
into two parts by the year to maintain the time
consistency i.e., training on 2017-2021 data and testing
on 2022 data. Training was performed using a five-fold
cross-validation to reduce overfitting. The
hyperparameters were optimized through grid search
through the following ranges:

SVR: C € {1, 10, 100}, kernel = RBF, y € {0.01, 0.1, 1},
£€{0.01,0.1, 1}

RF: estimator’s € {100, 200, 300}, max_depth € {5, 10,
20}, min_samples_leaf € {1, 2, 4}

The best model configuration for each model was
determined with the lowest RMSE across validation
folds. Afterward, the models were left trained at 2017—
2021 and fed with 2022 data to carry out the
independent testing. This extensive validation
procedure supports both reliability and generalizability
of the forecasting results for national monitoring of
influenza activity in Saudi Arabia.

2.4.1. Performance Metrics

Model performance was evaluated using four
standard metrics: Mean Absolute Error (MAE), Mean
Squared Error (MSE), Root Mean Squared Error
(RMSE), and the Coefficient of Determination (R?).
These provide a comprehensive assessment of
prediction accuracy and error magnitude.

MAE: Measures the average magnitude of
prediction errors, irrespective of direction:

MAE — Tj=a|yj=3i|

(1)
MSE: Computes the average squared difference
between predicted and actual values.

RMSE: The square root of MSE, expressed in the
same units as the target variable [32,35].

2.4.2. Root Mean Square Error (RMSE)

The subsequent Equation (5) expresses the Root
Mean Square Error (RMSE) to assess the standard
deviation of the forecast errors.

RMSE = _[Z=0ido” 2)

n

2.4.3. Coefficient of Determination (Rz)

It is a statistical degree that calculates the amount
of variance in the dependent variable (weekly influenza
cases) that is expected from the independent variables.
Its values range between 0 and 1. An R? value of 0
indicates that the model is unsuccessful to explicate
any of the inconsistency in the response data
dependent on the predictors, while a value of 1
specifies a perfect fit model, where all variance in the
outcome variable is precisely reported for by the model.
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The R? is premeditated as follows:

_ E?:‘l(yi_j?l)z

2 —
R 1 Z?:l(yf_ ft)z (3)

Where;

1" = Predicted value of the gL sample and represents
the matching real value for the whole n samples [32].

2.4.4. Mean Absolute Percentage Error (MAPE)

To provide an interpretable percentage-based error
measure, the Mean Absolute Percentage Error (MAPE)
was also computed as:

_100% wn  |yi—=3|
MAPE = P NESY (4)
represent the observed and predicted values

respectively.

2.4.5. Peak Week Error (PWE)

In order to determine the accuracy of the peak
timing prediction, which is important in epidemic
preparedness, a Peak Week Error (PWE) was defined
as:

PWE = I Week predicted peak -Week actual peak I (5)

The metric measures the change (in weeks)
between the predicted and observed maximum
influenza incidence, a direct measurement of the
temporal accuracy that is very pertinent in real-time
preparedness to epidemics and population health
response [36].

2.5. Ethical Considerations

The information utilized in this study is open and
accessible in the databases of WHO. There were no

500

400

Influenza cases

human subjects used and it did not need any ethical
consent.

3. RESULTS

3.1. Descriptive Statistics

Weekly influenza cases ranged from 7 to 546 (mean
=157.9, SD = 116.3). The STL decomposition showed
frequent winter peaks and a marine trend of an
increase in intensity over the six-year extension (Figure
1). This nonlinear time-series forecasting model is
justified by this seasonal trend.

Cases per week ranged between 7 and 546, with a
mean of 157.9 and a standard deviation of 116.31.
Figure 1 shows the seasonal-trend decomposition that
is performed with the help of STL. The decomposition
verified a regular seasonal pattern with regular peaks in
the winter season. Another trend that observed was a
slight upward trend in peak intensity over the six years
period implying that there has been a slow growth in
the magnitude of these epidemics over the years. Such
seasonal dynamics facilitate the use of non-linear
learning-based time series forecasting models.

3.2. Model Performance

SVR and RF models were trained on 2017-2021
data and tested on 2022 data. Results are summarized
in Table 1.

Although SVR achieved superior fit during training,
its performance deteriorated on the test set, with higher
prediction error and lower RZ2 In contrast, RF
maintained better generalization, exhibiting lower
RMSE and higher R? on 2022 data—indicating greater
robustness to unseen seasonal dynamics.

2017 2018 2019

2020 2021 2022 2023

Week

Figure 1: Weekly influenza cases in Saudi Arabia (2017-2022), showing winter peaks and increasing epidemic intensity via

STL decomposition.
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Table 1: Model Training and Test Performance Metrics
Model Dataset Training
MAE MSE RMSE R?
Support Vector Regression Training 2.85 13.485 3.672 0.960
Test 51.786 5739.090 75.757 0.750
Random Forest Training 13.485 408.930 20.222 0.891
Test 41.590 51.78 7.196 0.818

3.3. Visual Prediction Analysis

Figure 2 shows that SVR followed the general trend
but significantly underestimated peak values during
high-incidence periods, lagging behind sharp spikes. In
contrast, Figure 3 demonstrates that RF aligned closely
with observed case counts, especially during epidemic
peaks. The ensemble nature of RF enabled it to
capture sharp, nonlinear variations more effectively.

3.4. Residual Analysis

Figure 4 supports the sensitivity of SVR to fast
surges but RF shows constant residual values, both in

500 |
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Influenza cases

N
[=]
=]

amplitude and in the timing of outbreaks. The high
value of RF in epidemic preparedness is emphasized
by its high quality of real-time predictions. In Saudi
Arabia, where mass events and the risk of spreading
respiratory infections are high, the possibility to
forecast the weekly influenza activity properly is an
essential factor in regard to the timely intervention. RF
was also reliable in trend detection and amplitude
estimation, which reinforced its possible functionality in
the framework of the public health surveillance to
maximize the allocation of vaccines, decision-making,
and responses to early-warnings.

Actual
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Figure 2: SVR-predicted vs. observed influenza cases (2022); captures pattern but underestimates peak magnitudes.
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Figure 3: RF-predicted vs. observed influenza cases (2022); accurately reproduces timing and amplitude of peaks.
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Figure 4: Weekly residual errors (SVR vs. RF, 2022); RF shows stable, near-zero residuals compared to SVR’s wider

fluctuations.
3.5. Uncertainty Quantification

Table 2 presents representative RF forecasts with
95% prediction intervals, illustrating its reliability across
seasonal fluctuations.

Table 2: Representative Weekly RF Forecasts with 95%
Prediction Intervals

Date Actual | Predicted | Lower 95% | Upper 95%
2-Jan-22 103 130.2 72 286
13-Feb-22 54 62.4 22 95
04-Sep-22 194 2443 201 315
13-Nov-22 546 284.0 207 368
25-Dec-22 126 381.8 289 418

3.6. Seasonal Error Distribution

Table 3: Seasonal Model Error Comparison (2022)

Season Model MAE RMSE R?
Peak (Oct—Mar) SVR 99.09 141.48 0.42
Peak (Oct—Mar) RF 64.79 96.43 0.73

Trough (Apr-Sep) SVR 43.81 58.12 0.57
Trough (Apr-Sep) RF 38.46 48.31 0.70

RF demonstrated greater stability during both peak
and trough phases.

4. DISCUSSION

This study advances regional influenza forecasting
by delivering a validated, multi-year ML framework
tailored to Saudi Arabia’s surveillance context. Unlike
prior applications that often rely on short time spans or

proxy signals, we leverage six years of laboratory-
confirmed national data and evaluate models under a
temporal hold-out that mimics real-world deployment.
Methodologically, we demonstrate that an ensemble
approach (RF) provides stronger generalization to
unseen seasons and greater resilience to nonlinear
surges than a kernel-based baseline (SVR).
Substantively, the framework is region-aware,
capturing winter seasonality and accommodating
mass-gathering effects (e.g., Hajj/lUmrah) through a
lagged/seasonal structure, while remaining robust
despite routine noise in the surveillance series.

i. Relative to prior work from East Asia and other
settings, our contribution is threefold:

i. Design for operational use: a train/validate/test
split aligned with surveillance workflows and
prospective evaluation;

iii. Actionable uncertainty: pairing point forecasts
with 95% prediction intervals and Peak-Week
Error for preparedness timing;

iv. Policy-facing interpretation: mapping model
outputs to public-health triggers (e.g., surge
detection and vaccine logistics) under local
constraints.

These advances position the model as a deployable
early-warning component rather than a retrospective
benchmarking exercise.

5. FROM MODEL TO PUBLIC HEALTH ACTION

We advocate for a straightforward and
unambiguous route that directly links influenza
predictions to public health interventions.
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The Random Forest algorithm can produce weekly

forecasts with 95% prediction intervals utilizing
automated data updates from the WHO. These
projections can directly inform public health

dashboards that present real-time and short-term
predictions, facilitating effective planning. Upon
identifying a probable rise, signaled by projected
instances exceeding the historical upper limit, the
model must automatically alert public health officials.
This will help them improve surveillance, testing,
ensure there are enough vaccines and antivirals, and
prepare hospitals for an influx of patients. Consistent
retraining and performance evaluations will ensure that
the forecasting system remains dependable,
transparent, and aligned with national health priorities.

6. LIMITATIONS

This research possesses multiple limitations. The
research utilized national surveillance data, which may
not accurately reflect local disparities or reporting
delays. Climatic and demographic influences on
influenza spread were not considered, and the models
may still be susceptible to some mild overfitting,
despite cross-validation. Prospective investigations
should  consider  incorporating meteorological,
population, and behavioral data to refine risk prediction
with greater regional generalizability.

7. IMPLICATIONS AND FUTURE DIRECTIONS

7.1. Future Enhancements may Include

Machine learning, fractional calculus, stochastic
simulation and optimal control are promising directions
for an integrated intelligent system of flu forecasting. By
integrating data-driven models with mathematically
based strategies, public health authorities can develop
adaptive systems that not only update predictions and
quantify the degree of uncertainty but also adjust
measures in real-time as epidemic patterns emerge.

Recent advances in fractional and stochastic
modeling have shown that these approaches more
accurately capture the memory, randomness, and
behavioral variability inherent in infectious disease
transmission [45-47]. At the same time, optimal control
theory provides a structured foundation for evaluating
and fine-tuning intervention policies—such as
vaccination, antiviral treatment, and public awareness
programs—under practical constraints of time and
resources [48, 49].

When used together, these approaches have the
potential to move influenza modeling from being merely
predictive and passive, towards an active and data-
informed decision-support tool. This transition shifts
public health action to an epidemic preparedness
approach, which is consistent with Saudi Arabia’s
broader vision for anticipatory health preparedness and
evidence-based responses to new infectious perils.

8. CONCLUSION

The study confirms that RF outperforms SVR in
forecasting weekly influenza trends in Saudi Arabia,
combining accuracy, generalization, and practical
interpretability. The framework is reproducible,
scalable, and adaptable for integration into national
surveillance systems. As the global focus shifts toward
predictive public health, such ML-based systems will
play an essential role in epidemic preparedness and
resource optimization.
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