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Abtsract: This paper introduces the Bilal-G (B-G) family of distributions, a novel generator-based method for enhancing 
the flexibility of existing probability models to better accommodate complex data structures prevalent in biomedical and 
reliability engineering. Data from these fields frequently exhibit features like high skewness, significant outliers, and non-
monotone hazard rates that challenge conventional distributions. Using the Bilal distribution as the generator, we 
construct the new family’s general cumulative distribution function (CDF) and probability density function (PDF), from 
which a key, parsimonious sub-model, the two-parameter Bilal-Exponential (BE) distribution, is derived. We thoroughly 
analyze the BE distribution’s properties, including its capability to model an increasing hazard rate, which is supported by 
Total Time on Test (TTT) plots of the application datasets. A comprehensive simulation study evaluates the performance 
of fifteen distinct non-Bayesian estimators, revealing that the Minimum Spacing Linex Distance (MSLNDE) method 
consistently provides the most accurate and precise parameter estimates across various sample sizes. Finally, the 
superiority of the BE distribution is demonstrated through its successful application to two real datasets: one on patient 
mortality rates and one on component failure times. For the mortality data (Data I), the BE model reduced the Akaike 
Information Criterion (AIC) by 1.99 units compared to the classical Weibull distribution. For the component failure data 
(Data II), the Bayesian Information Criterion (BIC) was reduced by 0.41 units compared to the best-fitting competing 
model (TIHTE), confirming the BE distribution’s exceptional goodness-of-fit and reliability as a practical lifetime model.  

Keywords: Bilal distribution, Bilal-G family of distributions, estimation, biomedical studies, engineering reliability 
data. 

1. INTRODUCTION 

In fields like reliability engineering and survival 
analysis, researchers frequently encounter complex 
empirical data that traditional statistical models (e.g., 
Normal, Exponential, Weibull) fail to adequately 
characterize. Data sets in these areas often exhibit 
crucial characteristics for accurate prediction, such as 
strong skewness, the presence of significant outliers, 
and critically, non-monotone hazard rates (e.g., bathtub 
or unimodal shapes) which capture various life cycles 
of a system or organism. This necessity—driven by the 
inability of traditional models to simultaneously capture 
features like skewness, kurtosis, multimodality, or 
varied tail behavior—is the primary factor spurring the 
creation of various methodologies for constructing 
more flexible models. Early conceptual work includes  
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[1]’s system of normalization transformations, which 
laid the groundwork for defining generalized distribution 
families. Other foundational techniques include using 
generalized distributions derived from concepts like the 
hazard rate [2], the Exponentiation Method [3], and the 
[4] technique, which adds a single parameter to an 
existing distribution’s cumulative distribution function 
(CDF) to improve its goodness-of-fit. These 
foundational efforts established that the addition of 
parameters or the transformation of the baseline 
distributions could significantly enhance the versatility 
of the modeling. 

Modern research has expanded these ideas 
through sophisticated generator-based families. A 
major innovation was the Beta-Generated (Beta-G) 
family [5], which uses the Beta distribution as a 
generator to transform a baseline distribution’s CDF, 
leading to highly flexible models like the Beta-Normal 
distribution. Leveraging the advantages of simpler 
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forms, the Kumaraswamy-G (Kw-G) distribution [6] was 
subsequently introduced, offering similar shape 
properties to the Beta-G family with simpler explicit 
formulas and moment calculations. To address 
limitations in the Beta-G family’s support range, the 
general Transformed-Transformer (T-X) method [7] 
was introduced, which allows any non-negative 
continuous random variable to serve as the generator. 
These generator methods—and their subsequent 
variants based on distributions like Weibull [8], Lomax 
[9], and Lindley [10]—consistently demonstrate greater 
flexibility, allowing researchers to model diverse data 
shapes and accommodate various hazard rates (e.g., 
constant, increasing, decreasing, bathtub, unimodal), 
often outperforming traditional models in statistical fit 
tests. Recently, families of distributions that capture 
these seemingly data behaviors have emerged in the 
literature. They include, but are not limited to, a new 
family of generalized distributions using transformed 
Lomax-x [11], Weibull sine generalized family [12], 
Kavya-Manoharan DUS family [13], Alpha sine power 
transformation [14], a new odd reparameterized 
exponential transformed-x family [15], type-II heavy-
tailed family [16], a tangent DUS family [17], sine 
generalized family [18], exponential arctan family [19], 
arcsine Topp-Leone family [20], arctan-x family [21]. 
For more details see [22-27]. 

Due to the inherent characteristics of emerging 
datasets from various human endeavors, especially 
biomedical and engineering studies, a distribution that 
fits well with a particular dataset may not fit well with 
related datasets. On the above premise, the primary 
motivation and key contributions (novelty) of this study 
are encapsulated in the following points:   

1. The proposed family of distributions exhibits 
desirable tractability, as all derived statistical 
properties and measures possess analytical, 
simple, and often linear solutions.  

2. Adhering to the principle of parsimony in 
statistical inference, the Bilal-G family introduces 
only a single, non-redundant shape parameter, 
resulting in new distributions that maintain 
simplicity and avoid parameter superfluity.  

3. The derived Bilal-Exponential submodel 
demonstrates effectiveness and robustness in 
modeling data characterized by significant 
skewness and the presence of outliers, 
suggesting that any distribution from the broader 
Bilal-G family may offer similarly robust 
distributional forms.  

4. The Bilal-Exponential distribution consistently 
achieved superior goodness-of-fit, evidenced by 
its high probability values in statistical tests and 
minimum values across key model performance 
criteria when fitted to the two empirical datasets.  

Traditional probability distributions, such as the 
Exponential, Normal, and Weibull models, often fall 
short when analyzing complex, emerging datasets in 
modern biomedical and reliability engineering. These 
models fail to adequately capture the inherent 
characteristics of real-world data, which frequently 
exhibit: 

• Extreme Skewness and Outliers: Life-testing and 
survival data, such as patient survival times or 
component failure times, are commonly 
characterized by a high degree of asymmetry 
and the presence of significant, influential 
outliers that distort traditional parameter 
estimation. 

• Non-Monotone Failure Rates: A critical 
requirement for accurate lifetime modeling is the 
ability to handle varying patterns of risk over 
time. Systems and organisms often pass through 
stages (infancy, useful life, wear-out), resulting in 
bathtub-shaped or unimodal (upside-down 
bathtub) hazard functions. Models that only allow 
for simple increasing or decreasing failure rates 
are practically inadequate for these scenarios. 

To address these critical data challenges, this paper 
introduces the Bilal-G family of distributions, a novel 
methodology designed to enhance the flexibility and 
descriptive power of existing probability models. Our 
core contributions, specifically tailored to practical 
application in these fields, are as follows: 

• Modeling Complex Risk Patterns: We 
demonstrate that the derived Bilal-Exponential 
(BE) submodel is capable of capturing an 
increasing failure rate, making it a versatile tool 
for modeling the wear-out phase in reliability and 
the later stages of mortality in biomedical 
studies. 

• Robustness to Real-World Noise: The BE 
distribution demonstrates effectiveness and 
robustness in modeling data characterized by 
high skewness and the presence of outliers, 
providing a more reliable fit than competing 
models in non-ideal conditions. 
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• Demonstrated Superior Goodness-of-Fit: 
Through detailed application to two real-world 
datasets—one concerning patient mortality rates 
(biomedical) and another involving fixed 
component failure times (reliability)—the BE 
distribution is shown to consistently achieve a 
superior goodness-of-fit over several established 
lifetime models. This confirmed practical utility 
establishes the Bilal-G family as a powerful new 
tool for engineers and biostatisticians.  

The study workflow is summarized in the following 
schematic diagram: 

Introduction→ Bilal −G Family→
BED istribution→ Statistical Properties→
Estimation→ Simulation→ Applications→Concluding Remarks.

 

2. THE BILAL-G FAMILY 

In this section, the Bilal-G family of distributions, 
with a special submodel, will be constructed and its 
properties derived and studied. Subsequently, the 
parameters of the submodel will be estimated under 
the complete sample using some non-Bayesian and 
Bayesian estimators. 

Definition 2.1 Suppose a differentiable and 
monotone right-continuous function W F(x){ }  is 
defined as W (F(x)) = − log(1−F(x)) . It is easy to see 

that 
dW F(x){ }

dx
= f (x)

1−F(x)
.   

Let T :  the Bilal (θ )  distribution, an innovative one-
parameter longevity model introduced by [28] with 
probability density function (PDF) given as  

r(t) = 6
θ
e−2t /θ 1− e−t /θ( ); t > 0, θ > 0.      (2.1) 

The associated cumulative distribution function 
(CDF) can be expressed as;  

R(t) =1− (3− 2e−t /θ )e−2t /θ .        (2.2) 

Then, the CDF of the Bilal-G family of distribution 
utilizing the T − X  generator proposed by [7] is given 
as  

G(x) =
0

− ln(1−F (x ))

∫ r(t)dt = R{− ln(1−F(x))}

=1− 3− 2(1−F(x))( )
1
θ (1−F(x))

2
θ ; x ∈ℜ, θ > 0.

          (2.3) 

The corresponding PDF to Eq. (2.3) is 

g(x) =
dW F(x){ }

dx
⋅ r W F(x)[ ]{ } = 6 f (x)

θ
(1−F(x))

2
θ
−1

1− (1−F(x))
1
θ

⎛

⎝
⎜

⎞

⎠
⎟.

          (2.4) 

3. BILAL - EXPONENTIAL (BE) DISTRIBUTION 

In this section, the Bilal-G family of distributions is 
used to modify the exponential distribution If X  has an 
exponential distribution, then the PDF and CDF are 
given by: 

f (x;β ) = βe−βx , F(x) =1− e−βx       (3.1) 

Now, substituting Eq. (3.1) into Eqs. (2.3) and (2.4), 
we obtain 

G(x,θ ,β ) =1− 3− 2e−βx/θ( )e−2βx/θ , x > 0, θ ,β > 0.     (3.2) 

The corresponding PDF is 

g(x,θ ,β ) = 6β
θ
e−2βx/θ 1− e

−
β
θ
x⎛

⎝
⎜

⎞

⎠
⎟.       (3.3) 

The survival and hazard functions are given as  

S(x) = (3− 2e−βx/θ )e−2βx/θ ; and

h(x) = g(x)
S(x)

= 6β
θ
⋅
(1− e−(β /θ )x )
(3− 2e−βx/θ )

, respectively.
 

Based on Figure 1, the plots illustrate how the BE 
distribution’s shape changes in response to its two 
parameters, β  and θ . Figure 1a shows the probability 
density function (PDF), g(x) , which can take on 
various shapes, including right-skewed and nearly 
symmetric forms, depending on the values of β  and 
θ . For instance, when β = 0.75  and θ = 2.5  (the solid 
black line), the distribution has a gentle, long tail, while 
smaller values of θ  and larger values of β , like β =1.5  
and θ =1.5  (the green dotted line), result in a sharper, 
more peaked density near x = 0 . Figure 1b displays 
the hazard function, h(x) , where all curves consistently 
show an increasing failure rate over time, indicating 
that the probability of the event occurring increases as 
x  increases. This characteristic of an increasing 
hazard rate is common to all parameter combinations 
shown, though the rate of increase is much steeper for 
combinations with smaller parameter values, such as 
β = 0.005  and θ = 0.05  (the pink dashed line), 
compared to the shallower curve seen with β = 0.75  
and θ = 2.5  (the solid black line). 
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4. STATISTICAL PROPERTIES 

In this section, we study some of the essential 
properties of the BE model.  

4.1. Moment and its Measures 

The k th raw moment of a random variable X  is 
given by: 

E(Xk ) =
0

∞

∫ xk f (x)dx = 6Γ (k +1) θ
β

⎛

⎝
⎜

⎞

⎠
⎟

k

2−(k+1) − 3−(k+1)⎡⎣ ⎤⎦.   (4.1) 

From Eq. (4.1), the mean is when k =1 , which is 

E(X) = 5θ
6β

. The second crude moment is when 2=k , 

which is E(X 2 ) = 19
18

θ
β

⎛

⎝
⎜

⎞

⎠
⎟

2

.  The variance of a random 

variable X  is estimated as 

Var(X) = E(X 2 )−[E(X)]2 = 13
36

θ
β

⎛

⎝
⎜

⎞

⎠
⎟

2

.  The third crude 

moment of X  is when k = 3 , which is E(X 3) = 65
36

θ
β

⎛

⎝
⎜

⎞

⎠
⎟

3

.  

4.2. Moment Generating Function (MGF) 

The moment generating function (MGF) of X  is 
defined as: 

MX (t) = E(etX ) =
0

∞

∫ etx f (x)dx  

= 6β 2

(2β −θt)(3β −θt)
, t ∈ℜ.  

To compute the moments, we rewrite the MGF 

using partial fraction decomposition by setting λ1 = 2β
θ

 

and λ2 = 3β
θ

:  

MX (t) = 6β
θ

1
2β
θ
− t

−
1

3β
θ
− t

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

The first moment ( ʹ′µ1 ) is ʹ′µ1 = d
dt
MX (t) |t=0 :  

ʹ′µ1 = 6β
θ

2β
θ

⎛

⎝
⎜

⎞

⎠
⎟
−2

−
3β
θ

⎛

⎝
⎜

⎞

⎠
⎟
−2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

ʹ′µ1 = E(X) = 5θ
6β

 

The second moment ( ʹ′µ2 ) is ʹ′µ2 = d 2

dt 2 MX (t) |t=0 :  

ʹ′µ2 = 12β
θ

2β
θ

⎛

⎝
⎜

⎞

⎠
⎟
−3

−
3β
θ

⎛

⎝
⎜

⎞

⎠
⎟
−3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

ʹ′µ2 = E(X 2 ) = 19θ 2

18β 2  

The mean of the BE distribution, illustrated in Figure 
2a, generally decreases as the parameter α  increases, 
particularly for smaller values of β . Conversely, as the 
parameter β  increases, the mean exhibits a complex 
behavior but generally shows an increasing trend 

 
Figure 1: Plots of (a) PDF (b) hazard function for BE distribution. 
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before stabilizing, especially when α  is small. The 
mean’s value is observed to range from nearly 0 to 
approximately 0.8 within the plotted parameter space. 

The variance, shown in Figure 2b, typically 
decreases with increasing values of both α  and β . For 
instance, when α  is close to 0, the variance is at its 
highest, approaching 1.0, but it drops rapidly as α  
increases towards 3.0. This indicates that a larger α  
leads to a more concentrated distribution. The variance 
surface demonstrates relatively sharp changes at the 
boundaries of the parameter space and remains 
generally low over a broad region, suggesting that the 
BE distribution is often less dispersed. 

The skewness, displayed in Figure 2c, is strictly 
positive across the entire parameter space, which 
confirms the BE distribution is right-skewed. The 
maximum skewness, which is quite high, occurs when 
both α  and β  are small, indicating a pronounced long 
right tail under these conditions. As α  and β  increase, 
the skewness value rapidly decreases towards zero, 
implying the distribution becomes more symmetrical 
and approaches the shape of a normal distribution. 

Finally, the kurtosis, presented in Figure 2d, also 
displays a similar pattern to the skewness, being 

highest when the parameters α  and β  are small. This 
large kurtosis suggests that the distribution is 
leptokurtic (has heavy tails and a sharp peak) for small 
parameter values. The kurtosis decreases dramatically 
as α  and β  increase, approaching a value closer to 3 
(the kurtosis of a normal distribution), indicating that the 
tail behavior becomes less extreme and the peak flatter 
as the parameters grow. 

4.3. Order Statistics 

The CDF and PDF of the k th order statistic, X(k ) , 
based on a random sample of size n , are derived from 
the general forms:  

Fk (x) =
j=k

n

∑ n
j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ FX (x)( ) j 1−FX (x)( )n− j  

fk (x) = n!
(k −1)!(n− k)!

FX (x)( )k−1 1−FX (x)( )n−k fX (x)  

Given the BE distribution’s CDF, 

F(x) =1− (3− 2e
−
βx
θ )e

−
2βx
θ , and PDF, 

f (x) = 6β
θ
e
−

2βx
θ (1− e

−
βx
θ ) , we have: 

 
Figure 2: Plots (a) Mean (b) Variance (c) Skewness (d) Kurtosis of BE distribution. 
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The CDF of X(k )  is:  

Fk (x;θ ,β ) =
j=k

n

∑ n
j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 1− (3− 2e

−
βx
θ )e

−
2βx
θ

⎡

⎣
⎢

⎤

⎦
⎥

j

(3− 2e
−
βx
θ )e

−
2βx
θ

⎡

⎣
⎢

⎤

⎦
⎥

n− j

 

The PDF of X(k )  is:  

fk (x;θ ,β ) = n n−1
k −1

⎛

⎝
⎜

⎞

⎠
⎟ 1− (3− 2e

−
βx
θ )e

−
2βx
θ

⎡

⎣
⎢

⎤

⎦
⎥

k−1

(3− 2e
−
βx
θ )e

−
2βx
θ

⎡

⎣
⎢

⎤

⎦
⎥

n−k

⋅
6β
θ
e
−

2βx
θ 1− e

−
βx
θ

⎛

⎝
⎜

⎞

⎠
⎟

 

4.4. Quantile Function 

The quantile function, Q(p) , is the inverse of the 

CDF, G(x;θ ,β ) =1− 3e
−

2βx
θ + 2e

−
3βx
θ , such that 

G(Q(p)) = p . 

Solving the equation 1− 3e
−

2βx
θ + 2e

−
3βx
θ = p  for x  

requires numerical methods or approximation. Using 

the approximation ln 1− 3e
−

2βx
θ + 2e

−
3βx
θ

⎛

⎝
⎜

⎞

⎠
⎟ ≈ ln(6)− 5βx

θ
, we 

solve:  

)(ln231ln
32

pee
xx

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−−
θ
β

θ
β

 

The approximate quantile function is:  

Q(p) ≈ θ(ln(p)−1.7918)
5β

 

The proposed approximate quantile function, 

Qapprox (p) ≈ θ(ln(p)−1.7918)
5β

, relies on a log-linear 

approximation that requires critical validation. Given the 
complexity of the exact CDF, 

G(x;θ ,β ) =1− 3e
−

2βx
θ + 2e

−
3βx
θ , this approximation must be 

rigorously assessed to ensure the fidelity of 
subsequent simulation results. To quantify the error, a 
numerical comparison against the exact quantile 
function, Qnum (p) , must be performed. 

• Numerical Inversion: Obtain Qnum (p)  by 
numerically solving the equation G(x;θ ,β )− p = 0  
for x , using a stable root-finding algorithm (e.g., 
Bisection or Newton-Raphson) across a 
representative grid of probabilities p ∈ (0,1) .  

• Error Metric: The Relative Error (RE) is the most 
appropriate metric for evaluation, particularly 
over the tails of the distribution ( p→ 0  and 
p→1 ).  

RE(p) =
Qapprox (p)−Qnum (p)

Qnum (p)
.  

The approximation introduces a systematic bias into 
the simulated random variates. 

• The magnitude of the RE directly correlates with 
the inaccuracy of the simulation results (e.g., 
estimated mean, variance, and, crucially, 
extreme percentiles).  

• If the error is high in the tails, the simulation will 
fail to accurately represent extreme events, 
compromising any risk or reliability analyses 
performed using the simulated data.  

If the quantified error is deemed unacceptable (e.g., 
RE > 5%  for critical values of p ), it is strongly 
recommended that numerical inversion be used in 
practice for generating random variates. Root-finding 
algorithms are highly efficient on modern computing 
platforms, making the increased accuracy achieved via 
numerical inversion a worthwhile trade-off for any minor 
increase in computational time. For very low quantiles 
( p→ 0 ), an approximation derived from a Taylor 
expansion (G(x) ≈ 3(βx /θ )2 ) may yield better 

accuracy: Q(p) ≈ θ
β

p
3

. This alternative should also be 

tested.  

4.5. Entropy 

The Rényi entropy of order α  is defined as 

Hα (X) =
1

1−α
log ∫ pα (x)dx( ) . For the BE distribution:  

Hα (X) = 1
1−α

log
0

∞

∫ 6β
θ
e
−

2β
θ
x

1− e
−
β
θ
x⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α

dx
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

Using the substitution u = e
−
β
θ
x
, the integral 

evaluates to a Beta function:  

0

∞

∫ f (x)[ ]α dx = 6β
θ

⎛

⎝
⎜

⎞

⎠
⎟
α

⋅
θ
β
B(2α,α +1)  

The final expression for the Rényi entropy is:  

Hα (X) = 1
1−α

α log 6β
θ

⎛

⎝
⎜

⎞

⎠
⎟+ log θ

β

⎛

⎝
⎜

⎞

⎠
⎟+

logΓ (α +1)+ logΓ (2α)− logΓ (3α +1)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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4.6. Mean Residual Life Function 

The mean residual life function (MRL) is 

mrl(x) = x

∞

∫ S(t)dt
S(x)

, where the survival function is 

S(x) = (3− 2e
−
β
θ
x
)e

−
2β
θ
x
. 

Substituting S(x)  and letting η = β
θ

, we evaluate the 

integral:  

mrl(x) = x

∞

∫ 3e−2ηt − 2e−3ηt( )dt
3− 2e−ηx( )e−2ηx  

After evaluating the definite integrals and 
simplifying:  

mrl(x) = θ
β
⋅

3
2
−

2
3
e
−
β
θ
x

3− 2e
−
β
θ
x

 

4.7. Stress-Strength Reliability for the BE 
Distribution 

The stress-strength reliability is 

R = P(X >Y ) =
0

∞

∫ 1−FX (y)[ ] fY (y)dy . Substituting the BE 
distributions for X  and Y :  

R = 6βY
θY 0

∞

∫ 3e
−

2βXy
θX − 2e

−
3βXy
θX

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⋅ e

−
2βY y
θY 1− e

−
βY y
θY

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
dy  

Evaluating the integral, which involves terms of the 
form 

0

∞

∫ e−kydy =1/ k , gives the result:  

R = 6βY
θY

3 1
k1

−
1
k2

⎛

⎝
⎜

⎞

⎠
⎟− 2 1

k3

−
1
k4

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥  

Where k1 = 2βX

θX

+
2βY
θY

, k2 = 2βX

θX

+
3βY
θY

, 

k3 = 3βX

θX

+
2βY
θY

, and k4 = 3βX

θX

+
3βY
θY

. 

5. ESTIMATION 

In this comprehensive analysis, we utilized fifteen 
distinct non-Bayesian estimation approaches to 
determine the unknown parameters ( βθ , ) of the BE 
distribution. These methods—spanning likelihood-
based, distance-based, and spacing-based 
techniques—include Maximum Likelihood (MLE), 

Anderson-Darling (ADE), Cramér-von Mises (CVME), 
Maximum Product of Spacings (MPSE), Ordinary Least 
Squares (OLSE), Right-Tail Anderson-Darling 
(RTADE), Weighted Least Squares (WLSE), Left-Tail 
Anderson-Darling (LTADE), Minimum Spacing 
Absolute Distance (MSADE), Minimum Spacing 
Absolute-Log Distance (MSALDE), Anderson-Darling 
Second-Order Left-Tail (ADSOE), Kolmogorov (KE), 
Minimum Spacing Square Distance (MSSDE), 
Minimum Spacing Squared-Log Distance (MSSLDE), 
and Minimum Spacing Linex Distance (MSLNDE). The 
specific objective functions for each method are 
detailed in the following subsections. 

5.1. Maximum Likelihood Estimation (MLE) 

The Method of Maximum Likelihood, introduced by 
[29] and [30], is widely preferred due to its favorable 
asymptotic properties, including consistency and 
asymptotic normality. Given a random sample  x1,…, xn  
of size n  from the BE distribution’s PDF g(x;θ ,β ) , the 
likelihood function L(θ ,β )  is defined as the product of 
the PDF evaluated at each observation. 

The log-likelihood function,  (θ ,β ) = lnL(θ ,β ) , is 
derived by substituting the PDF given in Equation (3.3):  

 
 = n ln(6β )− n lnθ − 2β

θ i=1

n

∑xi +
i=1

n

∑ln 1− e
−
β
θ
xi⎛

⎝
⎜

⎞

⎠
⎟.  

The maximum likelihood estimators θ̂ , β̂  are 
obtained by solving the system of non-linear equations 
derived by setting the partial derivatives of    with 
respect to each parameter to zero:  

 

∂
∂θ

= − n
θ
+

2β
θ 2

i=1

n

∑xi −
β
θ 2

i=1

n

∑ xi

e
β
θ
xi −1

= 0  

 

∂
∂β

= n
β
−

2
θ i=1

n

∑xi +
1
θ i=1

n

∑ xi

e
β
θ
xi −1

= 0  

Since these equations are analytically intractable 
(non-linear), the estimates θ̂ , β̂  are solved numerically 
using iterative optimization algorithms. 

The Hessian matrix H  is defined as:  

 

H =

∂2
∂θ 2

∂2
∂θ ∂β

∂2
∂β∂θ

∂2
∂β 2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

.  
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∂2
∂θ 2 = n

θ 2 −
4β
θ 3

i=1

n

∑xi +
2β
θ 3

i=1

n

∑ xi

e
β
θ
xi −1

−
β 2

θ 4
i=1

n

∑ xi
2e

β
θ
xi

e
β
θ
xi −1

⎛

⎝
⎜

⎞

⎠
⎟

2 .  

 

∂2
∂θ ∂β

= ∂2
∂β∂θ

= 2
θ 2

i=1

n

∑xi −
1
θ 2

i=1

n

∑ xi

e
β
θ
xi −1

+
β
θ 3

i=1

n

∑ xi
2e

β
θ
xi

e
β
θ
xi −1

⎛

⎝
⎜

⎞

⎠
⎟

2 .  

 

∂2
∂β 2 = − n

β 2 −
1
θ 2

i=1

n

∑ xi
2e

β
θ
xi

e
β
θ
xi −1

⎛

⎝
⎜

⎞

⎠
⎟

2 .  

The Newton-Raphson Algorithm (Algorithm 5.1) was 
used to solve the system of non-linear score equations 
and obtain the MLEs. 

Algorithm 1: Newton-Raphson for BE MLE 

Require: Observed data  x = {x1,…, xn} , initial 
parameters θ (0) = (θ (0),β (0) ) , convergence tolerance ε , 
max iterations M .  

Ensure: Maximum Likelihood Estimates θ̂ = (θ̂ , β̂ )  and 
Asymptotic Variance-Covariance Matrix V . 

1: k← 0  

2: θ ←θ (0)  

3: repeat 

4: Step 1: Calculate the Score Vector (First Derivatives) 
at θ (k )   

5: 

 

S(k ) ←∇(θ (k ) ) =

∂
∂θ
∂
∂β

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟
θ (k )

 

6: Step 2: Calculate the Hessian Matrix (Second 
Derivatives) at θ (k )   

7: 

 

H(k ) ←

∂2
∂θ 2

∂2
∂θ ∂β

∂2
∂β∂θ

∂2
∂β 2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
θ (k )

 

8: Step 3: Calculate the Step Direction δ (k )   

9: Solve the linear system: H(k )δ (k ) = −S(k )  

10: Step 4: Update Parameters 

11: θ (k+1) ←θ (k ) +δ (k )  

12: Step 5: Check Convergence 

13: If δ (k ) < ε  or Mk ≥  then 

14: break 

15: end if 

16 1+← kk   

17: θ (k ) ←θ (k+1)   

18: until Convergence 

19: θ̂ ←θ (k+1)  {MLE Estimates} 

20: Step 6: Calculate Asymptotic Variance-Covariance 
Matrix  

21: IO ←−H(θ̂ )  {Observed Fisher Information} 

22: V← IO
−1  {Asymptotic Variance-Covariance Matrix} 

5.2. Anderson-Darling Method (ADE) 

The ADE approach, pioneered by [31] and [32], 
seeks to minimize a weighted goodness-of-fit statistic 
that emphasizes the tails of the distribution. Parameter 
estimates for the BE model are derived by minimizing 
the following Anderson-Darling statistic, A :  

A(θ ,β ) = −n− 1
n i=1

n

∑(2i −1) logG(xi:n;θ ,β )+ logS(xn−i+1:n;θ ,β )[ ],  

where xi:n  are the order statistics, G(x;θ ,β )  is the 
CDF, and S(x;θ ,β ) =1−G(x;θ ,β )  is the survival function 
of the BE distribution. 

5.3. Method of Cramér-von Mises (CVME) 

The CVME approach, often credited to [33], 
estimates parameters by finding values that minimize 
the Cramér-von Mises criterion. The parameters θ̂ , β̂  
for the BE distribution are obtained by minimizing the 
following statistic, C :  

C(θ ,β ) = 1
12n

+
i=1

n

∑ G(xi:n;θ ,β )− 2i −1
2n

⎡

⎣⎢
⎤

⎦⎥

2

.  

5.4. Ordinary Least Squares Estimation (OLSE) 

The OLSE technique, utilized in distributional fitting 
by [34], aims to minimize the squared differences 
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between the empirical CDF and the theoretical CDF. 
The BE parameters are estimated by minimizing the 
Ordinary Least Squares statistic, V :  

V (θ ,β ) =
i=1

n

∑ G(xi:n;θ ,β )− i
n+1

⎡

⎣⎢
⎤

⎦⎥

2

.  

5.5. Right-Tail Anderson-Darling Estimation 
(RTADE) 

The parameters θ̂ , β̂  are found by minimizing the 
RTADE statistic, R :  

R(θ ,β ) = n
2
− 2

i=1

n

∑G(xi:n;θ ,β )− 1
n i=1

n

∑(2i −1)logS(xi:n;θ ,β ).  

5.6. Weighted Least Squares Estimation (WLSE) 

As a robust variant of OLSE, the WLSE method [34] 
introduces weights to the squared differences. The 
parameter estimates for the BE distribution are derived 
by minimizing the Weighted Least Squares statistic, 
W :  

W (θ ,β ) =
i=1

n

∑ (n+1)2 (n+ 2)
i(n− i+1)

G(xi:n;θ ,β )− i
n+1

⎡

⎣⎢
⎤

⎦⎥

2

.  

5.7. Left-Tail Anderson-Darling Estimation (LTADE) 

The LTADE method is based on optimizing the fit of 
the theoretical model to the observed data in the lower 
tail, following procedures detailed in studies such as 
[35]. The parameters θ̂ , β̂  for the BE model are 
estimated by minimizing the LTADE statistic, L :  

L(θ ,β ) = − 3
2
n+ 2

i=1

n

∑G(xi:n;θ ,β )

−
1
n i=1

n

∑(2i −1)logG(xi:n;θ ,β ).
 

5.8. Anderson-Darling Second-Order Left-Tail 
(ADSOE) 

This refined technique [36] investigates the second-
order behavior of the distribution in the left tail. The BE 
parameters are estimated by minimizing the ADSOE 
statistic, LTS :  

LTS(θ ,β ) = 2
i=1

n

∑logG(xi;θ ,β )+ 1
n i=1

n

∑ (2i −1)
G(xi;θ ,β )

.  

5.9. Kolmogorov Estimation (KE) 

The Kolmogorov method, also popularized by [36], 
focuses on minimizing the maximum distance between 

the empirical and theoretical CDFs. The BE parameters 
are estimated by minimizing the Kolmogorov statistic, 
KM :  

KM (θ ,β ) = MAX
1≤i≤n

i
n
−G(xi;θ ,β ),G(xi;θ ,β )− i −1

n
⎡

⎣⎢
⎤

⎦⎥
.  

5.10. Estimation Methods Based on Product of 
Spacings (PS) 

These methods rely on the spacings 
Ii =G(xi:n;θ ,β )−G(xi−1:n;θ ,β ) , where G(x0:n;θ ,β ) = 0  and 
G(xn+1:n;θ ,β ) =1 . The spacings Ii  are now a function of 
only θ  and β . 

5.11. Maximum Product of Spacings Estimation 
(MPSE) 

The MPSE method, proposed by [37], is a 
nonparametric alternative to MLE. The BE parameters 
are found by minimizing the negative log-product of 
spacings:  

δ(θ ,β ) = − 1
n+1 i=1

n+1

∑log Ii (θ ,β ).  

5.12. Minimum Spacing Absolute Distance 
(MSADE) 

The MSADE approach [38] minimizes the sum of 
absolute distances. The MSADE statistic, ζ , is:  

ζ (θ ,β ) =
i=1

n+1

∑ | Ii −
1
n+1

| .  

5.13. Minimum Spacing Absolute-Log Distance 
(MSALDE) 

The MSALDE method, also proposed by [38], uses 
a logarithmic transformation of the spacings. The BE 
parameters are estimated by minimizing the MSALDE 
statistic, ϒ :  

ϒ (θ ,β ) =
i=1

n+1

∑ | log Ii − log 1
n+1

| .  

5.14. Minimum Spacing Square Distance (MSSDE) 

The BE parameters are estimated by minimizing the 
MSSDE statistic, ϕ :  

ϕ (θ ,β ) =
i=1

n+1

∑(Ii −
1
n+1

)2.  
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5.15. Minimum Spacing Squared-Log Distance 
(MSSLDE) 

The BE parameters are derived by minimizing the 
MSSLDE statistic, Ψ :  

Ψ (θ ,β ) =
i=1

n+1

∑ log Ii − log 1
n+1

⎛

⎝
⎜

⎞

⎠
⎟

2

.  

5.16. Minimum Spacing Linex Distance (MSLNDE) 

The MSLNDE technique employs a Linex-type loss 
function. The BE parameters are estimated by 
minimizing the MSLNDE statistic, Δ :  

Δ(θ ,β ) =
i=1

n+1

∑ e
Ii−

1
n+1 − Ii −

1
n+1

⎛

⎝
⎜

⎞

⎠
⎟−1

⎡

⎣
⎢

⎤

⎦
⎥.  

 
Figure 3: Graphical representations for the Bias values presented in Table 1. 
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6. SIMULATION 

This section evaluates the efficacy of several 
estimation techniques in predicting the parameters of 
the BE distribution using a substantial amount of 
simulated data. Random data sets were created for 
various sample sizes ( n =15,50,100,200,300,  and 500 ) 
using the quantile function of the suggested model in 

the simulation run. This section will evaluate the 
efficacy and performance of our model estimators. 
Furthermore, we will assess the effectiveness of 
several estimation methods considering many aspects. 
The evaluation will focus on the accuracy, precision, 
and computing efficiency of each method. By 
conducting a comprehensive examination of data from 
diverse sample sizes, our objective was to provide 

 
Figure 4: Graphical representations for the MRE values presented in Table 1. 
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Figure 5: Graphical representations for the MSE values presented in Table 1. 

significant insight into the most reliable estimation 
approach for the BE distribution. In addition, we will 
evaluate the efficacy of each estimating approach in 
various settings to determine its dependability and 
applicability in actual contexts. This research will help 

researchers select the most suitable estimation 
approach for their specific needs. Furthermore, we will 
assess the effectiveness of various estimation 
methodologies, taking into account several elements 
such as 
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Figure 6: Graphical representations for the Dabs  and Dmax  values presented in Table 1. 

 
Figure 7: Partial Rank Heatmap for simulation in Table 1. 
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Table 1: Numerical Values of Simulation Measures for θ = 0.15, β = 0.8 . 
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Table 2: Partial and Overall Ranks for all Estimation Methods of the BE Distribution from 1 
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Bias : | Bias(θ) | = 1
D i=1

D

∑ |θ−θ |,

MeanSquaredErrors : MSE = 1
D i=1

D

∑(θ−θ )2,

MeanRelativeErrors : MRE = 1
D i=1

D

∑ |θ−θ | /θ ,

AverageAbsoluteDifference : Dabs = 1
n D i=1

D

∑
j=1

n

∑ |G(xij |θ )−G(xij |θ) |,

MaximumAbsoluteDifference : Dmax = 1
D i=1

D

∑
j

max |G(xij |θ )−G(xij |θ) |,

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 

where the parameter vector is Θ = (θ , α, β ) . 

The partial and overall ranks for the fifteen 
estimation methods of the BE distribution, summarized 
in Table 2, reveal a clear hierarchy of performance 
across varying sample sizes n . The overall ranking, 
determined by the sum of ranks (∑Ranks ), consistently 
indicates that the MSLNDE method is the best 
performing estimator, achieving the first overall rank 
(rank 1) across all considered sample sizes, from 
n =15  to n = 500 . Following closely behind, the 
MSSDE method secures the second overall rank (rank 
2) throughout the simulation study. This stability in the 
top two positions suggests that these methods are 
generally robust to changes in sample size. Further 
examination of the partial ranks shows that the 
MSLNDE method’s superior overall performance is 
primarily driven by its effectiveness in estimating the 
parameter θ , where it achieves a rank of 1.0 for all 
bias, mean squared error, and mean relative error 
metrics ( Bias (θ̂ ) , MSE(θ̂ ) , and MRE(θ̂ ) ) across all 
sample sizes. For the parameter β , MSLNDE 
consistently achieves a rank of 2.0. Similarly, the 
MSSDE method ranks 2.0 for all θ̂  metrics and 3.0 for 
all β̂  metrics, reinforcing its second-place overall 
standing. 

Conversely, methods like MSALDE and CVME 
generally exhibit poor performance, with MSALDE 
consistently placing near the bottom (rank 15), and 
CVME also ranking poorly for larger sample sizes 
( n ≥ 50 ). The RTADE method is notably poor in 
estimating the parameter β , consistently ranking 1.0 

for β̂  metrics, but performs poorly for θ̂  metrics, 
leading to an overall mid-to-low rank. A different trend 
is observed for the goodness-of-fit metrics, Dabs  and 
Dmax , which measure distributional distance. Here, the 
best overall methods (MSLNDE and MSSDE) do not 
dominate. Instead, the MLE and the ADE frequently 
achieve the lowest ranks (1.0 to 4.0) for these metrics, 
especially as the sample size increases, suggesting 
they provide a better fit to the empirical distribution 
function despite having less favorable performance on 
the parameter-specific metrics. The overall ranking, 

being a composite measure, thus prioritizes the 
accuracy of the parameter estimates (bias and error) 
over the fit statistics for this particular study. These 
inference from Table 2 are due to the simulation results 
contained in Table 1 and the plots which provide visual 
illustrations are in Figures 3, 4, 5 and 6. A visual 
summary of the performance of the estimation 
methods, ordered by rank, call heatmap for case 1 is in 
Figure 7. 

The comprehensive ranking of estimation methods 
for the BE distribution, presented in Table 4, provides a 
clear assessment of their performance under different 
sample sizes, n . The overall performance, determined 
by the sum of ranks (∑Ranks ), indicates that the 
MSLNDE method is the best estimator, consistently 
achieving the first overall rank (rank 1) for all sample 
sizes from n = 50  to n = 500 . For the smallest sample 
size, n =15 , MSADE performs the best overall (rank 1), 
though MSLNDE is a close second (rank 2). As n  
increases, MSLNDE, MSSDE, and MSADE solidify 
their positions as the top three overall performers. 
Upon closer inspection of the partial ranks, MSLNDE’s 
excellent performance stems from its effectiveness in 
estimating the θ  parameter, for which it maintains a 
rank of 1.0 across all bias, mean squared error, and 
mean relative error metrics ( Bias (θ̂ ) , MSE(θ̂ ) , and 

)ˆ(MRE θ ) for all sample sizes. For the β  parameter, 
the performance is less consistent, with the KE method 
dominating by achieving a rank of 1.0 for all β̂  metrics 

for n ≥ 50 . The MSLNDE method’s rank for β̂  is 3.0 for 
all n ≥ 50 . The MSADE method exhibits strong 
performance at the smallest sample size, n =15 , where 
it achieves the best overall rank and ranks second or 
third for all θ̂  metrics. This suggests MSADE is 
particularly well-suited for very small samples. 
However, as n  increases, its overall rank generally 
falls, though it remains in the top five. The MSSDE 
method shows stable, strong performance, typically 
ranking second or fourth overall, and consistently ranks 
2.0 or 4.0 for all θ̂  and β̂  estimation metrics, 
respectively, for n ≥100 . 

In contrast, several methods consistently perform 
poorly. The CVME and OLSE methods frequently fall 
into the lowest overall ranks, particularly as the sample 
size grows. Additionally, the WLSE, LTADE, and KE 
methods generally perform poorly overall, with the 
exception that the KE method is highly accurate for the 
β  parameter estimates, achieving rank 1.0 for all β̂  
metrics for n ≥ 50 . The RTADE method is consistently 
poor across all metrics and sample sizes. A noticeable 
pattern emerges for the goodness-of-fit metrics, Dabs  
and Dmax , which measure distributional distance. Here, 
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Figure 8: Graphical representations for the Bias values presented in Table 3. 
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Figure 9: Graphical representations for the MRE values presented in Table 3. 
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Figure 10: Graphical representations for the MSE values presented in Table 3. 
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Figure 11: Graphical representations for the Dabs  and Dmax  values presented in Table 3. 

 
Figure 12: Partial Rank Heatmap for simulation in Table 3. 
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Table 3: Numerical Values of Simulation Measures for θ = 0.05, β = 0.25 . 
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Table 4: Partial and Overall Ranks for all Estimation Methods of the BE Distribution from 3 
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Figure 13: Graphical representaions for the Bias values presented in Table 5. 
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Figure 14: Graphical representations for the MRE values presented in Table 5. 
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Figure 15: Graphical representations for the MSE values presented in Table 5. 
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Figure 16: Graphical representations for the Dabs  and Dmax  values presented in Table 5. 

 
Figure 17: Partial Rank Heatmap for simulation in Table 5. 
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Table 5: Numerical Values of Simulation Measures for θ = 0.02, β = 0.15  
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Table 6: Partial and Overall Ranks for all Estimation Methods of the BE Model from 5 
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methods like MLE, ADE, and WLSE achieve the best 
ranks (1.0 to 6.0), especially at larger sample sizes, 
despite their generally lower overall ranking based on 
the sum of all metrics. This indicates a trade-off where 
some estimators may be better at fitting the overall 
distribution shape but are less accurate in their specific 
parameter estimates (bias and error). The overall 
rankings, therefore, prioritize the accuracy of the 
parameter estimates. These inference from Table 4 are 
due to the simulation results contained in Table 3 and 
the plots which provide visual illustrations are in 
Figures 8, 9, 10 and 11. A visual summary of the 
performance of the estimation methods, ordered by 
rank, call heatmap for case 3 is in Figure 12. 

The summary of partial and overall ranks for the 
estimation methods of the BE model, as detailed in 
Table 6, demonstrates clear patterns in estimator 
performance across different sample sizes, n . Based 
on the comprehensive ∑Ranks , the MSLNDE method 
is consistently the best overall estimator for larger 
sample sizes, securing the first rank (rank 1) for n ≥ 50  
and the second rank (rank 2) for n =15 . The MSSDE 
method provides the closest competition, consistently 
achieving the second rank (rank 2) for n ≥ 200  and the 
third rank (rank 3) for n < 200 . Considering parameter-
specific performance reveals that MSLNDE’s overall 
dominance for n ≥ 50  is primarily attributable to its 
exceptional accuracy in estimating the θ  parameter. It 
maintains a rank of 1.0 for all θ̂  metrics ( Bias (θ̂ ) , 

MSE(θ̂ ) , and MRE(θ̂ ) ) when n ≥ 50 . For the β  
parameter, MSLNDE also performs very well, ranking 
2.0 or 3.0 for all β̂  metrics for n ≥ 50 . The MSSDE 
method follows a similar pattern for the θ  parameter, 
consistently ranking 2.0 or 3.0 for all θ̂  metrics for 

n ≥ 50 . A notable exception to the general trend occurs 
at the smallest sample size, n =15 , where the MSADE 
method takes the first overall rank (rank 1). At this 
sample size, MSADE achieves a rank of 1.0 for all θ̂  
metrics, outperforming MSLNDE, which ranks 3.0 for 
these metrics. This suggests that MSADE is particularly 
effective in small sample situations. The KE method, 
while consistently ranking poorly overall (typically rank 
11 to 13), exhibits superior performance in estimating 
the β  parameter, achieving a rank of 1.0 for all β̂  
metrics for n ≥ 50 . 

Conversely, several methods consistently perform 
poorly across the board, particularly for larger sample 
sizes. The CVME, OLSE, and WLSE methods, along 
with RTADE, are frequently found in the lowest overall 
rank positions (e.g., CVME with rank 15 for n ≥100 ). 
When considering the goodness-of-fit metrics, Dabs  and 
Dmax , there is again a divergence from the overall 
ranking. Here, the MLE, ADE, and MPSE methods 
often achieve the best ranks (1.0 to 4.0), especially at 
larger sample sizes, suggesting these methods are 
better at modeling the distribution’s shape even if their 
specific parameter estimates are less accurate than 
MSLNDE or MSSDE. The overall ranking, however, 
suggests that minimizing the error and bias in 
parameter estimation is given greater weight in the 
∑Ranks  metric. These inference from Table 6 are due 
to the simulation results contained in Table 5 and the 
plots which provide visual illustrations are in Figures 
13, 14, 15 and 16. A visual summary of the 
performance of the estimation methods, ordered by 
rank, call heatmap for case 5 is in Figure 17. 

Table 7: Data I 

 0.9636  2.7852  3.8628  2.6436  3.0120  2.1780  1.7952  1.9236  1.0176  1.3272  2.9796  2.3520  2.8644  1.0488  1.1244  2.0904 

.9852  3.0468  2.4324  2.0088  2.1444  1.9680  0.6228  1.1328  0.8964  1.0008  2.0436  2.4972  2.3556  2.5644  0.9684  2.2452 

.9872  1.8420  1.4724  1.3980  1.6176  3.6120  2.6088  0.5436  0.9972  1.6212  1.8540  0.3120  0.5400  1.4844  1.2264  1.0068 

.6204  0.9888  1.5948  1.6320  1.3668  1.2876  0.7500  1.9596  1.3944  1.4088  1.6368  1.2360  1.1760  0.9648  0.4200  0.7308 

.9768  1.0896  0.9696  0.9072  0.7056  0.3612  0.9648  0.8772  0.7800  0.6192  0.9084  0.6168  0.6972  0.7512  0.5760  5.2956 

.6624  5.6340  8.9772  6.2292  4.3596  7.9320  9.8988  6.9984  3.6084  6.5124  3.6732  3.9936  2.0640  3.5124  6.4104  6.0204 

.1452  2.6064  3.0852  4.5780  8.7624  4.7412  3.8220  2.1216  3.7956  2.8380  1.9284  5.5704  7.7268  5.2872  6.0252  4.3560 

.5904  3.8472  2.0364  2.6544  5.9604  4.7040  5.7300  2.0988  2.2500  4.1808  1.9716  6.0948  4.8648  4.0176  5.1300  1.9368 

.4916  3.9744  3.6840  2.9448  2.7960  3.2352  7.2252  5.2176  1.0884  1.9956  3.2436  3.7092  0.6240  1.0800  2.9688  2.4528 

.0148  1.2420  1.9788  3.1896  3.2652  2.7336  2.5752  1.5000  3.9204  2.7888  2.8176  3.2748  2.4720  2.3532  1.9308  0.8412 

.4628  1.9536  2.1792  1.9392  1.8156  1.4112  0.7224  1.9308  1.7556  1.5600  1.2384  1.8168  1.2348  1.3956  1.5036  1.1532 

.2360  2.9304  4.5072  7.1808  4.9836  3.4872  6.3456  7.9188  5.5992  2.8872  5.2104  2.9376  3.1944  1.6512  2.8092  5.1288 

.8168  2.5152  2.0844  2.4684  3.6624  7.0092  3.7932  3.0576  1.6968  3.0360  2.2704  1.5432  4.4556  6.1812  4.6764  1.3188 

.7068  6.6516  3.8244  3.1848  3.7476  4.5180  5.4912  7.3872  3.4908  3.0804  3.3684  4.1184  3.0912  1.3176  3.4884  4.9176  
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7. APPLICATIONS 

Data I consists of 224 observations and represents 
the mortality rate of patients during the COVID-19 
pandemic in Canada. The data is contained in [39] and 
reported in Table 7. 

Data II is the failure interval time for 30 fixed 
components studied by [40-43] presented in Table 8. 

Table 9: Summary of Basic Statistics 

 Measures   Data I   Data II  

n   224   30  

Q1    1.4061   0.7475  

Q3    3.8226   2.1275  

IQR   2.4165   1.3800  

Outlier  .9772, 7.932,  

 .8988,  8.7624, 4.36, 4.73  

 .7268, 7.9188  

Mean   2.9013   1.5552  

Median   2.4702   1.2350  

Standard Deviation   1.9053   1.1155  

Variance   3.6301   1.2444  

Range   0.5868   4.6300  

Skewness   1.0794   1.3405  

Kurtosis   3.8597   4.4203 

 

Table 9 summarizes basic statistics for two 
datasets, Data I and Data II, which have vastly different 
sample sizes ( n = 224  and n = 30  respectively). The 
measures of central tendency, Mean and Median, are 
higher for Data I (2.9013 and 2.4702) than for Data II 
(1.5552 and 1.2350). Both datasets show positive 
Skewness (1.0794 for Data I and 1.3405 for Data II), 
indicating a distribution with a longer tail on the right 
side, but this is more pronounced in Data II. The 
Median is noticeably lower than the Mean in both 
cases, which is consistent with the positive Skewness. 
Measures of dispersion, such as Standard Deviation 
(1.9053 vs 1.1155), Variance (3.6301 vs 1.2444), and 
Interquartile Range (2.4165 vs 1.3800), are all higher 
for Data I, suggesting that Data I is more spread out 
than Data II. Both datasets contain outliers, with Data I 
having six high values and Data II having two high 
values. The Kurtosis values (3.8597 for Data I and 
4.4203 for Data II) are greater than the standard value 

of 3 for a normal distribution, suggesting that both 
distributions are leptokurtic, meaning they have heavier 
tails and a sharper peak than a normal distribution, with 
Data II exhibiting a slightly higher degree of 
peakedness. Interestingly, the Range for Data I 
(0.5868) is much smaller than Data II (4.6300), despite 
Data I having a much larger sample size and greater 
measures of variability, which is unusual and suggests 
a potential miscalculation or special context for the 
Range in Data I, perhaps indicating it only represents 
the range before accounting for the listed outliers, or it 
is a typo since the minimum to accommodate the listed 
outliers must be much larger than 0.5868. 

The competing models are the Weibull distribution 
by [44], the Gumbel distribution by [45], the new 
generalized logistic-x transformed exponential 
(NGLXTE) distribution by [42], and the type-I heavy-
tailed exponential (TIHTE) distribution by [46]. 

A comparison of model fitness for Data I and Data 
II, presented in Table 10, suggests that the BE 
distribution provides the superior fit for both datasets. 
For Data I, the BE model yields the highest log-
likelihood ( LL = −426.76 ) and the lowest values for the 
information criteria: AIC (857.5228), CAIC (857.5771), 
BIC (864.3461), and HQIC (860.2770). Generally, 
lower values for these criteria indicate a better model fit 
relative to its complexity. Furthermore, the BE model 
has the smallest Anderson-Darling ( A = 0.4316 ) and 
Cramérâ€“von Mises (W = 0.0600 ) statistics, measures 
of overall goodness-of-fit, and a small 
Kolmogorovâ€“Smirnov ( KS = 0.0440 ) statistic with a 
large p-value ( 0.7795 ), confirming that the null 
hypothesis of the data following the BE distribution is 
not rejected. Among the competing models, the Weibull 
and KMDUSW distributions offer the next best fit, with 
similar statistics. 

For Data II, the BE model again exhibits the highest 
log-likelihood ( LL = −39.44 ) and the lowest values 
across all information criteria, such as AIC = 82.8735 . It 
also maintains the smallest W  (0.0437) and A  
(0.2616) statistics. The BE model’s KS  statistic 
(0.0922) and its associated p-value (0.9606) are strong 
indicators of its good fit to Data II. The TIHTE model is 
a strong contender for Data II, showing a very close 
log-likelihood and information criteria values, and the 
smallest W  and A  statistics, though the BE remains 
the clear overall best performer based on the combined 
criteria. The NGLXTE model consistently provides the 
poorest fit for both datasets, as indicated by its lowest 
log-likelihood and highest information criteria and 
goodness-of-fit statistics. 

Table 8: Data II 

 1.43  0.11  0.71  0.77  2.63  1.49  3.46  2.46  0.59  0.74  1.23  0.94  4.36  0.4  1.74 

.73  2.23  2.23  0.7  1.06  1.46  0.3  1.82  2.37  0.63  1.23  1.24  1.24  1.186  1.17  
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Table 10: Measures of Fitness and Model Performance 

 Data   Model   LL   AIC   CAIC   BIC   HQIC   W   A   KS   P-value  

 BE   -426.76   857.5228   857.5771   864.3461   860.2770   0.0600   0.4316   0.0440   0.7795  

 Weibull   -427.75   859.5098   859.5641   866.3331   862.2640   0.1313   0.9181   0.0532   0.5503  

 Gumbel   -433.14   870.2768   870.3311   877.1001   873.0310   0.1709   1.2285   0.0627   0.3418  

 KMDUSW   -427.93   859.852   859.9063   866.6753   862.6062   0.1324   0.9236   0.0527   0.5619  

 NGLXTE   -437.21   878.4287   878.483   885.2520   881.1829   0.3433   2.2470   0.0803   0.1115  

6* I  

 TIHTE   -431.04   866.0753   866.1296   872.8986   868.8295   0.0625   0.4154   0.0749   0.1615  

 BE   -39.44   82.8735   83.3179   85.6759   83.7700   0.0437   0.2616   0.0922   0.9606  

 Weibull   -39.76   83.5171   83.9616   86.3195   84.4136   0.0606   0.3613   0.1160   0.8140  

 Gumbel   -40.25   84.4974   84.9419   87.2998   85.3939   0.0577   0.3456   0.1235   0.7498  

 KMDUSW   -39.67   83.3498   83.7943   86.1522   84.2463   0.0578   0.3429   0.1118   0.8475  

 NGLXTE   -41.32   86.6406   87.0851   89.4430   87.5371   0.1136   0.6924   0.1622   0.4092  

6* II  

 TIHTE   -39.64   83.2799   83.7243   86.0827   84.1764   0.0357   0.2105   0.0357   0.2105 

 

Table 11: Maximum Likelihood Estimates and Standard Errors 

 Data   Model   Scale   Shape  

.4548 .5865 BE 

(0.4413) (0.4578) 

.2551 .6150 Weibull  

(0.1424) (0.0823) 

.0562 .3771 Gumbel  

(0.0965) (0.0755) 

.5751 .1566 KMDUSW  

(0.0813) (0.0210) 

.8620 .1967 NGLXTE  

(0.0467) (0.0081) 

.1159 .5842 

I  

TIHTE  

(0.0353) (0.9727) 

.7145 .3340 BE  

(0.0588) (0.1732) 

.7293 .4987 Weibull  

(0.2226) (0.2063) 

.0847 .7541 Gumbel  

(0.1441) (0.1128) 

.4657 .4515 KMDUSW  

(0.2036) (0.1103) 

.9363 .3633 NGLXTE  

(0.1387) (0.0439) 

.1804 .4521 

II  

TIHTE 

(0.1179) (2.6624) 
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Table 11 presents the maximum likelihood 
estimates (MLEs) and their standard errors for the 
scale and shape parameters across all six models for 
Data I and Data II. A comparison of the point estimates 
reveals significant variability in the parameter values 
between the different models and datasets, reflecting 
distinct distributional characteristics. For Data I, the 
Weibull model has the largest scale parameter 
estimate ( 3.2551 ), while the TIHTE model exhibits the 
largest shape parameter estimate ( 3.5842 ). When 
evaluating the precision of these estimates via their 
standard errors, the NGLXTE model consistently 
shows the most precise estimation of the shape 
parameter across both datasets, with notably small 
standard errors ( 0.0081  for Data I and 0.0439  for Data 
II). Conversely, the TIHTE model for Data II shows a 
considerable lack of precision, particularly for its shape 
parameter, which has an exceptionally large standard 
error of 2.6624  relative to its estimate. Overall, the 
standard errors are generally smaller for Data II, 
indicating more precise parameter estimation for that 
dataset, with the BE model having the most precisely 
estimated scale parameter ( 0.7145 , standard error 
0.0588 ). 

The BE distribution’s shape parameter is a primary 
indicator of its failure rate (hazard function) behavior 
over time. The estimated shape parameters β̂  for the 
BE  model in Table 1 are both greater than 1, leading 
to specific conclusions regarding risk. The general 
trend is Increasing Failure Rate (IFR) For both Data I 
( β̂ =1.5865 ) and Data II ( β̂ =1.3340 ), the shape 
estimates are > 1 . This strongly suggests that the 
underlying failure process is governed by an Increasing 
Failure Rate (IFR) trend, where the risk of failure rises 
as the component or subject ages, characteristic of a 
wear-out phenomenon. The hazard shape is an upside-
down bathtub. A shape parameter β̂ > 1  in the BE 

model typically corresponds to an upside-down bathtub 
(unimodal) hazard function. This implies that the risk of 
failure:  

• Initially increases rapidly from time t = 0 .  

• Reaches a peak level.  

• Gradually decreases at very late ages.  

This pattern often models initial high-stress or 
random defect failures that peak during the early to 
mid-life span of the system. 

The estimates for Data II are more precise than 
those for Data I, providing greater confidence in the 
inferred risk behavior for the second dataset. 

Figure 18a for Data I shows a distribution that is 
unimodal and slightly skewed, centered around a 
median of approximately 3.5, with the bulk of the data 
ranging from about 0 to 8 and a maximum around 12. 
Figure 18b for Data II displays a broader, more 
platykurtic distribution, also unimodal, centered near a 
median of 1.5, suggesting greater variability compared 
to Data I. Data I appears to have a higher median and 
less spread than Data II, whose data points are more 
dispersed across the range from roughly -1 to 6.  

These plots compare the histograms of two 
datasets, Data I and Data II, against the probability 
density functions of six different statistical distributions. 
In Figure 19a, the histogram for Data I is roughly 
unimodal and slightly skewed right, with the BE, 
Weibull, Gumbel, and NGLXTE distributions appearing 
to provide a visually closer fit to the data’s density than 
the others. Figure 19b shows that the histogram for 
Data II is also unimodal but less skewed than Data I, 
and the BE, KMDUSW and Gumbel distributions seem 
to align reasonably well with the shape of the observed 
data. Both plots illustrate how various theoretical 

 
Figure 18: Boxplot in Violin of (a) Data I (b) Data II. 
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distributions attempt to model the underlying frequency 
or density of the respective datasets. 

Figure 20a for Data I shows the Total Time on Test 
(TTT) plot is mostly concave, remaining entirely above 
the diagonal line, which suggests a distribution with an 
increasing failure rate or Increasing Failure Rate (IFR) 
property. Figure 20b for Data II exhibits an S-shaped 
curve that is initially convex and then becomes 
concave, crossing the diagonal, indicating a distribution 
with a bathtub-shaped failure rate or a Decreasing 
Failure Rate (DFR) followed by an IFR. Since both 
plots lie above the diagonal for a significant portion, 
both distributions generally suggest an increasing 
failure rate over time, especially Data I, which shows a 
consistently increasing risk. These support the hazard 
profile in Figure 20b, hence validating the use of BE 
distribution in fitting the two datasets.  

Figure 21 presents the profile log-likelihood plots for 
the parameters θ  and β  based on Data I. For both 
parameters, the profile log-likelihood curve is nearly flat 
across the displayed ranges, meaning the value of the 
negative log-likelihood changes very little for a wide 

range of parameter values. The maximum likelihood 
estimates (MLEs), marked by the red dots, are 
approximately θ̂ = 2.1  and β̂ = 0.6 , and due to the 
flatness, the resulting 95%  confidence intervals are 
extremely wide or essentially unbounded within the 
plotted regions, as the flat line never reaches the 
critical dashed threshold (which is not visible for θ  or 
β ). 

The two plots in Figure 22 show the profile negative 
log-likelihood for parameters θ  and β , respectively. 
The maximum likelihood estimate for θ  is 
approximately 2.0  and for β  is approximately 1.0 , as 
indicated by the lowest point on each flat profile. Since 
the profile negative log-likelihood is constant and below 
the dashed line for the 95%  confidence level ( 95%  CL) 
across the plotted range, the interval is not closed and 
the data provides very little information to constrain 
these parameters. 

The Probability-Probability (P-P) plots in Figure 23a 
show that the empirical data points for Data I are 
generally close to the  45  dashed reference line for 

 
Figure 19: Histogram vs Density of (a) Data I (b) Data II. 

 

 
Figure 20: Total time on test (TTT) plots for (a) Data I (b) Data II. 
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most of the distributions, suggesting a reasonable fit for 
Data I by several of the models. The P-P plots in Figure 
23b for Data II, however, show that the data points 
deviate noticeably from the reference line for all 
distributions except the BE, with a few plots like 
NGLXTE showing particularly poor alignment. These 

deviations indicate that none of the tested distributions 
provides a good fit for Data II.  

The Quantile-Quantile (Q-Q) plots in Figure 24a 
show that the empirical quantiles for Data I generally 
align well with the theoretical quantiles for most of the 

 
Figure 21: Log-likelihood Profile for Data I. 

 

 
Figure 22: Log-likelihood Profile for Data II. 

 
Figure 23: Probability-Probability (P-P) plots for (a) Data I (b) Data II. 
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distributions, indicating that several of the models could 
be plausible fits for this data. The Q-Q plots in Figure 
24b for Data II, however, display noticeable curvature 
and deviation from the dashed  45  line for all the 
distributions, particularly at the tails. This systematic 
lack of alignment confirms that the tested distributions, 
which were also poorly supported by the P-P plots in 
Figure 24b, are not appropriate models for Data II. 

8. CONCLUDING REMARKS 

This research successfully introduced and 
characterized the Bilal-G family of distributions, a 
significant advancement in the development of flexible 
statistical models capable of capturing complex data 
characteristics that traditional distributions fail to 
address. By utilizing the Bilal distribution as a 
generator, we derived the new family’s key theoretical 
properties and specifically focused on the two-
parameter Bilal-Exponential (BE) distribution. The 
analysis confirmed the BE distribution’s versatility, 
showing its ability to model diverse shapes and exhibit 
a consistently increasing failure rate, which was 
validated by the TTT plots of the real-world data used 
for application. The rigorous simulation study provided 
critical insights into the best-performing estimation 
methods; among the fifteen tested non-Bayesian 
estimators, the Minimum Spacing Linex Distance 
(MSLNDE) method demonstrated superior 
performance, consistently outranking all others in terms 
of minimizing bias and error across various sample 
sizes, thus providing a definitive recommendation for 
future parameter estimation involving the BE model. 

Most importantly, the application to two distinct real 
datasets unequivocally established the BE distribution 
as the superior model fit compared to five well-known 
competing distributions, evidenced by its lowest AIC, 
BIC, and goodness-of-fit statistics. In summary, the 
Bilal-G family, through its BE sub-model, provides a 
powerful and practical new tool for researchers needing 
greater modeling flexibility in applied statistics. 

8.1. Limitations and Future Work 

While this study successfully introduced the Bilal-G 
family of distributions and provided a rigorous 
assessment of the Bilal-Exponential (BE) sub-model’s 
properties, applicability, and estimation efficiency, it is 
important to acknowledge certain boundaries of the 
current work that naturally suggest avenues for future 
research.  

1. Scope of Estimation: The comprehensive 
simulation study was confined exclusively to 
non-Bayesian estimation techniques. While the 
Maximum Likelihood and Minimum Spacing 
estimators proved superior, the potential 
robustness and performance improvements 
offered by Bayesian methods remain 
unexplored.  

2. Univariate Focus: The development and 
application of the Bilal-G family were restricted to 
the univariate setting, which limits its utility in 
modeling complex systems where components 
or events are inherently dependent.  

 
Figure 24: Quantile-Quantile (Q-Q) plots for (a) Data I (b) Data II. 
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3. Regression Modeling: The practical application 
was focused solely on fitting the distribution to 
complete, non-censored data. The potential of 
the BE distribution to serve as a baseline model 
in regression or survival analysis frameworks for 
handling time-to-event data with covariates was 
not addressed. 

8.2. Future Work 

Building upon the robust theoretical foundation 
established here, the following directions are 
recommended for subsequent research: 

1. Bayesian Inference: Develop and evaluate 
Bayesian estimation methodologies for the 
parameters of the BE distribution, incorporating 
various prior distributions (e.g., non-informative, 
gamma, or inverted-gamma priors) and utilizing 
Markov Chain Monte Carlo (MCMC) techniques 
for practical implementation. Multivariate 
Extensions: Derive and analyze bivariate and 
multivariate extensions of the Bilal-G family to 
facilitate the modeling of correlated data 
structures in fields such as engineering, finance, 
and biostatistics. 

2. Bilal-G Regression: Propose and test a Bilal-G 
regression model suitable for analyzing censored 
data, which would significantly enhance the 
family’s applicability in survival analysis and 
reliability studies. 

3. Alternative Baseline Distributions: Explore the 
application of the Bilal-G generator with other 
baseline distributions, particularly those that are 
discrete (e.g., Bilal-Poisson) or possess unique 
characteristics such as heavy tails or zero-
inflation, to further diversify its modeling power. 

4. Alternative Estimation Techniques: Investigate 
the performance of other robust estimation 
methods not covered here, such as L-Moments 
or modified maximum likelihood methods, to 
ensure stability under different data conditions. 
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