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Abstract: This study presents a practical approach for classifying Magnetic Resonance Imaging (MRI) scans to 
distinguish between normal subjects and those affected by Parkinson’s disease (PD). PD is a progressive brain disorder 
marked by dopamine deficiency, and lacks reliable diagnostic methods for early detection. To overcome this challenge, 
we employed Scale-Invariant Feature Transform (SIFT) and Local Binary Pattern (LBP) in designing a Computer-Aided 
Diagnostic (CAD) System. The extracted features are classified using K-Nearest Neighbour (KNN) and Decision Tree 
algorithms. Experimental results show that LBP features classified through the Decision Tree achieved the highest 
accuracy of 97.41%, demonstrating the efficiency of the proposed method in achieving early and accurate detection of 
PD.  
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1. INTRODUCTION 

A neurological disorder that predominantly affects 
older adults is PD [1]. In addition to causing tremors, 
slowness, muscle imbalance, and stiffness, it also 
alters a person's speech [2]. The symptoms of PD can 
be divided into many categories. Symptoms that are 
both motor and non-motor. Humans can visually notice 
the motor signs. The symptoms include stiffness, 
postural instability (balance issues), bradykinesia (slow 
movement), and resting tremor. These symptoms and 
other biomarkers from Cerebrospinal Fluid 
Measurement (CSF) and dopamine transporter imaging 
help us predict PD. Non-motor symptoms include 
cognitive impairment, loss of sense of smell, sleep 
difficulties, constipation, unexplained pains, speech 
and swallowing problems, drooling, and blood pressure 
when standing. Figure 1 shows the sample image of a 
Parkinson-affected brain MRI image. 

Even though methods like dopamine transporter 
single photon emission computed tomography 
(SPECT) and DaTSCAN imaging are known to help  
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diagnose Parkinson’s disease, their use is still 
restricted in many clinical settings due to high cost, 
radiation exposure, and difficulty. Instead of being used 
for early-stage detection, these modalities are 
frequently used for confirmation.  

 
Figure 1: Sample MRI image of Parkinson’s disease. 

To fill this gap, the proposed MRI-based Computer-
Aided Diagnosis (CAD) system utilizes SIFT and LBP 
feature extraction with Decision Tree and KNN 
classifiers to provide an automated, affordable, and 
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repeatable approach for early PD detection. By using 
Intelligent image analysis to increase early recognition 
and classification accuracy, this method seeks to 
complement current diagnostic tools.  

It is the second most frequent neurological condition 
that primarily affects older people. Although this 
disease's primary cause is unknown, environmental, 
and genetic factors play a role. In the proposed work, 
SIFT and LBP were employed for feature extraction. 
Then the derived features are given to KNN (K Nearest 
Neighbor), Decision Tree which classifies the 
Parkinson’s images into regular/abnormal classes is 
discussed. Figure 2 displays the overall framework of 
normal/abnormal classification. 

2. BACKGROUND LITERATURE  

PD is predicted to increase in prevalence based on 
the current pattern of ageing social behaviour. Even 
though this disease has no known cure, early treatment 
with the right drug can significantly reduce symptoms. 
There is a strong desire to employ classification 
methods for PD detection because the conventional 
approach is too intrusive, extensive, and complex for 
self-use. 

Kamal Nayan Reddy Challa describe a PD 
detection method that uses the connection weights of 
interconnections between neurons in ANNs to spread 
knowledge about the problem [3]. The neural network 
must be trained to modify the biases and connection 
weights to obtain the proper mapping. Modeling, data 
analysis, and diagnostic detection are common uses of 
ANNs in the biomedical field. The ANN model's training 
algorithm is very significant. A good training algorithm 
has a short learning curve and achieves higher 
accuracy. 

Pir Masoom Shah developed the PD identification 
technique. Because of its unique qualities, such as self-
learning, flexibility, robustness, and massive 
parallelism, many researchers have chosen the 
Artificial Neural Network as the classification method 
[4]. It is made up of several interconnected 
computational neural units. 

According to Zehra Karapinar Senturk, Fuzzy logic 
can take vague or imprecise observations as inputs 
and produce crisp and precise results. A Fuzzy 
Inference System (FIS) was created using the 
subtractive clustering methodology [5]. 

Anitha S. used a greater number of clusters and 
cluster centres in the dataset images, determined 
through a clustering algorithm. The Fuzzy Inference 
System (FIS) includes inputs, outputs, and a collection 
of rules that define how the system behaves. Each 
input and output contain as many membership 
functions as there are clusters. The radius parameter 
specifies how far the influence of a cluster centre 
extends in each data dimension. After training, the FIS 
structure is formed with a set of fuzzy rules that span 
the feature space, which is then applied to perform 
fuzzy inference on the test data [6]. 

Recent studies have increasingly investigated 
machine learning and deep learning techniques applied 
to neuroimaging data for Parkinson's disease 
detection, in addition to traditional Artificial Neural 
Networks (ANNs) and models based on fuzzy logic. 
The potential of hierarchical feature learning for 
enhanced pattern recognition in MRI and functional 
imaging data has been shown in studies using 
Convolutional Neural Networks (CNNs) and 
autoencoder-based feature extraction [14–18]. In 
contrast to hand-crafted features, CNN models have 

 
Figure 2: Proposed Architecture of Parkinson's disease Classification. 
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been used to automatically extract spatial features from 
3D MRI volumes, improving diagnostic performance. 
Other research has combined classical classifiers with 
wavelet-based, Gabor filter, and histogram of oriented 
gradients (HOG) features, and has achieved high 
sensitivity in distinguishing PD from healthy subjects. 

Despite these developments, the routine clinical 
application of many deep learning techniques is 
restricted by their computational costs and requirement 
for sizable annotated datasets. In this regard, this 
research presents a hybrid MRI-based CAD framework 
that uses SIFT and KNN classifiers, offering a 
computationally effective and comprehensive substitute 
for accurate PD diagnosis based on structural MRI 
data.  

3. METHODOLOGIES 

3.1. Feature Extraction Techniques 

The process of feature extraction begins after the 
input photos have been read. Feature extraction is a 
method for indexing and retrieving captured images' 
visual content [7].  

3.1.1. Scale Independent Feature Detection (SIFT) 

The stable features are obtained through the SIFT 
technique. The features obtained through retrieval are 
affine modification, lighting, rotation, and scaling, which 
are resistant to sub-pixel precision [8]. The algorithm 
follows four steps, which are discussed below.  

• Assigning orientation  

• Localizing key points  

• Defining extrema across different scales  

• Describing the key points  

Then, the 128-dimensional descriptors are matched 
against it. SIFT is a very efficient technique for feature 
extraction from photomicrographic images [9]. 

Identification of Extrema with Scale Space  

It creates the Gaussian "scale space" for an input 
image. Gaussian functions of varying widths are 
applied to the image to create a convolution in Eqs. (1) 
and (2), it is defined as L(x,y,σ) that yields the 
convolution of a variable-scale Gaussian, G(x,y,σ), of 
an input image I(x,y).  

L(x, y,!) =G(x, y,!)* l(x, y)          (1) 

Here, x is the convolution function in x and y, and 

G(x, y) = 1
2!" 2 # e

(x2+y2 ) / 2" 2          (2) 

The distinction between D (x, y, σ) computes the 
difference of two neighbouring scales divided by a 
persistent multiplicative factor k, as provided in Eqs. (3) 
and (4).  

DoG(x, y,!) = (G(x, y, k!)"G(x, y,!)* l(x, y))         (3) 

DoG(x, y,!) = L(x, y, k!)" L(x, y,!)         (4) 

 
Figure 3: SIFT Scale Space. 

This function is primarily helpful for processing 
smoothed images, where L must be computed in the 
case of scale space feature description. Then, as 
shown in Figure 3, DoG is calculated by image 
subtraction, and each point is compared with its eight 
neighbors up and down one scale to determine the 
maxima and minima of DoG (x, y, σ), as shown in 
Figure 4. 

 
Figure 4: Scale Space Key Point Detection. 
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This value is referred to as an extrema when it 
represents the lowest or greatest of all these locations. 

Key Point Localization 

Identifying the key point from an image's low 
contrast or poorly localised edge is known as "key point 
localisation." Equation (5) represents the value of the 
DOG pyramid's essential points at the extrema. 

( )ZD = Z
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           (5) 

This point is excluded when the value of Z falls 
below the threshold. To eliminate poorly localized 
extrema, a primary curve is applied along the edge. 
The difference of the Gaussian function is then given a 
small curvature in the perpendicular direction. At each 
location, a 2x2 Hessian matrix (as shown in Eq. 6) is 
calculated and the key points are used to determine the 
curvature, allowing it to be computed efficiently. 
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Orientation Assignment 

The main features of the local picture attributes are 
used to determine the orientation. The gradient 
orientation of the sample points inside the area 
surrounding the key points is used to create a 
histogram. Thirty-six bins, spanning a 360-degree 
range of orientations, comprise the orientation 
histogram. Pixel versions in Eqs. (7) and (8) are used 
to process the gradient magnitude, m(x,y), and 
orientation, i (x,y). 

m(x, y) = L(x +1, y)! L(x !1, y)2 +
(L(x, y+1)! L(x, y !1))

"

#
$

%

&
'

2

        (7) 

!(x, y) = a tan 2(L(x, y+1)"
L(x, y "1), L(x +1, y)" L(x "1, y))          (8) 

A Gaussian-weighted circular window with a "σ" that 
is 1.5 times the scale of the key points and the gradient 
magnitude is used to weigh each sample. The 
orientation histogram's peaks correspond to the local 
gradients' principal directions. Key points with that 
orientation are created using the highest peak in the 
histogram. To improve accuracy, the position of each 
peak is interpolated by matching the three histogram 
values closest to a Gaussian Distribution. This 
determines the SIFT features' scale, orientation, and 

position in the image. The corners and intensity 
gradients have a profound effect on these traits.  

Key Point Descriptor 

The core concept involves computing the descriptor 
for the image region around each potential key point. 
The critical point position takes samples of the image's 
gradient and magnitude. σ is utilised to relate to the 
measure of the key points to establish a weight to the 
magnitude of a Gaussian weighting function. Rotating 
the descriptor and gradient orientation coordinates to 
the key point orientation yields the orientation 
invariance. The 16 × 16 image is seen in Figure 5. We 
consider 4 × 4 blocks in our studies, which produces a 
4 × 4 × 8-dimensional feature vector. 

 
Figure 5: Building Key point. 

By merging image gradients into orientation 
histograms from 4×4 subregions, a 128-dimensional 
SIFT feature vector is produced, in which each of the 8 
directional bins represents the dominant edge strength 
and orientation in its surrounding area. 

3.1.2. Local Binary Pattern (LBP) 

The LBP is a popular technique for extracting 
texture features from images. It represents local 
textures by comparing each pixel with its neighborhood 
pixels [10]. This method involves the following steps:  

Algorithm of LBP 

• In order to convert the image into greyscale, we 
first create an LBP texture description. 

• The LBP descriptor works in the fixed 3 x 3 pixel 
neighborhood. 

• We consider the centre pixel and compare it with 
the eight surrounding pixels. 

• We assign the value one if the intensity of the 
centre pixel is 8 bits or more than or equal to that 
of its neighbour. 
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• The LBP value of the centre pixel is computed 
either in a clockwise or anti-clockwise direction. 

• The binary test is performed for a 3 x 3 
neighborhood with 8 neighbors. 

• After storing in an 8-bit array, the binary test 
result is translated into a decimal value. 

• If LBP contains no more than 0–1 or 1-0 
transitions, it is considered uniform. 

• For each input image pixel, thresholding, 
accumulation of binary strings, and storage of 
the output decimal value in the LBP array are 
iteratively performed. 

• Then the histogram of the output LBP array is 
computed. 

• Because there can be 28 = 256 possible 
patterns in 3 x 3 neighborhoods, 0 is the lowest 
and 255 is the highest. 

• So, we constructed a 256-bin LBP histogram. 

Finally, the output array has the calculated value  

Therefore, the LBP descriptor of each pixel is 
represented as follows: 

LBP(P,R) = f (gp ! gc )2
p

p=0

p!1

"
 
         (9) 

Where gp and gc indicates the pixel intensities of the 
present and nearby pixels, P is the nearby pixel count 
chosen at the radius R.  

Following previous work in medical texture analysis 
[10,11], a 3 × 3 neighbourhood configuration for the 
LBP operator was chosen because it effectively 
captures micro-textual variations without being 
oversensitive to noise. Large neighborhoods such as 
5×5 or 7×7 in pilot testing result in a significant 
increase in computational cost but no discernible 
improvement in classification accuracy. Therefore, the 
3 × 3 arrangement offered the best possible balance 
between feature compactness, resilience to change in 
illusion, and accurate depiction of the fine-grained 
textures typical of brain tissue affected by PD.  

3.2. Modeling the Features 

3.2.1. K-Nearest Neighbor Algorithm (KNN) 

KNN algorithm is a type of supervised learning 
method applied in statistics, data mining, and many 

other fields. KNN classifies objects by analysing the 
nearest training samples in feature space and 
assigning the label based on the majority of its 
neighboring points [12]. The algorithm below computes 
K nearest neighbors.  

• Find the number of nearest neighbors, 
represented by the parameter K. 

• Use the Euclidean distance method to determine 
the distance between the query instance and 
each training sample. 

• Sort all the training samples' distances, then use 
the K-th minimal distance to get the closest 
neighbor. 

• Get all the categories of the training data for the 
sorted value that falls under K. 

• Use the majority of nearest neighbors as the 
prediction value. 

3.2.2. Decision Tree 

A decision tree is a supervised learning model that 
uses tree like rules from training data to predict target 
outcomes. 

By placing the samples from the tree's root down to 
a leaf or terminal node, which provides the 
categorisation, the Decision Tree separates the 
samples.  

Determining which features must be considered the 
root node at each level is the main issue in the 
Decision Tree implementation. Finding the attribute 
selection is how this is handled. Various attribute 
selection measures are used to identify the feature that 
can be thought of as the root node at each level. Figure 
6 displays the Decision Tree architecture. 

Decision Tree Algorithm 

1. Divide the data according to the most significant 
feature using Attribute Selection Measures 
(ASM).  

2. Divide the dataset into smaller subgroups and 
make that feature a decision node.  

3. Continue doing this repeatedly for every child 
until one of the prerequisites is met to begin 
constructing the tree. 

There are no more instances or surviving attributes; 
all tuples pertain to the same attribute value. 
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Attribute Selection Measures 

The attribute selection measure is a heuristic used 
to identify the optimal splitting rule for effective 
partitioning of data. ASM defines the provided dataset 
and assigns a rank to each attribute. The attribute with 
the highest score will be chosen as a splitting attribute. 
The most widely used selection criteria are 

• Information Gain  

• Gain Ratio 

• Gini Index  

In this proposed work, the Gini Index is used for 
attribute selection.  

4. EXPERIMENTAL RESULTS 

4.1. Datasets 

The study utilizes datasets from Kaggle repository, 
comprising 751 images, -395 normal and 356 
Parkinson’s affected, for training, while 192 images 
were tested using KNN and Decision tree classifiers. 

This study utilizes MRI data from The "Parkinson's 
Disease MRI Dataset" on Kaggle 
(https://www.kaggle.com/datasets/nidaguler/parkinson'
s-disease-mri-dataset) is the source of the MRI data 
used in this study. Of the 943 T1-weighted brain MRI 
images in the dataset, 751 (395 normal and 356 
Parkinson 's-affected) were used for training, while 192 
were set aside for testing. The axial plane is used for 
all MRI scans, with a primary focus on the substantia 

nigra and basal ganglia, two clinically significant 
regions known to show structural abnormalities in 
Parkinson's disease. 

Prior to feature extraction, each image was resized 
to 256 × 256 pixels and grayscaled. In order to 
standardize image quality and lower noise throughout 
the dataset, pre-processing techniques included 
intensity normalization, background removal, and 
contrast enhancement using histogram equalization. 
No personally identifiable information about the patient 
was kept. 

4.2. Environmental Setup 

Previous studies have also highlighted the 
importance of optimized deep learning environments 
for medical imaging applications [13].  

Installing Python 3.6 and the Anaconda library 
created a deep learning environment. The OpenCV-
Contrib (v3.3.0) library was successfully integrated with 
the Python interpreter. The Conda install command 
was used to install Keras and the TensorFlow backend, 
and pip was used to import necessary libraries, 
including NumPy, PIL, Scikit-Learn, SciPy, sklearn, and 
pickle. 

4.3. Performance Measures 

Accuracy, precision, recall, and F-score are among 
the evaluation metrics used in this study; they are all 
obtained from the confusion matrix produced during the 
classification procedure. 

 
Figure 6: Decision Tree Architecture. 
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Accuracy 

A measurement system is considered accurate if it 
produces truthful data (no systematic mistakes) and 
consistent (no random errors). 

FNFPTNTP
TNTPAccuracy

+++
+

=        (10) 

Precision 

In Classification tasks, precision measures how 
accurately positive predictions are made. It is 
calculated as the ratio of true positives to the total 
predicted positive(true positive plus false positive)  

FPTP
TPecisionPr
+

=
 
        (11) 

Recall 

Recall is defined as the ratio of true positives to 
actual positives in the dataset.  

FNTP
TPcallRe
+

=          (12) 

F-Measure 

F-measure is an accuracy metric that represents the 
harmonic mean of  

callReecisionPr
callRe*ecisionPrMeasureF

+
=! 2        (13) 

4.3.1. Performance of SIFT with KNN and Decision 
Tree 

In the proposed work, SIFT points are detected, 
extracted, and given to the KNN and Decision Tree 
classifiers. The image input has been scaled to 256 × 
256 with a window size of 4 × 4. SIFT generates a 128-
dimensional feature vector by taking eight orientations. 

KNN and Decision Trees are given the 128-
dimensional feature vector. Figure 7 displays the SIFT 
key point detection. 

To determine the best method for classifying each 
image into its respective class, the training procedure 
examines training data of both normal and PD -affected 
images. The KNN and Decision Tree classifiers 
discriminate between normal and Parkinson’s affected 
images. The Decision Tree K and KNN Tree are 
trained to distinguish normal/ abnormal affected 
images. 601 feature vectors, each comprising 128 
dimensions, were extracted from images for training. 
The training steps analyse the MRI image training data 
to find an optimal way to classify Parkinson’s affected 
images into their respective two classes: normal 
(Category 1) and abnormal (Category 2). The extracted 
features are utilised to categorise the photos. For 
testing the 192 feature vectors, each of 128 dimensions 
is given as input to the Decision Tree and KNN models. 
The normal/abnormal Parkinson’s affected MRI images 
are decided based on the K-Nearest Neighbour.  

Tables 1 and 2 shows the classification report and 
confusion matrix performance of normal / Abnormal 
classification of Parkinson images using KNN with SIFT 
feature. The accuracy of the KNN with SIFT feature for 
the classification of PD is 60.17%. 

Table 1: Confusion Matrix of KNN with SIFT feature 

 Categories  Normal Abnormal 

Normal 65 36 

Abnormal  40 51 

 

Tables 3 and 4 present the confusion matrix and 
classification report performance for the normal / 

 
Figure 7: Original image and SIFT key points image. 
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Abnormal classification of Parkinson images using a 
Decision Tree with SIFT features. The Decision Tree 
with SIFT feature has a 64.42% classification accuracy 
for PD.  

Table 3: Confusion Matrix of Decision Tree with SIFT 
Feature 

Categories  Normal Abnormal 

Normal 76 25 

Abnormal  42 49 

 
Table 4: Classification Report of Decision Tree with 

SIFT Feature 

Categories  Accuracy  
(In %) 

Precision  
(In %) 

Recall  
(In %) 

F1- Score  
(In %) 

Normal 75.00 75.21 64.43 69.38 

Abnormal  53.84 53.82 66.21 59.35 

Avg 64.42 64.51 65.32 64.36 

 
This study’s relatively low performance (60-

64%)can be explained by the subtle and diffuse nature 
of PD-related structural changes in MRI images, even 
though SIFT has demonstrated robustness in general 
object detection and scene classification. Unlike natural 
images that contain distinct edges, corners, and scale-
invariant key points, brain MRI scans exhibit smooth 
grayscale intensity variations and minimal local 
contrast, which limit SIFT’s ability to identify distinctive 
key points.  

4.3.2. Performance of LBP with KNN and Decision 
Tree Classifiers 

Images of PD were used to extract LBP 
characteristics. The input to LBP is now the 256×256 
converted image. The image is initially converted to 
grayscale using the LBP texture descriptor, which 
operates within a stable 3 × 3 pixel neighborhood. The 
centre pixel is then selected and thresholded against its 
eight-pixel neighborhood. The value is set to 1 if the 
intensity of the central pixel is greater than or equal to 
that of its neighbors, and to 0 otherwise.  

Eight neighbors are subjected to the binary test, and 
the results are saved in an 8-bit array before being 
transformed to a decimal number. Both uniform and 
non-uniform transitions are carried out using LB. Over 
the LBP array, a 256-bin histogram is calculated. LBP 
is used to extract a 59-dimensional feature vector for a 
single image. We obtained a 601 × 59 matrix by using 
601 photos for training. The KNN and Decision Tree 
classifiers are used to compile extracted features. One 
hundred ninety-two images were taken for testing. The 
KNN and Decision Tree classifiers classify both normal 
and pathological conditions of PD. The confusion 
matrix and performance metrics of the KNN with LBP 
feature are displayed in Tables 5 and 6. The accuracy 
of the KNN with LBP was 93.72%. 

Table 5: Confusion Matrix of KNN with LBP Feature 

Categories Normal Abnormal 

Normal 95 6 

Abnormal  6 85 

 

Table 6: Classification Report of KNN with LBP Feature 

Categories  Accuracy  
(In %) 

Precision  
(In %) 

Recall  
(In %) 

F1- Score  
(In %) 

Normal 94.05 94.00 98.00 94.00 

Abnormal  93.40 93.41 93.41 93.4 

Avg 93.72 93.70 95.70 93.7 

 

Tables 7 and 8 show the confusion matrix and 
performance measures of KNN with LBP feature. The 
Decision Tree with LBP achieved an accuracy of 
97.41%. 

Table 7: Confusion Matrix of Decision Tree with LBP 
Feature 

Categories  Normal Abnormal 

Normal 98 3 

Abnormal  2 89 

 

Table 2: Classification Report of KNN with SIFT Feature 

Categories  Accuracy (In %)  

(in %) 

Precision (in%) 

(in %) 

Recall (in %) 

(in %) 

F1- Score (in %) 

(in %) Normal 64.35 64.32 61.94 63.07 

Abnormal  56.04 56.00 58.62 56.28 

Avg 60.19 60.16 60.28 59.67 
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Table 8: Classification Report of Decision Tree with 
LBP Feature 

Categories  Accuracy  
(In %) 

Precision  
(In %) 

Recall  
(In %) 

F1- Score  
(In %) 

Normal 97.02 97.00 98.00 97.49 

Abnormal  97.80 97.81 97.80 97.39 

Avg 97.41 97.40 97.90 97.44 

 

4.4. Performance Comparison 

Comparative studies on CNN and autoencoder-
based systems have demonstrated similar 
improvements in accuracy for disease detection tasks 
[14–17]. Likewise, recent AI-driven CNN models have 
proven highly effective in automating complex medical 
image diagnoses such as lung cancer detection, further 
reinforcing the potential of deep learning in 
neuroimaging-based disease prediction [18]. 

A comparative study of two different feature 
extractions, namely, SIFT and LBP, on the Decision 
Tree and KNN. It is noted that the highest accuracy of 
97.41 % is obtained with the Decision Tree using LBP 
features. Table 9 shows the overall performance of the 
LBP and SIFT features with KNN and Decision Tree. 
The comprehensive comparison of this work is 
displayed in Figure 7. 

Table 9: Overall Performance of the KNN and Decision 
Tree with SIFT and LBP Features 

Features Classifier Accuracy (in %) 

KNN 93.72 
LBP 

Decision Tree 97.41 

KNN 60.19 
SIFT 

Decision Tree 64.42 

 

 
Figure 7: Overall comparison of the proposed work. 

Testing Sample Output 

The sample output of the prediction of PD is 
displayed in Figure 8. 

 

 
Figure 8: Sample output of the proposed work. 

5. CONCLUSION 

The suggested approach confirms that cutting-edge 
AI-driven methods significantly enhance diagnostic 
precision in medical imaging, closely aligning with 
results from earlier deep learning and image-based 
recognition studies [14-24]. The proposed framework 
successfully distinguishes MRI images of patients with 
Parkinson’s disease from those of normal individuals 
by combining handcrafted features, such as SIFT and 
LBP, with traditional classifiers, including Decision Tree 
and KNN. This hybrid approach shows that traditional 
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feature engineering can compete with modern CNN-
based diagnostic systems when optimised in a 
structured learning environment. These findings 
highlight how crucial its to combine traditional and deep 
learning techniques for increased dependability and 
earlier illness detection in neuroimaging applications  
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