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Abstract: This study presents a practical approach for classifying Magnetic Resonance Imaging (MRI) scans to
distinguish between normal subjects and those affected by Parkinson’s disease (PD). PD is a progressive brain disorder
marked by dopamine deficiency, and lacks reliable diagnostic methods for early detection. To overcome this challenge,
we employed Scale-Invariant Feature Transform (SIFT) and Local Binary Pattern (LBP) in designing a Computer-Aided
Diagnostic (CAD) System. The extracted features are classified using K-Nearest Neighbour (KNN) and Decision Tree
algorithms. Experimental results show that LBP features classified through the Decision Tree achieved the highest
accuracy of 97.41%, demonstrating the efficiency of the proposed method in achieving early and accurate detection of
PD.
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1. INTRODUCTION diagnose Parkinson’s disease, their use is still
restricted in many clinical settings due to high cost,
A neurological disorder that predominantly affects 5gjation exposure, and difficulty. Instead of being used
older adults is PD [1]. In addition to causing tremors, for early-stage detection, these modalites are
slowness, muscle imbalance, and stiffness, it also frequently used for confirmation.
alters a person's speech [2]. The symptoms of PD can
be divided into many categories. Symptoms that are
both motor and non-motor. Humans can visually notice
the motor signs. The symptoms include stiffness,
postural instability (balance issues), bradykinesia (slow
movement), and resting tremor. These symptoms and
other biomarkers from Cerebrospinal Fluid
Measurement (CSF) and dopamine transporter imaging
help us predict PD. Non-motor symptoms include
cognitive impairment, loss of sense of smell, sleep
difficulties, constipation, unexplained pains, speech
and swallowing problems, drooling, and blood pressure
when standing. Figure 1 shows the sample image of a
Parkinson-affected brain MRI image.

Even though methods like dopamine transporter

single photon emission computed tomography Figure 1: Sample MRI image of Parkinson’s disease.
(SPECT) and DaTSCAN imaging are known to help

To fill this gap, the proposed MRI-based Computer-

Aided Diagnosis (CAD) system utilizes SIFT and LBP
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Figure 2: Proposed Architecture of Parkinson's disease Classification.

repeatable approach for early PD detection. By using
Intelligent image analysis to increase early recognition
and classification accuracy, this method seeks to
complement current diagnostic tools.

It is the second most frequent neurological condition
that primarily affects older people. Although this
disease's primary cause is unknown, environmental,
and genetic factors play a role. In the proposed work,
SIFT and LBP were employed for feature extraction.
Then the derived features are given to KNN (K Nearest
Neighbor), Decision Tree which classifies the
Parkinson’s images into regular/abnormal classes is
discussed. Figure 2 displays the overall framework of
normal/abnormal classification.

2. BACKGROUND LITERATURE

PD is predicted to increase in prevalence based on
the current pattern of ageing social behaviour. Even
though this disease has no known cure, early treatment
with the right drug can significantly reduce symptoms.
There is a strong desire to employ classification
methods for PD detection because the conventional
approach is too intrusive, extensive, and complex for
self-use.

Kamal Nayan Reddy Challa describe a PD
detection method that uses the connection weights of
interconnections between neurons in ANNs to spread
knowledge about the problem [3]. The neural network
must be trained to modify the biases and connection
weights to obtain the proper mapping. Modeling, data
analysis, and diagnostic detection are common uses of
ANNSs in the biomedical field. The ANN model's training
algorithm is very significant. A good training algorithm
has a short learning curve and achieves higher
accuracy.

Pir Masoom Shah developed the PD identification
technique. Because of its unique qualities, such as self-
learning, flexibility, robustness, and massive
parallelism, many researchers have chosen the
Artificial Neural Network as the classification method
[4]. It is made up of several interconnected
computational neural units.

According to Zehra Karapinar Senturk, Fuzzy logic
can take vague or imprecise observations as inputs
and produce crisp and precise results. A Fuzzy
Inference System (FIS) was created using the
subtractive clustering methodology [5].

Anitha S. used a greater number of clusters and
cluster centres in the dataset images, determined
through a clustering algorithm. The Fuzzy Inference
System (FIS) includes inputs, outputs, and a collection
of rules that define how the system behaves. Each
input and output contain as many membership
functions as there are clusters. The radius parameter
specifies how far the influence of a cluster centre
extends in each data dimension. After training, the FIS
structure is formed with a set of fuzzy rules that span
the feature space, which is then applied to perform
fuzzy inference on the test data [6].

Recent studies have increasingly investigated
machine learning and deep learning techniques applied
to neuroimaging data for Parkinson's disease
detection, in addition to traditional Artificial Neural
Networks (ANNs) and models based on fuzzy logic.
The potential of hierarchical feature learning for
enhanced pattern recognition in MRI and functional
imaging data has been shown in studies using
Convolutional  Neural Networks (CNNs) and
autoencoder-based feature extraction [14-18]. In
contrast to hand-crafted features, CNN models have
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been used to automatically extract spatial features from
3D MRI volumes, improving diagnostic performance.
Other research has combined classical classifiers with
wavelet-based, Gabor filter, and histogram of oriented
gradients (HOG) features, and has achieved high
sensitivity in distinguishing PD from healthy subjects.

Despite these developments, the routine clinical
application of many deep learning techniques is
restricted by their computational costs and requirement
for sizable annotated datasets. In this regard, this
research presents a hybrid MRI-based CAD framework
that uses SIFT and KNN classifiers, offering a
computationally effective and comprehensive substitute
for accurate PD diagnosis based on structural MRI
data.

3. METHODOLOGIES

3.1. Feature Extraction Techniques

The process of feature extraction begins after the
input photos have been read. Feature extraction is a
method for indexing and retrieving captured images'
visual content [7].

3.1.1. Scale Independent Feature Detection (SIFT)

The stable features are obtained through the SIFT
technique. The features obtained through retrieval are
affine modification, lighting, rotation, and scaling, which
are resistant to sub-pixel precision [8]. The algorithm
follows four steps, which are discussed below.

. Assigning orientation
. Localizing key points
. Defining extrema across different scales

. Describing the key points

Then, the 128-dimensional descriptors are matched
against it. SIFT is a very efficient technique for feature
extraction from photomicrographic images [9].

Identification of Extrema with Scale Space

It creates the Gaussian "scale space" for an input
image. Gaussian functions of varying widths are
applied to the image to create a convolution in Egs. (1)
and (2), it is defined as L(x,y,0) that yields the
convolution of a variable-scale Gaussian, G(x,y,o), of
an input image I(x,y).

L(x,y,0)=G(x,y,0)*I(x,y) (1)

Here, x is the convolution function in x and y, and

G(x,y) = L _— e 20 (2)
210

The distinction between D (x, y, o) computes the
difference of two neighbouring scales divided by a
persistent multiplicative factor k, as provided in Egs. (3)
and (4).

DOG(x»y’0)=(G(x’y’ko)_G(x’yva)*l(x’y)) (3)

DoG(x,y,0) = L(x,y,ko) - L(x,y,0) (4)
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Figure 3: SIFT Scale Space.

This function is primarily helpful for processing
smoothed images, where L must be computed in the
case of scale space feature description. Then, as
shown in Figure 3, DoG is calculated by image
subtraction, and each point is compared with its eight
neighbors up and down one scale to determine the
maxima and minima of DoG (x, y, 0), as shown in
Figure 4.
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Figure 4: Scale Space Key Point Detection.
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This value is referred to as an extrema when it
represents the lowest or greatest of all these locations.

Key Point Localization

Identifying the key point from an image's low
contrast or poorly localised edge is known as "key point
localisation." Equation (5) represents the value of the
DOG pyramid's essential points at the extrema.

10D
D(z)=D+ 5

zZ 5
. ®)

This point is excluded when the value of Z falls
below the threshold. To eliminate poorly localized
extrema, a primary curve is applied along the edge.
The difference of the Gaussian function is then given a
small curvature in the perpendicular direction. At each
location, a 2x2 Hessian matrix (as shown in Eq. 6) is
calculated and the key points are used to determine the
curvature, allowing it to be computed efficiently.

D)oc D xy
b=\p b ©)
xy »y

Orientation Assignment

The main features of the local picture attributes are
used to determine the orientation. The gradient
orientation of the sample points inside the area
surrounding the key points is used to create a
histogram. Thirty-six bins, spanning a 360-degree
range of orientations, comprise the orientation
histogram. Pixel versions in Eqs. (7) and (8) are used

to process the gradient magnitude, m(x,y), and
orientation, 7 (x,y).
2 2
m(.3) = (L(x+1,y)—L(x—1,y) +
(L(x,y+1) = L(x,y-1)) (7)
0(x,y)=atan2(L(x,y+1)-
L(x,y-1,L(x+1,y)- L(x-1,y)) (8)

A Gaussian-weighted circular window with a "o" that
is 1.5 times the scale of the key points and the gradient
magnitude is used to weigh each sample. The
orientation histogram's peaks correspond to the local
gradients' principal directions. Key points with that
orientation are created using the highest peak in the
histogram. To improve accuracy, the position of each
peak is interpolated by matching the three histogram
values closest to a Gaussian Distribution. This
determines the SIFT features' scale, orientation, and

position in the image. The corners and intensity
gradients have a profound effect on these traits.

Key Point Descriptor

The core concept involves computing the descriptor
for the image region around each potential key point.
The critical point position takes samples of the image's
gradient and magnitude. o is utilised to relate to the
measure of the key points to establish a weight to the
magnitude of a Gaussian weighting function. Rotating
the descriptor and gradient orientation coordinates to
the key point orientation yields the orientation
invariance. The 16 x 16 image is seen in Figure 5. We
consider 4 x 4 blocks in our studies, which produces a
4 x 4 x 8-dimensional feature vector.

Keypoint descriptor

Image Gradients

Figure 5: Building Key point.

By merging image gradients into orientation
histograms from 4x4 subregions, a 128-dimensional
SIFT feature vector is produced, in which each of the 8
directional bins represents the dominant edge strength
and orientation in its surrounding area.

3.1.2. Local Binary Pattern (LBP)

The LBP is a popular technique for extracting
texture features from images. It represents local
textures by comparing each pixel with its neighborhood
pixels [10]. This method involves the following steps:

Algorithm of LBP

i In order to convert the image into greyscale, we
first create an LBP texture description.

i The LBP descriptor works in the fixed 3 x 3 pixel
neighborhood.

. We consider the centre pixel and compare it with
the eight surrounding pixels.

. We assign the value one if the intensity of the
centre pixel is 8 bits or more than or equal to that
of its neighbour.
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. The LBP value of the centre pixel is computed
either in a clockwise or anti-clockwise direction.

. The binary test is performed for a 3 x 3
neighborhood with 8 neighbors.

. After storing in an 8-bit array, the binary test
result is translated into a decimal value.

o If LBP contains no more than 0-1 or 1-0
transitions, it is considered uniform.

. For each input image pixel, thresholding,
accumulation of binary strings, and storage of
the output decimal value in the LBP array are
iteratively performed.

. Then the histogram of the output LBP array is
computed.

. Because there can be 28 = 256 possible
patterns in 3 x 3 neighborhoods, 0 is the lowest
and 255 is the highest.

. So, we constructed a 256-bin LBP histogram.
Finally, the output array has the calculated value

Therefore, the LBP descriptor of each pixel is
represented as follows:

LBP(P,R) = 2 f(g, -8.)2" ©)

p=0

Where g, and g. indicates the pixel intensities of the
present and nearby pixels, P is the nearby pixel count
chosen at the radius R.

Following previous work in medical texture analysis
[10,11], a 3 x 3 neighbourhood configuration for the
LBP operator was chosen because it effectively
captures micro-textual variations without being
oversensitive to noise. Large neighborhoods such as
5x5 or 7x7 in pilot testing result in a significant
increase in computational cost but no discernible
improvement in classification accuracy. Therefore, the
3 x 3 arrangement offered the best possible balance
between feature compactness, resilience to change in
illusion, and accurate depiction of the fine-grained
textures typical of brain tissue affected by PD.

3.2. Modeling the Features

3.2.1. K-Nearest Neighbor Algorithm (KNN)

KNN algorithm is a type of supervised learning
method applied in statistics, data mining, and many

other fields. KNN classifies objects by analysing the
nearest ftraining samples in feature space and
assigning the label based on the majority of its
neighboring points [12]. The algorithm below computes
K nearest neighbors.

. Find the number of nearest neighbors,
represented by the parameter K.
. Use the Euclidean distance method to determine

the distance between the query instance and
each training sample.

. Sort all the training samples' distances, then use
the K-th minimal distance to get the closest
neighbor.

. Get all the categories of the training data for the

sorted value that falls under K.

. Use the majority of nearest neighbors as the
prediction value.

3.2.2. Decision Tree

A decision tree is a supervised learning model that
uses tree like rules from training data to predict target
outcomes.

By placing the samples from the tree's root down to

a leaf or terminal node, which provides the
categorisation, the Decision Tree separates the
samples.

Determining which features must be considered the
root node at each level is the main issue in the
Decision Tree implementation. Finding the attribute
selection is how this is handled. Various attribute
selection measures are used to identify the feature that
can be thought of as the root node at each level. Figure
6 displays the Decision Tree architecture.

Decision Tree Algorithm

1. Divide the data according to the most significant
feature using Attribute Selection Measures
(ASM).

2. Divide the dataset into smaller subgroups and

make that feature a decision node.

3. Continue doing this repeatedly for every child
until one of the prerequisites is met to begin
constructing the tree.

There are no more instances or surviving attributes;
all tuples pertain to the same attribute value.
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Figure 6: Decision Tree Architecture.

Attribute Selection Measures

The attribute selection measure is a heuristic used
to identify the optimal splitting rule for effective
partitioning of data. ASM defines the provided dataset
and assigns a rank to each attribute. The attribute with
the highest score will be chosen as a splitting attribute.
The most widely used selection criteria are

. Information Gain
. Gain Ratio
. Gini Index

In this proposed work, the Gini Index is used for
attribute selection.

4. EXPERIMENTAL RESULTS

4.1. Datasets

The study utilizes datasets from Kaggle repository,
comprising 751 images, -395 normal and 356
Parkinson’s affected, for training, while 192 images
were tested using KNN and Decision tree classifiers.

This study utilizes MRI data from The "Parkinson's
Disease MRI Dataset" on Kaggle
(https://www .kaggle.com/datasets/nidaguler/parkinson’
s-disease-mri-dataset) is the source of the MRI data
used in this study. Of the 943 T1-weighted brain MRI
images in the dataset, 751 (395 normal and 356
Parkinson 's-affected) were used for training, while 192
were set aside for testing. The axial plane is used for
all MRI scans, with a primary focus on the substantia

Performance

nigra and basal ganglia, two clinically significant
regions known to show structural abnormalities in
Parkinson's disease.

Prior to feature extraction, each image was resized
to 256 x 256 pixels and grayscaled. In order to
standardize image quality and lower noise throughout
the dataset, pre-processing techniques included
intensity normalization, background removal, and
contrast enhancement using histogram equalization.
No personally identifiable information about the patient
was kept.

4.2. Environmental Setup

Previous studies have also highlighted the
importance of optimized deep learning environments
for medical imaging applications [13].

Installing Python 3.6 and the Anaconda library
created a deep learning environment. The OpenCV-
Contrib (v3.3.0) library was successfully integrated with
the Python interpreter. The Conda install command
was used to install Keras and the TensorFlow backend,
and pip was used to import necessary libraries,
including NumPy, PIL, Scikit-Learn, SciPy, sklearn, and
pickle.

4.3. Performance Measures

Accuracy, precision, recall, and F-score are among
the evaluation metrics used in this study; they are all
obtained from the confusion matrix produced during the
classification procedure.
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Figure 7: Original image and SIFT key points image.

Accuracy

A measurement system is considered accurate if it
produces truthful data (no systematic mistakes) and
consistent (no random errors).

Accuracy =
TP+TN + FP+ FN

Precision

In Classification tasks, precision measures how
accurately positive predictions are made. It is
calculated as the ratio of true positives to the total
predicted positive(true positive plus false positive)

Precision = L (11)
TP + FP

Recall

Recall is defined as the ratio of true positives to
actual positives in the dataset.

i (12)

Recall = ————
TP + FN

F-Measure

F-measure is an accuracy metric that represents the
harmonic mean of

e
F - Measure = 2 Precision * Recall (13)

Precision + Recall

4.3.1. Performance of SIFT with KNN and Decision
Tree

In the proposed work, SIFT points are detected,
extracted, and given to the KNN and Decision Tree
classifiers. The image input has been scaled to 256 x
256 with a window size of 4 x 4. SIFT generates a 128-
dimensional feature vector by taking eight orientations.

KNN and Decision Trees are given the 128-
dimensional feature vector. Figure 7 displays the SIFT
key point detection.

To determine the best method for classifying each
image into its respective class, the training procedure
examines training data of both normal and PD -affected
images. The KNN and Decision Tree classifiers
discriminate between normal and Parkinson’s affected
images. The Decision Tree K and KNN Tree are
trained to distinguish normal/ abnormal affected
images. 601 feature vectors, each comprising 128
dimensions, were extracted from images for training.
The training steps analyse the MRI image training data
to find an optimal way to classify Parkinson’s affected
images into their respective two classes: normal
(Category 1) and abnormal (Category 2). The extracted
features are utilised to categorise the photos. For
testing the 192 feature vectors, each of 128 dimensions
is given as input to the Decision Tree and KNN models.
The normal/abnormal Parkinson’s affected MRI images
are decided based on the K-Nearest Neighbour.

Tables 1 and 2 shows the classification report and
confusion matrix performance of normal / Abnormal
classification of Parkinson images using KNN with SIFT
feature. The accuracy of the KNN with SIFT feature for
the classification of PD is 60.17%.

Table 1: Confusion Matrix of KNN with SIFT feature

Categories Normal Abnormal
Normal 65 36
Abnormal 40 51

Tables 3 and 4 present the confusion matrix and
classification report performance for the normal /



752 International Journal of Statistics in Medical Research, 2025, Vol. 14

Indhumatbhi et al.

Table 2: Classification Report of KNN with SIFT Feature

Categories Accuracy (In %) Precision (in%) Recall (in %) F1- Score (in %)
Normal 64.35 64.32 61.94 63.07
Abnormal 56.04 56.00 58.62 56.28
Avg 60.19 60.16 60.28 59.67

Abnormal classification of Parkinson images using a
Decision Tree with SIFT features. The Decision Tree
with SIFT feature has a 64.42% classification accuracy
for PD.

Table 3: Confusion Matrix of Decision Tree with SIFT

Feature
Categories Normal Abnormal
Normal 76 25
Abnormal 42 49

Table 4: Classification Report of Decision Tree with
SIFT Feature

Eight neighbors are subjected to the binary test, and
the results are saved in an 8-bit array before being
transformed to a decimal number. Both uniform and
non-uniform transitions are carried out using LB. Over
the LBP array, a 256-bin histogram is calculated. LBP
is used to extract a 59-dimensional feature vector for a
single image. We obtained a 601 x 59 matrix by using
601 photos for training. The KNN and Decision Tree
classifiers are used to compile extracted features. One
hundred ninety-two images were taken for testing. The
KNN and Decision Tree classifiers classify both normal
and pathological conditions of PD. The confusion
matrix and performance metrics of the KNN with LBP
feature are displayed in Tables 5 and 6. The accuracy
of the KNN with LBP was 93.72%.

Categories| Accurac Precision Recall F1- Score . . .
9 (In %) ¥ (In %) (In %) (In %) Table 5: Confusion Matrix of KNN with LBP Feature
Normal 75.00 75.21 64.43 69.38 Categories Normal Abnormal
Abnormal 53.84 53.82 66.21 59.35 Normal 95 6
Avg 64.42 64.51 65.32 64.36 Abnormal 6 85
This study’s relatively low performance (60-

64%)can be explained by the subtle and diffuse nature
of PD-related structural changes in MRI images, even
though SIFT has demonstrated robustness in general
object detection and scene classification. Unlike natural
images that contain distinct edges, corners, and scale-
invariant key points, brain MRI scans exhibit smooth
grayscale intensity variations and minimal local
contrast, which limit SIFT’s ability to identify distinctive
key points.

4.3.2. Performance of LBP with KNN and Decision
Tree Classifiers

Images of PD were used to extract LBP
characteristics. The input to LBP is now the 256x256
converted image. The image is initially converted to
grayscale using the LBP texture descriptor, which
operates within a stable 3 x 3 pixel neighborhood. The
centre pixel is then selected and thresholded against its
eight-pixel neighborhood. The value is set to 1 if the
intensity of the central pixel is greater than or equal to
that of its neighbors, and to 0 otherwise.

Table 6: Classification Report of KNN with LBP Feature

Categories| Accuracy | Precision Recall F1- Score
(In %) (In %) (In %) (In %)
Normal 94.05 94.00 98.00 94.00
Abnormal 93.40 93.41 93.41 93.4
Avg 93.72 93.70 95.70 93.7

Tables 7 and 8 show the confusion matrix and
performance measures of KNN with LBP feature. The
Decision Tree with LBP achieved an accuracy of
97.41%.

Table 7: Confusion Matrix of Decision Tree with LBP

Feature
Categories Normal Abnormal
Normal 98 3
Abnormal 2 89
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Table 8: Classification Report of Decision Tree with
LBP Feature

Categories| Accuracy | Precision Recall F1- Score
(In %) (In %) (In %) (In %)
Normal 97.02 97.00 98.00 97.49
Abnormal 97.80 97.81 97.80 97.39
Avg 97.41 97.40 97.90 97.44

4.4. Performance Comparison

Comparative studies on CNN and autoencoder-
based systems have  demonstrated similar
improvements in accuracy for disease detection tasks
[14-17]. Likewise, recent Al-driven CNN models have
proven highly effective in automating complex medical
image diagnoses such as lung cancer detection, further
reinforcing the potential of deep Ilearning in
neuroimaging-based disease prediction [18].

A comparative study of two different feature
extractions, namely, SIFT and LBP, on the Decision
Tree and KNN. It is noted that the highest accuracy of
97.41 % is obtained with the Decision Tree using LBP
features. Table 9 shows the overall performance of the
LBP and SIFT features with KNN and Decision Tree.
The comprehensive comparison of this work is
displayed in Figure 7.

Table 9: Overall Performance of the KNN and Decision
Tree with SIFT and LBP Features

Features Classifier Accuracy (in %)
LBP KNN 93.72
Decision Tree 97.41
KNN 60.19
SIFT
Decision Tree 64.42
100 9372 9741
a0
80
70 60.19 64.42
60
50
40
30
20
10
0
LBP SIFT

EKNN Decision Tree

Figure 7: Overall comparison of the proposed work.

Testing Sample Output

The sample output of the prediction of PD is
displayed in Figure 8.

B} Classified Quiput - (] ®

Abnormal /_-_.\
/7 e ™

»

||t Classified Qutput = O x

Figure 8: Sample output of the proposed work.

5. CONCLUSION

The suggested approach confirms that cutting-edge
Al-driven methods significantly enhance diagnostic
precision in medical imaging, closely aligning with
results from earlier deep learning and image-based
recognition studies [14-24]. The proposed framework
successfully distinguishes MRI images of patients with
Parkinson’s disease from those of normal individuals
by combining handcrafted features, such as SIFT and
LBP, with traditional classifiers, including Decision Tree
and KNN. This hybrid approach shows that traditional
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feature engineering can compete with modern CNN-

based diagnostic systems when optimised
structured

in a

learning environment. These findings

highlight how crucial its to combine traditional and deep
learning techniques for increased dependability and
earlier illness detection in neuroimaging applications
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