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Abstract: Heart disease (HD) is a significant health issue in the world, and its early and proper prediction is essential to
minimize mortality and the development of the disease. Cardiovascular disease (CVD) is one of the diseases that need
effective and stable predictive models to assist clinical decision-making. This paper gives a Sigmoidtropy-Based
Decision Tree (SDT) model of cardiovascular disease prediction, which improves the traditional decision tree by adding
a sigmoid-based formulation of entropy. The heart disease data are first grouped by the K-means clustering method in
order to enhance the data representation. The suggested SDT model is tested on the Cleveland heart disease dataset of
the UCI repository and compared to the traditional classifiers, such as Naive bayes, random forest, and the traditional
Decision Tree models. Experimental findings indicate that the SDT has an accuracy of 99.67 which is better than the
performance of Random Forest (76.89%), Decision Tree (76.56%), and Naive Bayes (81.84%) with a lower execution
time. Despite the promising performance shown by the results, it needs further validation with more datasets and strong

evaluation plans to determine the generalizability.

Keywords: Cardiovascular Disease, Sigmoidtropy-Based Decision Tree (SDT), K-Means Clustering, Naive
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1. INTRODUCTION

Cardiovascular disease (CVD) is a highly common
and dangerous health disorder in the entire world and a
cause of the greatest mortality rate. The development
of CVD is in most instances very fast and therefore
there is little time to intervene clinically unless it is
identified at a tender age. As a result, the health care
fraternity has a big problem of properly identifying
patients within a reasonable time. Misdiagnosis or late
diagnosis does not only influence patient outcomes,
but also has an effect on the credibility and operational
efficiency of health institutions. Moreover, the treatment
of CVD is quite expensive, and in the developing world,
including India, a significant percentage of patients
cannot afford the long-term treatment [1], [2]. The rising
global mortality related to heart related diseases over
the past years has shown the necessity of having
reliable, accurate and cost-effective predictive models
that can help in making early diagnosis and timely
treatment.

As healthcare data continues to expand at an
alarming rate, sophisticated computing methods are
now necessary to analyze large and complex medical
data. Deep learning and machine learning methods
have been extensively used to automate the process of
finding knowledge and decision making in healthcare
applications. Specifically, Naive Bayes, Support Vector
Machines (SVM), Decision Trees (DT), K-Nearest
Neighbour (KNN) and Random Forest (RF) are some
of the most commonly used supervised learning
models to predict heart diseases and clinical decision
support system [3, 4]. The models are useful because
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they help healthcare professionals to increase the
accuracy of the diagnosis and minimize the reliance on
manual analysis.

Early diagnosis of cardiovascular disease is
important in determining high-risk individuals,
particularly the ones over the age of 30, so that
preventive methods can be taken against the condition
like lifestyle change, medical counselling, and,
medication in time before the disease advances to a
higher level. Nevertheless, the current predictive
methods are usually unable to work with incomplete,
noisy, or poorly formatted clinical data, which have a
negative impact on the model performance. Poor
management of missing data and past patient data can
result in inaccurate forecasts and restrict the
performance of early disease diagnosis.

Despite promising outcomes with conventional
machine learning models, most of the currently existing
methods use conventional measures of entropy or
information gain in decision tree models. These
approaches can have a low sensitivity to complex
feature distributions, marginal entropy differences, or
skewed data, and can make suboptimal choices of
splits and have low predictive robustness. Additionally,
various works concentrate mainly on the methods of
feature selection or ensemble learning, whereas
relatively little effort has been devoted to the
improvement of the split evaluation mechanism of
decision tree models per se. This observation creates a
gap in the research on identifying alternative entropy
formulations that can enhance the performance of
decision trees in predicting cardiovascular disease.

In order to overcome these shortcomings, this
paper suggests a Sigmoidtropy-Based Decision Tree
model, where the entropy measure is transformed by a
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sigmoid to increase the split discrimination and stability
when constructing a tree. The suggested approach will
enhance the accuracy of classification and retain
computational efficiency and interpretability, which is
why it is applicable in clinical decision-support settings.

The key contributions of the proposed algorithm of
Sigmoidtropy-Based Decision Tree are as follows: To
handle both structured and unstructured data available
in datasets of cardiovascular diseases so as to
enhance the performance of prediction.

. To automatically extract informative features out
of structured clinical data, in consultation with
health care professionals, to increase the
predictive accuracy.

. To create a powerful cardiovascular disease risk
prediction model using the appropriate clinical
attributes.

. To show, by experimental assessment, that the
proposed Sigmoidtropy-Based Decision Tree is
empirically better than the current
state-of-the-art procedures.

The rest of this paper is structured in the following
way: Section 2 will provide a literature review of related
literature. Section 3 explains the research methodology
that will be used including the proposed algorithm.
Section 4 is the discussion of experimental results and
comparison. Lastly, Section 5 wraps up the paper and
gives future research directions.

2. LITERATURE REVIEW

Machine learning (ML) methods have been actively
implemented to predict cardiovascular disease (CVD)
and heart disease (HD) because they can process
complex clinical data and aid in making medical
decisions. Initial predictive models were mainly centred
on supervised learning methods to categorize patients
with  or without cardiovascular disease, and
experimental validation was usually done using
Python-based analytical settings to evaluate the
accuracy and reliability of the algorithms [5].

Analytical frameworks that are based at the system
level and network level have also been discussed to
determine cardiovascular risk, especially in patients
with comorbidities. This was a disease-network-based
ML model that was proposed to predict cardiovascular
risk in patients with type-2 diabetes where disease
networks were built based on cohort-based data and
network-derived features were utilized to train various
ML models [6]. The accuracy of the prediction reported
was between 79% and 88% which indicates the
potential of network analytics and machine learning.

Simultaneously, a survey-based study was conducted
to compare the use of supervised and unsupervised
learning methods, such as ANN, DT, Fuzzy Logic, KNN,
Naive Bayes, SVM, and Logistic Regression, and give
a systematic review of their suitability and drawbacks in
heart disease prediction tasks [7].

The use of feature selection has been identified as
one of the determinants of predictive performance in
cardiovascular disease models. Some of them
explored how to determine meaningful clinical
characteristics and use them with the appropriate
classifiers. The classification frameworks that were
based on voting had a precision of about 87.4 percent
when they were used on optimized feature subsets [8].
Equally, feature identification methods that employed
machine-learning achieved a maximum accuracy of
88.7% on heart disease prediction models [9]. Also,
more general analytical literature investigated the use
of ML in echocardiography, electrocardiography, and
more advanced non-invasive imaging modalities, as
well as the issues associated with interpretability, data
heterogeneity, and clinical adoption [10].

Ensemble and hybrid learning techniques have
been extensively used in order to increase predictive
accuracy. Hybrid models were developed based on
decision trees with artificial neural networks and proved
to be more accurate, sensitive, and specific, especially
when benchmark datasets of the UCI repository were
used to validate them [11]. Hybrid frameworks based
on feature-selection further supported the performance
improvement of classes of classifiers, like DT, Logistic
Regression, SVM, Random Forest (RF), and Naive
Bayes, using tools such as RapidMiner [12]. Other
decision-tree improvement methods, including splitting
based on Gini-index and discretization methods, were
also demonstrated to be more effective in prediction
accuracy and sensitivity than the traditional tree-based
approaches [13].

Comparative studies have always shown that the
performance of the Random Forest models is very
strong especially in missing data and larger data sets.
According to one study, RF had high sensitivity,
specificity, precision, and area-under-the-curve (AUC)
of 94.7 percent on the UCI heart disease data [14].
Hybrid learning approaches also showed that the
combination of classifiers can be used to enhance
predictive performance compared to the performance
of single models [15]. Naive Bayes classifiers were also
found to work better when used with feature-selection
methods like recursive feature elimination and
gain-ratio methods [16]. Further assessments with the
Cleveland data set have indicated 83.49 percent
accuracy when all the 13 clinical attributes are taken
into account [17, 18].
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Specific studies on decision-tree-based methods
showed that there were significant performance
differences across algorithmic settings. In some
prediction tasks, Standalone Decision Tree models
were reported to have a 77.55% accuracy [19]. When
the techniques of boosting were used on Decision
Trees, performance was improved and the accuracy
was greater compared to basic implementations of DTs
[20]. Applications of the J48 algorithm achieved an
accuracy of 67.7% indicating gradual increase over the
previous methods [21]. More complex settings,
including alternating decision tree with the principal
component analysis, had a greater accuracy level of up
to 92.2% [22]. Classifiers based on decision trees that
included forward feature selection also have been
reported to have better weighted accuracy [24].

Random Forest approaches based on ensembles
proved to be robust in a variety of datasets. According
to one of the studies, RF had an accuracy of 91.6% on
the Cleveland dataset and 97% on the People’'s
Hospital dataset [25]. A different study was found to
have an F-measure of 0.86 with RF-based
classification to predict cardiovascular disease [26].
The prediction of coronary heart disease with the help
of the Random Forest app also demonstrated the
accuracy of 97.7, which supports the efficiency of the
ensemble learning methods [27].

In addition to structured clinical data, disease
prediction with the use of ML has been applied to
unstructured and multimodal healthcare data. The
social-media data were analyzed wusing fuzzy
association-rule-based methods to examine trends
associated with healthcare and forecast possible risks
to health [28]. Medical image analysis, including brain
tumor detection, was successfully implemented with
deep learning methods which spurs the growth of
further studies on the application of advanced ML
methods to cardiovascular imaging and early detection
of sudden cardiac events [29].

Recent studies have paid more attention to
sophisticated machine learning systems, explainable
artificial intelligence (XAl), and combined optimization
techniques.  Angiographic-based weighted SVM
models showed better diagnostic performance with
optimized parameter selection [30]. Smart healthcare
systems using RF, DT, and KNN as an ensemble
further improved the reliability of prediction of early
heart diseases detection [31]. ML models based on
feature-selection and hybrid models were always
reported to be strong in classification across various
datasets [32]. Holoistic ensemble designs with
integrated machine learning and deep learning models
had better sensitivity and specificity [33]. The superior
hybrid optimization-based models minimized overfitting
and enhanced predictive accuracy, as compared to the
traditional classifiers [34].

Recent cardiovascular prediction studies have also
made interpretability and transparency important
considerations. Population-based datasets were used
to construct interpretable ML models based on SHAP
analysis to determine essential predictors of coronary
heart disease [35]. The explicable ensemble-learning
models also showed better accuracy and model
transparency on various datasets [36]. Benchmarking
experiments have established that boosting and
bagging ensembles are superior predictors compared
to the traditional classifiers [37]. ML frameworks based
on interpretable and IoMT showed encouraging
outcomes in real-time cardiovascular monitoring and
prediction [38, 39]. Further studies confirmed the
application of predictive analytics and data-mining
methods in the early detection of cardiovascular risks
and real-time observations in a variety of clinical
practices [40, 41].

In order to offer a systematic analysis of the current
methods, Table 1 is a synthesis of representative
studies, datasets, methodologies, and reported metrics
of performance in cardiovascular disease prediction.

Table 1: Comparative Summary of Existing Machine Learning Approaches for Cardiovascular Disease Prediction
Ref. Dataset Method(s) Used Key Contribution Reported Performance
[6] Australian cohort (T2D) Network analytics + ML Disease-network-based risk modeling Accuracy: 79-88%
[8] Clinical HD dataset KNN, DT, NB, SVM, Vote Feature selection + voting Accuracy: 87.4%
[9] Clinical HD dataset HRFLM + ML Feature identification Accuracy: 88.7%
[11] UCI HD DT + ANN (Hybrid) Improved sensitivity & specificity Improved over single models
[13] UCI HD Gini-based DT Alternative split criterion Improved precision
[14] UCI HD NB, SVM, DT, LR, RF Robustness to missing data AUC: 94.7%
[22] UCI HD Alternating DT + PCA Feature reduction Accuracy: 92.2%
[25] UCI HD Random Forest Ensemble robustness Accuracy: 91.6%
[27] Clinical dataset Random Forest Coronary HD prediction Accuracy: 97.7%
[36] Multi-dataset Ensemble + XAl Explainability + accuracy Improved transparency
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Figure 1: Experiment workflow with CVD Dataset.
3. RESEARCH METHODOLOGY

3.1. Overview of the Proposed Methodology

The proposed methodology is based on a
systematic approach to the prediction of cardiovascular
disease at an early stage as shown in Figure 1. It starts
with the selection of pertinent clinical features of the
UCI heart disease data. The first step is to cluster these
features by a clustering method to group similar
patterns of data. The clustered data are then fed into
several classification models such as Naive Bayes,

on

I
erformance /

Table 2: Features in Dataset

<

Decision Tree, Random Forest and the proposed
Sigmoidtropy-Based Decision Tree (SDT). This
workflow aims at assessing the possibility of optimizing
decision-tree-based prediction by modifying the
entropy-based split criterion.

3.2. Dataset and Feature Description

This study uses the dataset provided by the UCI
Machine Learning Repository and it includes the most
popular clinical features related to the prediction of
heart disease. There are 13 features that are taken into

S.No Heart Disease Dataset Parameter
1 Age Numeric No. of years
2 Gender Numeric Patient gender
3 Cp Numeric Pain class
4 Trestbps Numeric Blood pressure in resting state (mm Hg)
5 Fbs Numeric Blood sugar in fasting state (mg/dl)
6 Chol Numeric Cholesterol of serum (mg/dl)
7 Thalach Numeric Heart rate
8 Restecg Numeric ECG pattern
9 Slope Numeric Peak exercise ST segment slope
10 Exang Numeric Angina due to exercise
11 Ca Numeric No. of fluoroscopy colored vessel
12 Old peak Numeric Rest relative - exercise induced ST depression
13 Thal Numeric Status of defect
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account such as demographic data, physiological
measurements and the results of diagnostic tests.
Table 2 summarizes these features. In preprocessing,
records that contained missing values were processed
before analysis and numerical attributes were
normalized so that they were scaled equally before
clustering and classification.

3.3. K-Means Clustering of Feature Data

First, the characteristics added to the heart disease
data are clustered with the help of the sequential
K-means algorithm. Clustering is meant to cluster
together feature values that share similar attributes
before classification hence grouping the data structure
before learning algorithms are applied. According to
the predetermined cluster size K, the data is separated
into K clusters. Euclidean distance between the data
points and the cluster centroid is computed and cluster
means are updated repeatedly till stable clusters are
achieved. In this analysis, K = 2 is used to indicate the
binary nature of heart disease classification (presence
or absence of disease).

Algorithm 1: Clustering

1. Initialize the selected feature dataset

2. Divide the dataset based on cluster size K

3. Estimate the mean of each subset

4, Estimate the Euclidean distance for each
division

5. Form clusters based on mean and Euclidean
distance

6. Recompute the mean for each cluster

7. Compare and update each cluster's average
value

8. Produce the final clustered dataset

3.4. Classification Models

Following the clustering, the data is then provided to
three baseline classifiers, including Naive Bayes,
Decision Tree and Random Forest, to predict heart
disease. Such models are applied to set up
comparative performance standards with the proposed
approach.

Naive Bayes is a probabilistic classifier that relies
on the Bayes theorem and assumes that predictor
variables are independent. Nevertheless, this
assumption notwithstanding, it is popular because of its
simplicity and computing efficiency.

B P(x | c)P(c)

P(clx)= 5] (1)

Where
P(c | x)is the posterior probability,
P(x | ¢)is the likelihood,
P(c)is the class prior probability, and
P(x)is the predictor prior probability.
P(c1X)=P(x; 1 c)P(xy1¢)...P(x, | c)P(c) (2)

Decision Tree is a supervised learning algorithm
that recursively divides the dataset according to the
values of the attributes. Entropy and information gain
are used to determine the splitting attributes.

Entropy(S) = ¥, —p;log, p; 3)
Gain(S, A) = Entropy(S) - ZveValues(A)%Entrop}’(Sv) (4)

Random Forest is a supervised learning algorithm
that is an ensemble-based algorithm which builds a
number of decision trees and identifies the final class
label by majority voting. The method enhances
generalization and decreases overfitting.

3.5. Proposed Sigmoidtropy-Based Decision Tree

The suggested Sigmoidtropy-Based Decision Tree
is a modification of the traditional decision tree which
implements a sigmoid transformation of entropy values
applied in split evaluation. This change constrains the
entropy values and changes the sensitivity of
split-selection process.

The Sigmoidtropy is given by the following function:

1

7= TTres

a(Sv) ()

1+e-S’
Using Sigmoidtropy, the modified information gain is
computed as:

Sy |
a(sy,)  (6)

Gain(S,A) = a(S) — IS

veEValues(A)

Algorithm 2: Sigmoidtropy-Based Decision Tree

1. Generate the root node N

2. Determine the class distribution for each
attribute

3. If all instances belong to the same class, assign

that class to node N

4, If attribute values are null, assign the majority
class to node N
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5. Select the attribute with the highest
Sigmoidtropy-based gain ratio

6. Split the dataset based on the selected attribute

7. Recursively construct subtrees

8. Terminate when stopping conditions are met

4. RESULTS AND DISCUSSION

4.1. Experimental Setup

The proposed Sigmoidtropy-Based Decision Tree
(SDT) model is applied to overview its performance.
The environment of the doctor node and user node is
built on a 64-bit Intel Core processor of the frequency
of 2.45 GHz. Java is also used in transaction level
prototyping. The suggested SDT framework is applied
and the current classifiers, i.e. Decision Tree (DT),
Naive Bayes (NB), and Random Forest (RF) are used
to allow comparing the performance of the classifiers in
the same experimental setting.

4.2. Dataset Description and Evaluation Metrics

4.2.1. Dataset Selection

The cardiovascular disease data is acquired on the
UCI Machine Learning Repository. The database used
in this work is the Cleveland database which is one of
the four databases available on heart diseases. The
data is made up of 303 cases and 14 attributes.

In the proposed model, thirteen attributes are used
to analyze performance, with the age attribute not
included, which is in line with the experimental design
as described in the methodology.

4.2.2. Performance Evaluation Metrics

The proposed SDT and the existing classifiers are
built into a confusion matrix. Accuracy, precision, recall,
F-measure, and ROC area are used to evaluate the
performance of the classifiers. Also, the error based
measures such as Kappa statistic, Mean Absolute
Error (MAE), Root Mean square error (RMSE), Relative
Absolute Error (RAE), and Root Relative Squared error
(RRSE) are applied to evaluate prediction error and
classification agreement.

4.3. Performance analysis

4.3.1. Feature Clustering Results

The heart disease data provided by UCI has over
thirteen attributes, and they are grouped together
through K-means clustering algorithm. Figure 2a-m
demonstrates the visual representation of the data of
clustered features. The features of the clustering
process are grouping the values similar to each other,

and the number of clusters is established to K=2. The
two clusters reflect in-control and out-of-control feature
values, which are further applied to classification.

4.3.2. Error-Based Performance Metrics

This section of the research paper explains the
findings of the confusion matrix and error measures of
different classifiers, which are Random Forest, Naive
Bayes, Decision Tree, and Sigmoidtropy-Based
Decision Tree. Table 3 shows these classifier
performance in terms of Kappa statistic, MAE, RMSE,
RAE, RRSE and execution time.

For the Random Forest classifier, the Kappa
statistic, MAE, RMSE, RAE, and RRSE are recorded
as 0.5235, 0.2617, 0.389, 54.11%, and 75.58%,
respectively, with a response time of 618 ms. The
Decision Tree classifier achieves Kappa, MAE, RMSE,
RAE, and RRSE values of 0.5141, 0.2597, 0.4549,
53.69%, and 88.40%, respectively, with an execution
time of 227 ms. For the Naive Bayes classifier, the
corresponding values are 0.6281, 0.2023, 0.3794,
41.83%, and 73.72%, with a time consumption of 299
ms.

The proposed Sigmoidtropy-Based Decision Tree
achieves Kappa, MAE, RMSE, RAE, and RRSE values
of 0.9934, 0.0066, 0.0576, 1.35%, and 11.20%,
respectively, with a reduced execution time of 85 ms.
The comparative behavior of these error metrics across
classifiers is illustrated in Figure 3a-e.

4.3.3 Computational Time Analysis

Figure 4 shows comparison of the execution time of
the classifiers. The average time of execution of
Random Forest, Decision Tree, Naive Bayes, and the
proposed Sigmoidtropy-Based Decision Tree is noted
as 618 ms, 227 ms, 299 ms, and 85 ms, respectively.
These findings show that the proposed SDT takes less
computational time as opposed to the other classifiers
in the same experimental set-up.

4.3.4. Classification Performance Based on
Confusion Matrix
The classification performance based on

confusion-matrix-derived metrics is summarized in
Table 4, which reports precision, recall, F-measure,
ROC area, and accuracy for all classifiers. The
accuracy values of Random Forest, Decision Tree, and
Naive Bayes are 76.89%, 76.56%, and 81.84%,
respectively. The proposed Sigmoidtropy-Based
Decision Tree achieves an accuracy of 99.67%, along
with high precision, recall, and F-measure values.

The relative performance of precision, recall, and
F-measure of each of the classifiers is also
demonstrated in Figure 5, whereas the ROC curve of
the suggested SDT model is presented in Figure 6.

Despite the high accuracy value of the proposed
SDT, the findings are derived with one benchmark
dataset and thus should be viewed with caution.
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Figure 2: (a). K-means clustering result for Feature 1 of the heart disease dataset. (b). K-means clustering result for Feature 2 of
the heart disease dataset. (¢). K-means clustering result for Feature 3 of the heart disease dataset. (d). K-means clustering
result for Feature 4 of the heart disease dataset. (e). K-means clustering result for Feature 5 of the heart disease dataset. (f).
K-means clustering result for Feature 6 of the heart disease dataset. (g). K-means clustering result for Feature 7 of the heart
disease dataset. (h). K-means clustering result for Feature 8 of the heart disease dataset. (i). K-means clustering result for
Feature 9 of the heart disease dataset. (j). K-means clustering result for Feature 10 of the heart disease dataset. (k). K-means
clustering result for Feature 11 of the heart disease dataset. (I). K-means clustering result for Feature 12 of the heart disease
dataset. (m). K-means clustering result for Feature 13 of the heart disease dataset.

Table 3: Performance on Algorithms on Error Metrics

Description Random forest Decision tree Naive Bayes Sigmoidtropy tree
K-Stat (Kappa statistic) 0.5235 0.5141 0.6281 0.9934
MAE (Mean absolute error) 0.2617 0.2597 0.2023 0.0066
RMSE (Root mean squared error) 0.389 0.4549 0.3794 0.0576
RAE (Relative absolute error) 0.5411 0.5369 0.4183 0.0135
RRSE (Root relative squared error) 0.7558 0.8840 0.7372 0.1120
Time Utilized (in ms) 618 227 299 85
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Figure 3: a. Comparison of Kappa statistic values for different classifiers. b. Comparison of mean absolute error values for
different classifiers. ¢. Comparison of root mean square error values for different classifiers. d. Comparison of relative absolute
error values for different classifiers. e. Comparison of root relative squared error values for different classifiers.
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Figure 4: Comparison of execution time for Random Forest, Decision Tree, Naive Bayes, and Sigmoidtropy-Based Decision
Tree classifiers.
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Table 4: Performance Based on Confusion Matrix
Algorithm Precision Recall F-measure ROC -area Accuracy
Random Forest 0.782 0.769 0.762 0.864 76.89%
DT 0.788 0.766 0.756 0.74 76.56%
NB 0.826 0.818 0.816 0.896 81.84%
SDT 0.997 0.997 0.997 0.993 99.67%
1
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Figure 5: Comparison of precision, recall, and F-measure values for different classifiers.

Plot (Area under ROC - 0.9932)
) v

(| Sigmoidtropy Tree ROC Visualize: ThresholdCurve - (=] X

X: False Positive Rate (Num) w | |Y: True Positive Rate (Num) -

Colour: Threshold (Num) v ||Select Instance -
Reset Clear l Open Save

Jitter C}

Class colour

Figure 6: Receiver operating characteristic (ROC) curve of the Sigmoidtropy-Based Decision Tree classifier.

Further validation methods like cross-validation or
testing on external data would be needed to further test
the performance of generalization.

5. DISCUSSION

The experimental findings suggest that addition of a
sigmoid-based entropy transformation in the decision
tree learning procedure affects the classification

accuracy in various measures of evaluation. The
proposed Sigmoidtropy-Based Decision Tree has been
shown to perform better in terms of error minimization,
classification accuracy and execution time as
compared to the traditional classifiers.

Application wise, smaller prediction error and less
computational cost are good attributes of
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decision-support system in the healthcare setting.
Nevertheless, the results of this research are restricted
to the experiment conditions and data set. More
research based on more data and statistical validation
methods is needed to determine the strength and
applicability of the suggested method.

6. CONCLUSION

The proposed Sigmoidtropy-Based Decision Tree is
intended to determine significant features using
machine-learning methods to enhance the accuracy of
prediction of cardiovascular disease (CVD). To
determine the efficiency of the proposed approach, the
forecasting framework is tested with different
combinations of features and a number of popular
classification algorithms, such as Naive Bayes,
Decision Tree, and Random Forest. As shown in the
experiments, the accuracy of the Random Forest,
Decision Tree, Naive Bayes and Sigmoidtropy-Based
Decision Tree classifiers is 76.89, 76.56, 81.84 and
99.67, respectively. The computed performance of the
Random Forest, Decision Tree, Naive Bayes, and the
proposed Sigmoidtropy-Based Decision Tree
classifiers is 618 ms, 227 ms, 299 ms, and 85 ms,
respectively, in terms of computational efficiency. The
validation findings show that the proposed model is
more accurate in classification and has a low
computation time than the available classifiers in the
same experimental conditions. These results indicate
that a sigmoid-based entropy adjustment can be used
to improve decision-tree learning to predict CVD.
Nevertheless, the findings are derived based on a
single benchmark dataset and thus need to be viewed
with caution. Additional validation with various data
sets, cross-validation methods and statistical
significance analysis is needed to determine
robustness and generalization. Future research will be
aimed at the expansion of the suggested methodology
to structured and unstructured CVD data and the
investigation of more sophisticated data-mining and
analytics tools to aid in the reliable clinical
decision-making process and enhance cardiovascular
healthcare outcomes.
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