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Abstract: This paper proposes using an Autoencoder (AE) prior to t-SNE or UMAP visualization for scRNA-seq data.
Direct application of t--SNE/UMAP to the raw, sparse expression matrix often yields unstable, poorly separated clusters.
To address this, the framework first employs an AE to learn a denoised, compact latent representation. Subsequent
t-SNE or UMAP embedding of this latent space produces more robust visualizations with enhanced cluster consistency
and structural separability. A real-data-based comparison shows that, when using the same AE-derived latent space,
UMAP outperforms t-SNE. It achieves better cluster cohesion, stronger global structure preservation, greater robustness
to initialization and data perturbation, and lower computational cost. Statistical validation via a projection F-test confirms
that clusters in the AE latent space exhibit significant between-group mean differences, quantifying the observed visual
improvement. The study concludes that AE-based representation learning creates an effective input space for nonlinear
embedding, with the AE-UMAP pipeline emerging as a particularly stable and efficient choice for scRNA-seq exploratory
analysis.

Purpose: This study aims to investigate the effectiveness of AE based latent representations in enhancing nonlinear
dimension reduction methods, namely t-SNE and UMAP, for single-cell gene expression data analysis. The performance
of AE-based UMAP and AE-based t-SNE is systematically evaluated from multiple perspectives, including visualization
quality, clustering consistency, structural preservation, and robustness.

Methods: This paper constructs a two-step dimension reduction framework for single-cell gene expression data analysis.
First, an AE is employed to compress high-dimensional, sparse, and noisy gene expression data into a low-dimensional
latent representation. Subsequently, t-SNE and UMAP are applied to the learned AE latent space for nonlinear
embedding and visualization. The performance of different methods is systematically evaluated under multiple
experimental conditions using clustering consistency metrics, structure preservation measures, and a projected F-test.

Results: Experimental results indicate that directly applying t-SNE or UMAP to the original expression data fails to stably
recover meaningful clustering structures, whereas nonlinear dimension reduction performed on AE latent
representations substantially improves visualization quality and clustering stability. Within the same latent space, t-SNE
and UMAP exhibit comparable performance in terms of clustering accuracy; however, UMAP demonstrates superior
performance with respect to cluster compactness, global structure preservation, stability across repeated experiments,
and computational efficiency. Statistical testing further confirms the significance of between cluster differences in the AE
latent space.

Contribution: This study systematically reveals the critical role of AE latent representations in stabilizing nonlinear
dimension reduction for single cell data and provides a quantitative comparison between t-SNE and UMAP within a
unified latent space. The results demonstrate that UMAP applied to AE latent representations achieves superior
performance in terms of visualization stability and computational efficiency, offering a more robust two step dimension
reduction strategy for exploratory analysis of high dimensional single cell data.
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1. INTRODUCTION

ScRNA-seq enables transcriptomic profiling at
single-cell resolution and has become a fundamental
tool for characterizing cellular heterogeneity, identifying
cell types, and reconstructing developmental
trajectories [1,2]. However, scRNA-seq data are
typically high dimensional, sparse, and affected by
substantial technical noise, which makes direct
visualization and clustering in the original expression
space highly challenging [3,4]. Consequently, effective
dimension reduction is a critical prerequisite for
extracting meaningful biological structure prior to
downstream analysis.
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Traditional linear dimension reduction methods,
such as PCA (principal component analysis), compress
data by maximizing global variance and can partially
alleviate the curse of dimensionality [5]. Nevertheless,
scRNA-seq data often reside on complex nonlinear
manifolds, limiting the ability of PCA to capture local
neighborhood relationships and nonlinear structure [6].
In recent vyears, nonlinear dimension reduction
techniques, particularly t-SNE [6] and UMAP [7], have
become the dominant approaches for single-cell
visualization. These methods aim to preserve local
relationships in low-dimensional embeddings and have
been widely adopted in popular analysis frameworks.

Despite their widespread use, previous studies
have shown that directly applying t-SNE or UMAP to
raw gene expression matrices often leads to unstable
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embeddings that are sensitive to random initialization,
parameter selection, sample size, and data noise [8,9].
In highly sparse and noisy scRNA-seq settings, such
sensitivity can result in ambiguous cluster boundaries,
distorted global geometry, and poor reproducibility,
limiting the interpretability of visualization results.

With the rapid development of deep learning, AE
has been increasingly applied to single-cell data
analysis for representation learning and denoising
[10-13]. By learning compact and smooth latent
representations through nonlinear encoding and
decoding, AE can effectively reduce technical noise
and redundancy while preserving dominant structural
patterns in the data. Previous studies have
demonstrated the effectiveness of AE in clustering,
denoising, and feature extraction tasks. However, in
most existing work, AE is treated as an independent
preprocessing or dimension reduction tool, and its
latent representations are rarely evaluated as a unified
input space for subsequent nonlinear visualization
methods.

Notably, although several studies have combined
AE with t-SNE or UMAP, systematic quantitative
comparisons between these two nonlinear methods
within the same AE latent space remain limited [14-17].
Existing evaluations often rely on visual inspection or a
small number of metrics, while robustness to noise,
initialization, and subsampling, as well as statistical
validation of cluster separability, are rarely examined in
a unified framework.

Statistically, the integration of autoencoder-based
latent representations with nonlinear embeddings
transcends mere Vvisualization improvement by
establishing a more robust and hypothesis-testable
framework for single-cell data analysis. Unlike prior
studies that primarily focus on visual separability, our
approach explicitly quantifies the enhancement in
cluster discriminability through rigorous statistical
validation, notably employing the projection-based
F-tests to assess between-cluster mean differences in
the latent space. This methodological contribution
shifts the emphasis from qualitative visual assessment
to statistically grounded inference, allowing for
objective evaluation of cluster significance and stability.
By embedding nonlinear methods within a denoised
and structurally coherent latent space, we not only
improve visualization reproducibility but also provide a
statistically consistent input domain that enhances the
reliability of downstream clustering and comparative
analyses. Thus, this study articulates a clear statistical
advancement: it transforms the latent representation
into a stabilized statistical manifold on which nonlinear
embeddings operate with greater inferential validity,
distinguishing it from earlier works that treated AE

merely as a preprocessing step without formal
statistical integration.

Motivated by these gaps, this study proposes a
two-stage nonlinear dimension reduction framework
based on AE latent representations. High-dimensional
scRNA-seq data are first compressed into a denoised
latent space using AE, followed by nonlinear
embedding using t-SNE and UMAP within the same
latent  representation. Through  comprehensive
experiments on real single-cell gene expression data,
the performance of AE-based t-SNE and AE-based
UMAP is systematically evaluated from multiple
perspectives, including clustering  consistency,
structure preservation, robustness, and computational
efficiency, with additional statistical validation using
projection F-tests.

2. METHODOLOGY

2.1. Data Acquisition and Preprocessing

This dataset is a 10X Chromium sample
(3994%x15716) from peripheral blood mononuclear cells
(PBMCs) from a human donor, and the raw data is
obtained from the 10X Genomics website. The dataset
used in this study can be obtained from:

https://github.com/xzhoulab/DRComparison/blob/mast
er/data/sce_full_Zhengmix8eq.rds

Standard quality control procedures are applied
prior to analysis. Genes expressed in fewer than five
cells are removed, and cells with fewer than ten
detected genes are excluded to eliminate low-quality
observations. The remaining expression matrix is
log-normalized to correct for differences in sequencing
depth across cells.

2.2. Nonlinear Dimension Reduction

An autoencoder (AE) is adopted to perform
nonlinear denoising and compression of the
high-dimensional gene expression data. The model
learns a compact latent representation by encoding the
input into a lower-dimensional space and
reconstructing it back to the original space, allowing
essential structural information to be preserved while
reducing noise.

In this study, the AE compresses the original data
into a 50-dimensional latent space, which serves as the
input for subsequent dimension reduction and
clustering analyses. This dimensionality was selected
based on established practices in single-cell RNA-seq
representation learning, where latent dimensions
between 30 and 100 have been shown to capture
sufficient biological variance while avoiding overfitting
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in datasets of comparable scale and complexity [11].
Statistically, this choice balances the bias—variance
trade-off, ensuring that the latent representation retains
discriminative power without becoming excessively
sparse or noisy.

The model is trained using mean squared error as
the reconstruction loss and optimized with the Adam
optimizer (learning rate = 1e-3). Training is conducted
for 30 epochs on a subset of 1000 samples. The subset
size and epoch count were determined through pilot
experiments aimed at achieving stable reconstruction
loss convergence while maintaining computational
feasibility. Training on a representative subset also
reduces the risk of overfitting and enhances the
generalizability of the learned representation, as the
AE learns robust features without memorizing noise
from the full dataset. These choices collectively support
the statistical goal of deriving a stable, denoised latent
space suitable for downstream nonlinear embedding.

2.3. AE Latent Representation, t-SNE, and UMAP

The learned AE latent representations were further
reduced to two dimensions using t-SNE and UMAP for
visualization and clustering analysis. For t-SNE,
different perplexity values were examined to assess
sensitivity to local neighborhood size. For UMAP, the
number of neighbors and minimum distance were
varied to balance local and global structure
preservation. Both methods were applied directly to the
AE latent space without additional feature engineering.
The theory of t-SNE is referred to [6,18,19].
Implementation of t-SNE is carried out using the R

package Rtsne (https://cran.r-project.org/web/
packages/Rtsne/index.html). UMAP is a nonlinear
dimension  reduction  algorithm  grounded in

Riemannian geometry and algebraic topology. In the
high-dimensional space, UMAP constructs a fuzzy
simplicial complex by computing local connectivity.
Readers can refer to [7] for more theoretical details.
Unlike t-SNE, which minimizes an asymmetric
Kullback—Leibler divergence using a Gaussian kernel
in the input space, UMAP employs symmetric
cross-entropy and an exponential kernel adapted to
local density, resulting in superior preservation of
global structure and significantly faster optimization.
The implementation of UMAP is through the R package
umap (https://cran.r-project.org/package=umap).

2.4. Evaluation Metrics

Multiple evaluation metrics are employed to assess
clustering quality, structure preservation, and
computational efficiency. The Adjusted Rand Index
(ARI) is used to measure the agreement between the
predicted cluster assignments and reference labels.
ARI is a measure of agreement/similarity between two

data clusterings, adjusted for chance. It's widely used
to compare clustering results against ground truth
labels or to compare two clustering algorithms. Some
major references on ARI and its application are [19-23].
In this study, the ARI was computed using externally
provided reference cell type labels, even though the
overall framework is unsupervised. This approach
serves as a benchmark validation rather than an
intrinsic  clustering  objective, allowing us to
quantitatively assess how well the unsupervised
embeddings recover biologically meaningful groupings.
However, the use of reference labels introduces a
potential bias: it presupposes that the “ground truth”
labels are both accurate and optimally relevant for the
given visualization task. In practice, single-cell clusters
may reflect biological states beyond canonical cell
types, such as activation states, cycle phases, or
transient trajectories, which reference labels might not
fully capture. Consequently, a lower ARI does not
necessarily indicate poor clustering; it may instead
reflect a mismatch between the embedded structure
and the provided annotation schema. To mitigate
over-reliance on ARI, we complemented it with internal
validation measures (Silhouette score, trustworthiness,
continuity) that do not depend on external labels. This
multi-metric  strategy  ensures that clustering
performance is evaluated both in terms of biological
plausibility (via ARI) and intrinsic structural quality (via
internal metrics), providing a balanced interpretation of
embedding accuracy.

The Silhouette score (Silhouette coefficient)
evaluates cluster compactness and separation.
Trustworthiness and Continuity are adopted to quantify
the preservation of neighborhood relationships
between the high-dimensional space and the
low-dimensional embedding, with a Silhouette score
close to 1 indicating better structural preservation.
Silhouette score is an internal clustering validation
measure that quantifies how well each data point fits
into its assigned cluster based on both cohesion
(within-cluster similarity) and separation (between-
cluster dissimilarity). Details on the Silhouette
coefficient can be referred to references [24-27]. In
addition, the M-distance [28] is used to measure the
geometric distortion between the original space and the
embedded space. Runtime is recorded to evaluate
computational efficiency. For M-distance and runtime,
lower values indicate better performance.

3. RESULTS

3.1. Direct Application of the t-SNE on the Raw
Gene Expression Data

By running the R packages Rtsne and umap on the
raw gene expression data and computing the ARI and
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Figure 1: Pure t-SNE Plots under different choices of the perplexity parameter.
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Figure 2: Pure UMAP Plot under different choices of parameters.
Table 1: Pure t-SNE Evaluation Metrics
Perplexity ARI Sil. Trust. Cont. M Time
15 0.078 0.312 0.503 0.731 1.91 2.40
30 0.014 0.303 0.507 0.732 1.86 3.03
50 0.137 0.332 0.510 0.731 1.92 3.82

the Silhouette score, we can obtain the t-SNE plots. As
shown in Figures 1-2, direct application of the t-SNE
and UMAP to the original scRNA-seq expression
matrix does not reliably recover meaningful clustering
structures. The unclear clustering of the t-SNE alone in
Figure 1, and the unclear clustering of the UMAP in
Figure 2, both cannot display desirable clusters under
different choices of perplexity (where p=perplexity).
Tables 1-2 also provide numerical evidence on the
outcomes of the clustering from t-SNE and UMAP

based on different parameter configurations and
repeated runs. The numerical outcomes in Tables 1-2
also support that fact that the t-SNE in Figure 1 and the
UMAP in Figure 2 exhibit substantial variability, blurred
cluster boundaries, and distorted global geometry.
Changes in initialization and neighborhood-related
parameters lead to inconsistent cluster arrangements,
indicating that the high dimension, sparsity, and noise
inherent in raw expression data hinder stable nonlinear
visualization.
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Table 2: Pure UMAP Evaluation Metrics

Neighbors min_dist ARI Sil. Trust. Cont. M Time
15 0.0 -0.002 0.352 0.498 0.553 1.91 10.11
15 0.1 -0.001 0.355 0.501 0.596 1.95 3.19
15 0.3 0.000 0.335 0.499 0.509 1.89 3.26
30 0.0 0.000 0.329 0.503 0.525 1.86 3.49
30 0.1 0.001 0.335 0.502 0.504 1.89 3.43
30 0.3 -0.001 0.341 0.506 0.520 1.89 3.49
50 0.0 0.000 0.333 0.502 0.473 1.89 3.71
50 0.1 0.002 0.332 0.504 0.483 1.87 3.78
50 0.3 -0.002 0.336 0.502 0.451 1.89 3.76
Note: In Tables 1-2, Trust.=Trustworthiness, hypothesis. Four choices of projection dimension are

Cont.=Continuity, which are two of the most important
neighborhood  preservation  metrics used to
quantitatively  evaluate  the  performance  of
dimensionality reduction techniques like t-SNE and
UMAP. They don't evaluate clustering per se, but
rather how faithfully the low-dimensional embedding
preserves the high-dimensional data's neighborhood
structure, see [19, 29, 30] for more details.

3.2. Latent Representation from AE

The AE model is used to obtain a low-dimensional
latent representation of the data, capturing the key
features for clustering analysis. Additionally, the
projected F-test in [31] is applied to perform multiple
mean comparisons, further assessing the differences
between clusters in the AE latent space. The projected
F-test [31] outcomes are summarized in Table 3, where
the sample size n=1000, the data dimension p=15716.
The maximum number of projection dimension
r=min(n —1,p) — 1in [31] was AE compressed to
r =50. The exact null distribution for the projected
F-testis F.~F(r,n—1—r). The null hypothesis is

Ho:py = pp = - =y,

where each u; (i=1,..,k) stands for the average
cluster level, k is the number of clusters selected from
the t-SNE or UMAP. Based on the t-SNE plots in Figure
5 and the UMAP plots in Figure 6, the projected F-test
for multiple mean comparisons among the 4 clusters
(k=4 in the null hypothesis) is carried out to test the

Table 3: Projected F-Tests in AE

indicated in Table 3, where the notation [x] means the
integer part of a real number like [2.1] =2, [2.9] =2. The
outcomes in Table 3 show a significant difference
exists among the four cluster mean levels in Figures
5-6.

The projected F-tests in Table 3 provides further
partial statistical evidence to support the fact that the
four clusters from the AE-UMAP procedure are far
apart from one another in the sense of central tendency
measured by the mean. Because the F-tests in Table 3
are not independent with each other, the overall
statistical significance is not able to be given. This
belongs to the big area of multiple mean comparison
with dependence. Interested readers can refer to [31,
38, 39] for more statistically justifiable interpretation on
the overall statistical significance.

3.3. Determination of the Optimal Number of

Clusters

To ensure a fair and reproducible comparison of
nonlinear embeddings, the number of clusters is
determined based on the structure of the AE latent
representations rather than the Ilow-dimensional
visualization results. Both elbow analysis and
Silhouette evaluation are performed in the AE latent
space to identify a stable cluster configuration.

As shown in Figure 3, the within-cluster sum of
squares (WCSS) curve exhibits a clear inflection at k =
4, beyond which further increases in k result in only

Projection Dimension Projected F-distribution F-value p-value
n =[] =12 F (12, 987) 89.3484 2.3690e-148
n=[3]=16 F (16, 983) 67.3575 1.5761e-145
n=[3]=25 F (25,974) 47.2665 4.8151e-145
ry =[] = 7 F (37, 962) 34.8906 2.7234e-148
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Figure 3: Elbow Plot and Silhouette Score of AE.

marginal reductions in  within-cluster variance.
Consistently, the Silhouette score reaches its
maximum at k = 4, indicating optimal cluster

compactness and separation. Based on the agreement
between these two criteria, k = 4 is selected as the
optimal number of clusters for all subsequent analyses.

3.4. Hierarchical Relationship between Clusters

To further examine the structural relationships
among the identified clusters, hierarchical clustering
was performed on the centroids of the four clusters
obtained in the AE latent space using Ward'’s linkage
method [40]. As illustrated in Figure 4, the resulting
dendrogram reveals a clear multi-level hierarchy, with
distinct merging distances reflecting varying degrees of
transcriptional similarity between clusters. Specifically,
Clusters 1 and 2 merge at a relatively low linkage
distance (~2.5), indicating that they represent closely
related subpopulations. In contrast, Cluster 3 remains
well separated, merging only at a much larger distance
(~7.5), which highlights its distinct transcriptional
identity. This hierarchical organization statistically
reinforces the stability and interpretability of the chosen
cluster configuration (k =4), demonstrating that the AE
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latent space captures not only discrete cell groups but
also biologically meaningful relationships at different
levels of granularity. The clear separation between
major branches further supports the structural
coherence of the learned representation and its
suitability for downstream analyses such as trajectory
inference or cell-type annotation.

3.5. Evaluation of t-SNE Applied to AE Latent
Representations

When the t-SNE is applied to the AE latent
representations, clustering performance is markedly
improved compared with its direct application to the
raw expression data. The ARI increases to
approximately 0.52, indicating higher agreement
between the resulting cluster assignments and the
reference labels. Changes in the perplexity parameter
have limited influence on ARI values, whereas higher
perplexity values are associated with increased
Silhouette scores, reflecting improved within-cluster
compactness.

As shown in Figure 5, samples belonging to
different categories form more clearly separated

6 2 7 0

Figure 4: Hierarchical Clustering of True Labels Centroids.
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Figure 5: t-SNE Based on AE.

Table 4: Optimal Metrics at Perplexity = 50

-SNE 1

t-SNE 1

Metric ARI Sil.

Trust.

Cont. M Time

Value 0.526 0.681

0.970

0.970 2.45 2.38

groups in the low-dimensional embedding. Table 4
shows under the optimal parameter configuration with
a perplexity of 50, the ARI reaches 0.526 and the
Silhouette score reaches 0.681. Trustworthiness and
continuity values are both approximately 0.97,
indicating that local and global neighborhood
relationships are well preserved. The corresponding
M-distance remains low at 2.45. The runtime under this
configuration is 2.38 seconds.

3.6. Evaluation of UMAP Applied to AE Latent
Representations

UMAP applied to AE Ilatent representations
produces consistent clustering results across a range

of parameter settings. Variations in the number of
neighbors and minimum distance lead to only modest
changes in the resulting embeddings.

As illustrated in Figure 6, cluster separation is
maintained under different parameter combinations.
Quantitative evaluation results are summarized in
Table 5. Across all tested configurations, ARI values
remain constant. Silhouette scores decrease gradually
as the minimum distance increases, indicating reduced
within-cluster compactness. Trustworthiness shows a
slight downward trend with increasing minimum
distance, whereas continuity remains relatively stable.
M-distance values remain low across all parameter
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Figure 6: UMAP based on AE.
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Table 5: The Comparison Results of UMAP Parameters Combinations
Neighbors min_dist ARI Sil. Trust. Cont. M Time
15 0.0 0.525 0.893 0.951 0.971 2.50 1.30
15 0.1 0.525 0.860 0.950 0.972 2.52 1.27
15 0.3 0.525 0.807 0.941 0.974 2.47 1.27
30 0.0 0.525 0.889 0.952 0.972 2.52 1.59
30 0.1 0.525 0.879 0.947 0.973 2.54 1.49
30 0.3 0.525 0.821 0.938 0.974 2.32 1.49
50 0.0 0.525 0.891 0.945 0.972 2.54 1.70
50 0.1 0.525 0.850 0.942 0.973 2.50 1.64
50 0.3 0.525 0.744 0.937 0.973 2.46 1.65
settings. From Table 5, the influence of neighborhood improvements could be made in dimension reduction
size is limited, with no substantial changes observed in and to find a better balance between different methods.
the quantitative metrics as the number of neighbors
increases from 15 to 50. The configuration with 15 The combination of AE with UMAP and t-SNE is
neighbors and a minimum distance of 0 yields the tested, but no significant improvement in clustering
highest Silhouette score and the lowest M-distance, performance is observed compared to UMAP based on
with a runtime of 1.30 seconds. AE alone.
3.7. Multi-Stage Embedding Since t-SNE handles only 2D or 3D data, AE
followed by PCA and UMAP is tested in Figure 8. While
Apart from the AE and UMAP combination, the some parameter combinations yield good classification
integration of three methods is also These results, this method do not outperform the two-method
combinations aimed to explore whether further combinations in terms of evaluation metrics. PCA relies
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Figure 7: AE followed by UMAP and t-SNE.
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Figure 9: Robustness Analysis.

on linear transformations and cannot capture complex
nonlinear relationships as effectively as pure t-SNE
and pure UMAP.

3.8. Robustness and Sensitivity Analysis

To further evaluate the reliability of the proposed
AE-based nonlinear embedding framework, robustness
and sensitivity analyses are conducted under a range
of perturbation conditions. Specifically, the stability of
clustering performance is examined with respect to
noise perturbation, stochastic initialization,
subsampling, the number of clusters, and sample size.

All evaluations are performed on the AE latent
representations using fixed optimal embedding
parameters.

Under Gaussian noise  perturbation and

subsampling, both the t-SNE and UMAP exhibit stable
ARI values across different noise levels and retained
data proportions, indicating that moderate data
perturbations have limited impact on clustering
consistency. Repeated experiments with different
random initializations further reveal differences in
stability between the two methods. As shown in Figure
9, UMAP produces highly consistent results across
runs, whereas t-SNE occasionally exhibits noticeable
performance degradation under specific random
seeds.

To further examine sensitivity to the number of
clusters, both methods are evaluated with cluster
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numbers ranging from k = 4 to kK = 8. As shown in
Figure 10, UMAP achieves its highest Silhouette score
at k = 4, indicating well-separated and compact
clusters in the latent space, whereas t-SNE exhibits
more gradual changes across different cluster numbers.
Although ARI values for both methods generally
increase with k, the relative performance trends
between t-SNE and UMAP remain consistent, and no
substantial performance improvement is observed
beyond the selected cluster number. These results
indicate that k = 4 provides a balanced clustering
configuration for this dataset and that the comparative
conclusions are robust to moderate variations in the
number of clusters.

To further assess the effect of sample size on
embedding performance, the t-SNE and UMAP applied
to the AE latent representations are evaluated using
subsets of different sizes. The analysis focuses on
clustering consistency and computational efficiency as
the number of samples varies. As shown in Figure 11,
UMAP achieves higher ARI values under small sample
conditions, indicating stronger clustering consistency
when the number of samples is limited. As the sample
size increases, the performance gap between the two
methods gradually diminishes, and both methods
converge to similar clustering accuracy at medium to
large sample sizes. In terms of computational efficiency,
Figure 11 shows that UMAP consistently requires less
runtime than t-SNE across all sample sizes, with the
difference becoming more pronounced as the dataset
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Figure 11: ARI and Runtime in different sample size.
size increases. These results indicate that UMAP offers robust, efficient, and reproducible choice for

clear advantages in robustness and scalability,
particularly for small to medium-sized datasets.

4. CONCLUDING REMARKS

This study investigated the effectiveness of an
autoencoder-based latent representation in stabilizing
nonlinear dimension reduction for single-cell RNA-seq
data, with a comparative focus on t-SNE and UMAP.
Our results demonstrate that the quality of the input
representation fundamentally determines the reliability
of subsequent nonlinear embedding. Direct application
of t-SNE or UMAP to raw expression data yielded
unstable and poorly separated clusters, whereas
performing nonlinear reduction on AE-learned latent
representations substantially improved clustering
consistency, visual separability, and structural
preservation.

Within the unified AE latent space, both methods
succeeded in recovering meaningful cluster structures.
However, UMAP exhibited clear advantages in
preserving global topology, robustness to parameter
variation and initialization, and computational efficiency.
These advantages were quantitatively validated
through multiple metrics—including higher Silhouette
scores, stable ARI under perturbation, and lower
runtime—as well as statistical confirmation via
projection-based F-tests. Sensitivity analyses further
confirmed that UMAP’s performance advantages
persist across varying sample sizes, noise levels, and
cluster numbers.

The framework presented here underscores the
importance of representation learning as a prerequisite
for reliable nonlinear visualization in high-dimensional,
noisy biological data. Rather than treating AE merely
as a preprocessing step, this study positions it as a
statistically grounded foundation that enhances the
inferential validity of downstream embeddings. In
practical terms, the AE-UMAP pipeline emerges as a

exploratory single-cell analysis, particularly when
stability and interpretability are prioritized.

Future work may extend this approach to larger and
more diverse datasets, integrate alternative deep
learning architectures, and explore the inclusion of
biological prior knowledge to further enhance
interpretability. Nevertheless, this study provides a
systematic, empirically supported framework for
combining representation learning with nonlinear
dimension reduction, offering clear methodological
guidance for the analysis of single-cell transcriptomic
data.

While this study demonstrates the effectiveness of
AE-based nonlinear embedding, several limitations
should be acknowledged. First, our analysis relied on a
single PBMC dataset; although it is widely used and
representative, further validation across diverse
biological contexts and sequencing platforms would
strengthen generalizability. Second, the autoencoder
architecture and training parameters (e.g., latent
dimension, epochs, subset size) were fixed based on
pilot experiments and existing conventions; systematic
hyperparameter optimization could further refine
representation quality. Third, evaluation remained
largely visualization- and metric-driven, relying on
internal and external clustering indices; future work
could benefit from incorporating biological ground truth
or functional validation to assess biological relevance
more directly. These limitations highlight opportunities
for extension rather than invalidating the framework,
which remains a statistically principled and practically
useful approach for single-cell data exploration.
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