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Abstract: This paper proposes using an Autoencoder (AE) prior to t-SNE or UMAP visualization for scRNA-seq data. 
Direct application of t-SNE/UMAP to the raw, sparse expression matrix often yields unstable, poorly separated clusters. 
To address this, the framework first employs an AE to learn a denoised, compact latent representation. Subsequent 
t-SNE or UMAP embedding of this latent space produces more robust visualizations with enhanced cluster consistency 
and structural separability. A real-data-based comparison shows that, when using the same AE-derived latent space, 
UMAP outperforms t-SNE. It achieves better cluster cohesion, stronger global structure preservation, greater robustness 
to initialization and data perturbation, and lower computational cost. Statistical validation via a projection F-test confirms 
that clusters in the AE latent space exhibit significant between-group mean differences, quantifying the observed visual 
improvement. The study concludes that AE-based representation learning creates an effective input space for nonlinear 
embedding, with the AE-UMAP pipeline emerging as a particularly stable and efficient choice for scRNA-seq exploratory 
analysis. 

Purpose: This study aims to investigate the effectiveness of AE based latent representations in enhancing nonlinear 
dimension reduction methods, namely t-SNE and UMAP, for single-cell gene expression data analysis. The performance 
of AE-based UMAP and AE-based t-SNE is systematically evaluated from multiple perspectives, including visualization 
quality, clustering consistency, structural preservation, and robustness. 

Methods: This paper constructs a two-step dimension reduction framework for single-cell gene expression data analysis. 
First, an AE is employed to compress high-dimensional, sparse, and noisy gene expression data into a low-dimensional 
latent representation. Subsequently, t-SNE and UMAP are applied to the learned AE latent space for nonlinear 
embedding and visualization. The performance of different methods is systematically evaluated under multiple 
experimental conditions using clustering consistency metrics, structure preservation measures, and a projected F-test. 

Results: Experimental results indicate that directly applying t-SNE or UMAP to the original expression data fails to stably 
recover meaningful clustering structures, whereas nonlinear dimension reduction performed on AE latent 
representations substantially improves visualization quality and clustering stability. Within the same latent space, t-SNE 
and UMAP exhibit comparable performance in terms of clustering accuracy; however, UMAP demonstrates superior 
performance with respect to cluster compactness, global structure preservation, stability across repeated experiments, 
and computational efficiency. Statistical testing further confirms the significance of between cluster differences in the AE 
latent space. 

Contribution: This study systematically reveals the critical role of AE latent representations in stabilizing nonlinear 
dimension reduction for single cell data and provides a quantitative comparison between t-SNE and UMAP within a 
unified latent space. The results demonstrate that UMAP applied to AE latent representations achieves superior 
performance in terms of visualization stability and computational efficiency, offering a more robust two step dimension 
reduction strategy for exploratory analysis of high dimensional single cell data. 
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1. INTRODUCTION 

ScRNA-seq enables transcriptomic profiling at 
single-cell resolution and has become a fundamental 
tool for characterizing cellular heterogeneity, identifying 
cell types, and reconstructing developmental 
trajectories [1,2]. However, scRNA-seq data are 
typically high dimensional, sparse, and affected by 
substantial technical noise, which makes direct 
visualization and clustering in the original expression 
space highly challenging [3,4]. Consequently, effective 
dimension reduction is a critical prerequisite for 
extracting meaningful biological structure prior to 
downstream analysis. 
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Traditional linear dimension reduction methods, 
such as PCA (principal component analysis), compress 
data by maximizing global variance and can partially 
alleviate the curse of dimensionality [5]. Nevertheless, 
scRNA-seq data often reside on complex nonlinear 
manifolds, limiting the ability of PCA to capture local 
neighborhood relationships and nonlinear structure [6]. 
In recent years, nonlinear dimension reduction 
techniques, particularly t-SNE [6] and UMAP [7], have 
become the dominant approaches for single-cell 
visualization. These methods aim to preserve local 
relationships in low-dimensional embeddings and have 
been widely adopted in popular analysis frameworks. 

Despite their widespread use, previous studies 
have shown that directly applying t-SNE or UMAP to 
raw gene expression matrices often leads to unstable 
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embeddings that are sensitive to random initialization, 
parameter selection, sample size, and data noise [8,9]. 
In highly sparse and noisy scRNA-seq settings, such 
sensitivity can result in ambiguous cluster boundaries, 
distorted global geometry, and poor reproducibility, 
limiting the interpretability of visualization results. 

With the rapid development of deep learning, AE 
has been increasingly applied to single-cell data 
analysis for representation learning and denoising 
[10-13]. By learning compact and smooth latent 
representations through nonlinear encoding and 
decoding, AE can effectively reduce technical noise 
and redundancy while preserving dominant structural 
patterns in the data. Previous studies have 
demonstrated the effectiveness of AE in clustering, 
denoising, and feature extraction tasks. However, in 
most existing work, AE is treated as an independent 
preprocessing or dimension reduction tool, and its 
latent representations are rarely evaluated as a unified 
input space for subsequent nonlinear visualization 
methods. 

Notably, although several studies have combined 
AE with t-SNE or UMAP, systematic quantitative 
comparisons between these two nonlinear methods 
within the same AE latent space remain limited [14-17]. 
Existing evaluations often rely on visual inspection or a 
small number of metrics, while robustness to noise, 
initialization, and subsampling, as well as statistical 
validation of cluster separability, are rarely examined in 
a unified framework. 

Statistically, the integration of autoencoder-based 
latent representations with nonlinear embeddings 
transcends mere visualization improvement by 
establishing a more robust and hypothesis-testable 
framework for single-cell data analysis. Unlike prior 
studies that primarily focus on visual separability, our 
approach explicitly quantifies the enhancement in 
cluster discriminability through rigorous statistical 
validation, notably employing the projection-based 
F-tests to assess between-cluster mean differences in 
the latent space. This methodological contribution 
shifts the emphasis from qualitative visual assessment 
to statistically grounded inference, allowing for 
objective evaluation of cluster significance and stability. 
By embedding nonlinear methods within a denoised 
and structurally coherent latent space, we not only 
improve visualization reproducibility but also provide a 
statistically consistent input domain that enhances the 
reliability of downstream clustering and comparative 
analyses. Thus, this study articulates a clear statistical 
advancement: it transforms the latent representation 
into a stabilized statistical manifold on which nonlinear 
embeddings operate with greater inferential validity, 
distinguishing it from earlier works that treated AE 

merely as a preprocessing step without formal 
statistical integration. 

Motivated by these gaps, this study proposes a 
two-stage nonlinear dimension reduction framework 
based on AE latent representations. High-dimensional 
scRNA-seq data are first compressed into a denoised 
latent space using AE, followed by nonlinear 
embedding using t-SNE and UMAP within the same 
latent representation. Through comprehensive 
experiments on real single-cell gene expression data, 
the performance of AE-based t-SNE and AE-based 
UMAP is systematically evaluated from multiple 
perspectives, including clustering consistency, 
structure preservation, robustness, and computational 
efficiency, with additional statistical validation using 
projection F-tests. 

2. METHODOLOGY 

2.1. Data Acquisition and Preprocessing  

This dataset is a 10X Chromium sample 
(3994×15716) from peripheral blood mononuclear cells 
(PBMCs) from a human donor, and the raw data is 
obtained from the 10X Genomics website. The dataset 
used in this study can be obtained from: 

https://github.com/xzhoulab/DRComparison/blob/mast
er/data/sce_full_Zhengmix8eq.rds 

Standard quality control procedures are applied 
prior to analysis. Genes expressed in fewer than five 
cells are removed, and cells with fewer than ten 
detected genes are excluded to eliminate low-quality 
observations. The remaining expression matrix is 
log-normalized to correct for differences in sequencing 
depth across cells. 

2.2. Nonlinear Dimension Reduction  

An autoencoder (AE) is adopted to perform 
nonlinear denoising and compression of the 
high-dimensional gene expression data. The model 
learns a compact latent representation by encoding the 
input into a lower-dimensional space and 
reconstructing it back to the original space, allowing 
essential structural information to be preserved while 
reducing noise. 

In this study, the AE compresses the original data 
into a 50-dimensional latent space, which serves as the 
input for subsequent dimension reduction and 
clustering analyses. This dimensionality was selected 
based on established practices in single-cell RNA-seq 
representation learning, where latent dimensions 
between 30 and 100 have been shown to capture 
sufficient biological variance while avoiding overfitting 
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in datasets of comparable scale and complexity [11]. 
Statistically, this choice balances the bias–variance 
trade-off, ensuring that the latent representation retains 
discriminative power without becoming excessively 
sparse or noisy. 

The model is trained using mean squared error as 
the reconstruction loss and optimized with the Adam 
optimizer (learning rate = 1e−3). Training is conducted 
for 30 epochs on a subset of 1000 samples. The subset 
size and epoch count were determined through pilot 
experiments aimed at achieving stable reconstruction 
loss convergence while maintaining computational 
feasibility. Training on a representative subset also 
reduces the risk of overfitting and enhances the 
generalizability of the learned representation, as the 
AE learns robust features without memorizing noise 
from the full dataset. These choices collectively support 
the statistical goal of deriving a stable, denoised latent 
space suitable for downstream nonlinear embedding. 

2.3. AE Latent Representation, t-SNE, and UMAP  

The learned AE latent representations were further 
reduced to two dimensions using t-SNE and UMAP for 
visualization and clustering analysis. For t-SNE, 
different perplexity values were examined to assess 
sensitivity to local neighborhood size. For UMAP, the 
number of neighbors and minimum distance were 
varied to balance local and global structure 
preservation. Both methods were applied directly to the 
AE latent space without additional feature engineering. 
The theory of t-SNE is referred to [6,18,19]. 
Implementation of t-SNE is carried out using the R 
package Rtsne (https://cran.r-project.org/web/ 
packages/Rtsne/index.html). UMAP is a nonlinear 
dimension reduction algorithm grounded in 
Riemannian geometry and algebraic topology. In the 
high-dimensional space, UMAP constructs a fuzzy 
simplicial complex by computing local connectivity. 
Readers can refer to [7] for more theoretical details. 
Unlike t-SNE, which minimizes an asymmetric 
Kullback–Leibler divergence using a Gaussian kernel 
in the input space, UMAP employs symmetric 
cross-entropy and an exponential kernel adapted to 
local density, resulting in superior preservation of 
global structure and significantly faster optimization. 
The implementation of UMAP is through the R package 
umap (https://cran.r-project.org/package=umap). 

2.4. Evaluation Metrics 

Multiple evaluation metrics are employed to assess 
clustering quality, structure preservation, and 
computational efficiency. The Adjusted Rand Index 
(ARI) is used to measure the agreement between the 
predicted cluster assignments and reference labels. 
ARI is a measure of agreement/similarity between two 

data clusterings, adjusted for chance. It's widely used 
to compare clustering results against ground truth 
labels or to compare two clustering algorithms. Some 
major references on ARI and its application are [19-23]. 
In this study, the ARI was computed using externally 
provided reference cell type labels, even though the 
overall framework is unsupervised. This approach 
serves as a benchmark validation rather than an 
intrinsic clustering objective, allowing us to 
quantitatively assess how well the unsupervised 
embeddings recover biologically meaningful groupings. 
However, the use of reference labels introduces a 
potential bias: it presupposes that the “ground truth” 
labels are both accurate and optimally relevant for the 
given visualization task. In practice, single-cell clusters 
may reflect biological states beyond canonical cell 
types, such as activation states, cycle phases, or 
transient trajectories, which reference labels might not 
fully capture. Consequently, a lower ARI does not 
necessarily indicate poor clustering; it may instead 
reflect a mismatch between the embedded structure 
and the provided annotation schema. To mitigate 
over-reliance on ARI, we complemented it with internal 
validation measures (Silhouette score, trustworthiness, 
continuity) that do not depend on external labels. This 
multi-metric strategy ensures that clustering 
performance is evaluated both in terms of biological 
plausibility (via ARI) and intrinsic structural quality (via 
internal metrics), providing a balanced interpretation of 
embedding accuracy. 

The Silhouette score (Silhouette coefficient) 
evaluates cluster compactness and separation. 
Trustworthiness and Continuity are adopted to quantify 
the preservation of neighborhood relationships 
between the high-dimensional space and the 
low-dimensional embedding, with a Silhouette score 
close to 1 indicating better structural preservation. 
Silhouette score is an internal clustering validation 
measure that quantifies how well each data point fits 
into its assigned cluster based on both cohesion 
(within-cluster similarity) and separation (between- 
cluster dissimilarity). Details on the Silhouette 
coefficient can be referred to references [24-27]. In 
addition, the M-distance [28] is used to measure the 
geometric distortion between the original space and the 
embedded space. Runtime is recorded to evaluate 
computational efficiency. For M-distance and runtime, 
lower values indicate better performance. 

3. RESULTS 

3.1. Direct Application of the t-SNE on the Raw 
Gene Expression Data 

By running the R packages Rtsne and umap on the 
raw gene expression data and computing the ARI and 
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Figure 1: Pure t-SNE Plots under different choices of the perplexity parameter. 

 

 
Figure 2: Pure UMAP Plot under different choices of parameters. 

 

Table 1: Pure t-SNE Evaluation Metrics 

Perplexity ARI Sil. Trust. Cont. M Time 

15 0.078 0.312 0.503 0.731 1.91 2.40 

30 0.014 0.303 0.507 0.732 1.86 3.03 

50 0.137 0.332 0.510 0.731 1.92 3.82 

 

the Silhouette score, we can obtain the t-SNE plots. As 
shown in Figures 1-2, direct application of the t-SNE 
and UMAP to the original scRNA-seq expression 
matrix does not reliably recover meaningful clustering 
structures. The unclear clustering of the t-SNE alone in 
Figure 1, and the unclear clustering of the UMAP in 
Figure 2, both cannot display desirable clusters under 
different choices of perplexity (where p=perplexity). 
Tables 1-2 also provide numerical evidence on the 
outcomes of the clustering from t-SNE and UMAP 

based on different parameter configurations and 
repeated runs. The numerical outcomes in Tables 1-2 
also support that fact that the t-SNE in Figure 1 and the 
UMAP in Figure 2 exhibit substantial variability, blurred 
cluster boundaries, and distorted global geometry. 
Changes in initialization and neighborhood-related 
parameters lead to inconsistent cluster arrangements, 
indicating that the high dimension, sparsity, and noise 
inherent in raw expression data hinder stable nonlinear 
visualization. 
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Note: In Tables 1-2, Trust.=Trustworthiness, 
Cont.=Continuity, which are two of the most important 
neighborhood preservation metrics used to 
quantitatively evaluate the performance of 
dimensionality reduction techniques like t-SNE and 
UMAP. They don't evaluate clustering per se, but 
rather how faithfully the low-dimensional embedding 
preserves the high-dimensional data's neighborhood 
structure, see [19, 29, 30] for more details. 

3.2. Latent Representation from AE 

The AE model is used to obtain a low-dimensional 
latent representation of the data, capturing the key 
features for clustering analysis. Additionally, the 
projected F-test in [31] is applied to perform multiple 
mean comparisons, further assessing the differences 
between clusters in the AE latent space. The projected 
F-test [31] outcomes are summarized in Table 3, where 
the sample size n=1000, the data dimension p=15716. 
The maximum number of projection dimension 
! = !"# ! − 1, ! − 1  in   [31] was AE compressed to 
! = 50. The exact null distribution for the projected 
F-test is !!~! !, ! − 1 − ! . The null hypothesis is 

!!:  !! = !! = ⋯ = !!, 

where each !!  (! = 1, … , !)  stands for the average 
cluster level, k is the number of clusters selected from 
the t-SNE or UMAP. Based on the t-SNE plots in Figure 
5 and the UMAP plots in Figure 6, the projected F-test 
for multiple mean comparisons among the 4 clusters 
(k=4 in the null hypothesis) is carried out to test the 

hypothesis. Four choices of projection dimension are 
indicated in Table 3, where the notation [!] means the 
integer part of a real number like [2.1] =2, [2.9] =2. The 
outcomes in Table 3 show a significant difference 
exists among the four cluster mean levels in Figures 
5-6. 

The projected F-tests in Table 3 provides further 
partial statistical evidence to support the fact that the 
four clusters from the AE-UMAP procedure are far 
apart from one another in the sense of central tendency 
measured by the mean. Because the F-tests in Table 3 
are not independent with each other, the overall 
statistical significance is not able to be given. This 
belongs to the big area of multiple mean comparison 
with dependence. Interested readers can refer to [31, 
38, 39] for more statistically justifiable interpretation on 
the overall statistical significance. 

3.3. Determination of the Optimal Number of 
Clusters 

To ensure a fair and reproducible comparison of 
nonlinear embeddings, the number of clusters is 
determined based on the structure of the AE latent 
representations rather than the low-dimensional 
visualization results. Both elbow analysis and 
Silhouette evaluation are performed in the AE latent 
space to identify a stable cluster configuration.  

As shown in Figure 3, the within-cluster sum of 
squares (WCSS) curve exhibits a clear inflection at k = 
4, beyond which further increases in k result in only 

Table 2: Pure UMAP Evaluation Metrics 

Neighbors min_dist ARI Sil. Trust. Cont. M Time 

15 0.0 -0.002 0.352 0.498 0.553 1.91 10.11 

15 0.1 -0.001 0.355 0.501 0.596 1.95 3.19 

15 0.3 0.000 0.335 0.499 0.509 1.89 3.26 

30 0.0 0.000 0.329 0.503 0.525 1.86 3.49 

30 0.1 0.001 0.335 0.502 0.504 1.89 3.43 

30 0.3 -0.001 0.341 0.506 0.520 1.89 3.49 

50 0.0 0.000 0.333 0.502 0.473 1.89 3.71 

50 0.1 0.002 0.332 0.504 0.483 1.87 3.78 

50 0.3 -0.002 0.336 0.502 0.451 1.89 3.76 

Table 3: Projected F-Tests in AE 

Projection Dimension Projected F-distribution F-value p-value 

!! =   !"
!
  = 12 F (12, 987) 89.3484 2.3690e−148 

!!  =  
!"
!
  = 16 F (16, 983) 67.3575 1.5761e−145 

!!  =  
!"
!
  = 25 F (25,974) 47.2665 4.8151e−145 

!!  =  
!×!"
!

  = 37 F (37, 962) 34.8906 2.7234e−148 
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marginal reductions in within-cluster variance. 
Consistently, the Silhouette score reaches its 
maximum at k = 4, indicating optimal cluster 
compactness and separation. Based on the agreement 
between these two criteria, k = 4 is selected as the 
optimal number of clusters for all subsequent analyses. 

3.4. Hierarchical Relationship between Clusters 

To further examine the structural relationships 
among the identified clusters, hierarchical clustering 
was performed on the centroids of the four clusters 
obtained in the AE latent space using Ward’s linkage 
method [40]. As illustrated in Figure 4, the resulting 
dendrogram reveals a clear multi-level hierarchy, with 
distinct merging distances reflecting varying degrees of 
transcriptional similarity between clusters. Specifically, 
Clusters 1 and 2 merge at a relatively low linkage 
distance (~2.5), indicating that they represent closely 
related subpopulations. In contrast, Cluster 3 remains 
well separated, merging only at a much larger distance 
(~7.5), which highlights its distinct transcriptional 
identity. This hierarchical organization statistically 
reinforces the stability and interpretability of the chosen 
cluster configuration (k  =  4), demonstrating that the AE 

latent space captures not only discrete cell groups but 
also biologically meaningful relationships at different 
levels of granularity. The clear separation between 
major branches further supports the structural 
coherence of the learned representation and its 
suitability for downstream analyses such as trajectory 
inference or cell-type annotation. 

3.5. Evaluation of t-SNE Applied to AE Latent 
Representations 

When the t-SNE is applied to the AE latent 
representations, clustering performance is markedly 
improved compared with its direct application to the 
raw expression data. The ARI increases to 
approximately 0.52, indicating higher agreement 
between the resulting cluster assignments and the 
reference labels. Changes in the perplexity parameter 
have limited influence on ARI values, whereas higher 
perplexity values are associated with increased 
Silhouette scores, reflecting improved within-cluster 
compactness. 

As shown in Figure 5, samples belonging to 
different categories form more clearly separated 

 
Figure 3: Elbow Plot and Silhouette Score of AE. 

 
Figure 4: Hierarchical Clustering of True Labels Centroids. 
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groups in the low-dimensional embedding. Table 4 
shows under the optimal parameter configuration with 
a perplexity of 50, the ARI reaches 0.526 and the 
Silhouette score reaches 0.681. Trustworthiness and 
continuity values are both approximately 0.97, 
indicating that local and global neighborhood 
relationships are well preserved. The corresponding 
M-distance remains low at 2.45. The runtime under this 
configuration is 2.38 seconds. 

3.6. Evaluation of UMAP Applied to AE Latent 
Representations 

UMAP applied to AE latent representations 
produces consistent clustering results across a range 

of parameter settings. Variations in the number of 
neighbors and minimum distance lead to only modest 
changes in the resulting embeddings. 

As illustrated in Figure 6, cluster separation is 
maintained under different parameter combinations. 
Quantitative evaluation results are summarized in 
Table 5. Across all tested configurations, ARI values 
remain constant. Silhouette scores decrease gradually 
as the minimum distance increases, indicating reduced 
within-cluster compactness. Trustworthiness shows a 
slight downward trend with increasing minimum 
distance, whereas continuity remains relatively stable. 
M-distance values remain low across all parameter 

 
Figure 5: t-SNE Based on AE. 
 
Table 4: Optimal Metrics at Perplexity = 50 

Metric ARI Sil. Trust. Cont. M Time 

Value 0.526 0.681 0.970 0.970 2.45 2.38 

 
Figure 6: UMAP based on AE. 
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settings. From Table 5, the influence of neighborhood 
size is limited, with no substantial changes observed in 
the quantitative metrics as the number of neighbors 
increases from 15 to 50. The configuration with 15 
neighbors and a minimum distance of 0 yields the 
highest Silhouette score and the lowest M-distance, 
with a runtime of 1.30 seconds. 

3.7. Multi-Stage Embedding 

Apart from the AE and UMAP combination, the 
integration of three methods is also These 
combinations aimed to explore whether further 

improvements could be made in dimension reduction 
and to find a better balance between different methods. 

The combination of AE with UMAP and t-SNE is 
tested, but no significant improvement in clustering 
performance is observed compared to UMAP based on 
AE alone.  

Since t-SNE handles only 2D or 3D data, AE 
followed by PCA and UMAP is tested in Figure 8. While 
some parameter combinations yield good classification 
results, this method do not outperform the two-method 
combinations in terms of evaluation metrics. PCA relies 

Table 5: The Comparison Results of UMAP Parameters Combinations 

Neighbors min_dist ARI Sil. Trust. Cont. M Time 

15 0.0 0.525 0.893 0.951 0.971 2.50 1.30 

15 0.1 0.525 0.860 0.950 0.972 2.52 1.27 

15 0.3 0.525 0.807 0.941 0.974 2.47 1.27 

30 0.0 0.525 0.889 0.952 0.972 2.52 1.59 

30 0.1 0.525 0.879 0.947 0.973 2.54 1.49 

30 0.3 0.525 0.821 0.938 0.974 2.32 1.49 

50 0.0 0.525 0.891 0.945 0.972 2.54 1.70 

50 0.1 0.525 0.850 0.942 0.973 2.50 1.64 

50 0.3 0.525 0.744 0.937 0.973 2.46 1.65 

 
Figure 7: AE followed by UMAP and t-SNE. 

 

 
Figure 8: AE followed by PCA and UMAP. 
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on linear transformations and cannot capture complex 
nonlinear relationships as effectively as pure t-SNE 
and pure UMAP. 

3.8. Robustness and Sensitivity Analysis 

To further evaluate the reliability of the proposed 
AE-based nonlinear embedding framework, robustness 
and sensitivity analyses are conducted under a range 
of perturbation conditions. Specifically, the stability of 
clustering performance is examined with respect to 
noise perturbation, stochastic initialization, 
subsampling, the number of clusters, and sample size. 
All evaluations are performed on the AE latent 
representations using fixed optimal embedding 
parameters. 

Under Gaussian noise perturbation and 
subsampling, both the t-SNE and UMAP exhibit stable 
ARI values across different noise levels and retained 
data proportions, indicating that moderate data 
perturbations have limited impact on clustering 
consistency. Repeated experiments with different 
random initializations further reveal differences in 
stability between the two methods. As shown in Figure 
9, UMAP produces highly consistent results across 
runs, whereas t-SNE occasionally exhibits noticeable 
performance degradation under specific random 
seeds.  

To further examine sensitivity to the number of 
clusters, both methods are evaluated with cluster 

numbers ranging from k = 4 to k = 8. As shown in 
Figure 10, UMAP achieves its highest Silhouette score 
at k = 4, indicating well-separated and compact 
clusters in the latent space, whereas t-SNE exhibits 
more gradual changes across different cluster numbers. 
Although ARI values for both methods generally 
increase with k, the relative performance trends 
between t-SNE and UMAP remain consistent, and no 
substantial performance improvement is observed 
beyond the selected cluster number. These results 
indicate that k = 4 provides a balanced clustering 
configuration for this dataset and that the comparative 
conclusions are robust to moderate variations in the 
number of clusters.  

To further assess the effect of sample size on 
embedding performance, the t-SNE and UMAP applied 
to the AE latent representations are evaluated using 
subsets of different sizes. The analysis focuses on 
clustering consistency and computational efficiency as 
the number of samples varies. As shown in Figure 11, 
UMAP achieves higher ARI values under small sample 
conditions, indicating stronger clustering consistency 
when the number of samples is limited. As the sample 
size increases, the performance gap between the two 
methods gradually diminishes, and both methods 
converge to similar clustering accuracy at medium to 
large sample sizes. In terms of computational efficiency, 
Figure 11 shows that UMAP consistently requires less 
runtime than t-SNE across all sample sizes, with the 
difference becoming more pronounced as the dataset 

 
Figure 9: Robustness Analysis. 

 
Figure 10: ARI and Silhouette in different k. 
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size increases. These results indicate that UMAP offers 
clear advantages in robustness and scalability, 
particularly for small to medium-sized datasets. 

4. CONCLUDING REMARKS 

This study investigated the effectiveness of an 
autoencoder-based latent representation in stabilizing 
nonlinear dimension reduction for single-cell RNA-seq 
data, with a comparative focus on t-SNE and UMAP. 
Our results demonstrate that the quality of the input 
representation fundamentally determines the reliability 
of subsequent nonlinear embedding. Direct application 
of t-SNE or UMAP to raw expression data yielded 
unstable and poorly separated clusters, whereas 
performing nonlinear reduction on AE-learned latent 
representations substantially improved clustering 
consistency, visual separability, and structural 
preservation. 

Within the unified AE latent space, both methods 
succeeded in recovering meaningful cluster structures. 
However, UMAP exhibited clear advantages in 
preserving global topology, robustness to parameter 
variation and initialization, and computational efficiency. 
These advantages were quantitatively validated 
through multiple metrics—including higher Silhouette 
scores, stable ARI under perturbation, and lower 
runtime—as well as statistical confirmation via 
projection-based F-tests. Sensitivity analyses further 
confirmed that UMAP’s performance advantages 
persist across varying sample sizes, noise levels, and 
cluster numbers. 

The framework presented here underscores the 
importance of representation learning as a prerequisite 
for reliable nonlinear visualization in high-dimensional, 
noisy biological data. Rather than treating AE merely 
as a preprocessing step, this study positions it as a 
statistically grounded foundation that enhances the 
inferential validity of downstream embeddings. In 
practical terms, the AE-UMAP pipeline emerges as a 

robust, efficient, and reproducible choice for 
exploratory single-cell analysis, particularly when 
stability and interpretability are prioritized. 

Future work may extend this approach to larger and 
more diverse datasets, integrate alternative deep 
learning architectures, and explore the inclusion of 
biological prior knowledge to further enhance 
interpretability. Nevertheless, this study provides a 
systematic, empirically supported framework for 
combining representation learning with nonlinear 
dimension reduction, offering clear methodological 
guidance for the analysis of single-cell transcriptomic 
data. 

While this study demonstrates the effectiveness of 
AE-based nonlinear embedding, several limitations 
should be acknowledged. First, our analysis relied on a 
single PBMC dataset; although it is widely used and 
representative, further validation across diverse 
biological contexts and sequencing platforms would 
strengthen generalizability. Second, the autoencoder 
architecture and training parameters (e.g., latent 
dimension, epochs, subset size) were fixed based on 
pilot experiments and existing conventions; systematic 
hyperparameter optimization could further refine 
representation quality. Third, evaluation remained 
largely visualization- and metric-driven, relying on 
internal and external clustering indices; future work 
could benefit from incorporating biological ground truth 
or functional validation to assess biological relevance 
more directly. These limitations highlight opportunities 
for extension rather than invalidating the framework, 
which remains a statistically principled and practically 
useful approach for single-cell data exploration. 
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