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Abstract: This study investigates the performance of four parameter estimation methods for the Laplace distribution: Method of
Moments (MM), Maximum Likelihood Estimation (MLE), Minimum Chi-Square Estimation using equiprobable cells (MCE-EQ),
and Minimum Chi-Square Estimation using Representative Points (MCE-RP). Through comprehensive Monte Carlo simulations
with sample sizes ranging from 50 to 400, we compare the root mean squared error (RMSE) of the location (u) and scale (b)
parameter estimates. Our results demonstrate that while MLE remains robust for location estimation, the MCE-RP method
consistently outperforms other estimators—including MLE—for the scale parameter, particularly in small to moderate samples.
The use of Representative Points, which provide an optimal discretization of the distribution, significantly enhances estimation
precision. These findings are especially relevant for medical research, where accurate estimation of variability—such as in
biomarker concentration levels or physiological response times—is critical for reliable sample size determination, risk
assessment, and clinical decision-making. MCE-RP thus offers a superior, reliable estimator for the Laplace scale parameter,
with direct implications for improving statistical inference in applied biomedical studies.

Purpose: The purpose of this research is to empirically evaluate and compare the finite-sample performance of four estimation
methods for the Laplace distribution’s parameters, with a focus on the novel application of Representative Points in minimum
chi-square estimation. This work seeks to bridge the gap between theoretical estimation methods and practical applications,
providing applied researchers with a more robust estimation tool when modeling data with Laplace characteristics, such as those
commonly encountered in medical and biomedical studies.

Methods: We conducted an extensive Monte Carlo simulation study to compare the four estimation methods: MM, MLE,
MCE-EQ, and MCE-RP. For each method, we generated independent and identically distributed samples from a standard
Laplace distribution (u=0, b=1) with sample sizes n = 50, 100, 200, and 400. Each scenario was replicated 1,000 times. The
performance of each estimator was assessed using the root mean squared error (RMSE) for both y and b. The MCE-RP method
utilized pre-computed Representative Points for the standard Laplace distribution, which were transformed according to
preliminary MLE estimates to form an optimal cell structure for chi-square minimization. All nonlinear optimizations required for
MCE-EQ and MCE-RP were implemented programmatically.

Results: The simulation results indicate that MLE performs best for estimating the location parameter p across all sample sizes.
However, for the scale parameter b, the MCE-RP method consistently yields lower RMSE values compared to MLE, MM, and
MCE-EQ. In many cases, particularly for smaller samples, the RMSE of MCE-RP is approximately half that of MLE for b. The
advantage of MCE-RP is evident across varying numbers of Representative Points (m = 5, 10, 15, 20), with optimal performance
often observed at m = 10 or 15. These findings confirm that MCE-RP provides a more precise and reliable estimator for the scale
parameter, making it particularly advantageous in small-sample settings.

Contribution: This paper contributes to the statistical methodology for the Laplace distribution by introducing and validating the
use of Representative Points within @ minimum chi-square estimation framework. The key contributions are: (1) demonstrating
that MCE-RP significantly outperforms established methods for estimating the scale parameter; (2) providing empirical evidence
that RP-based discretization enhances estimation efficiency, especially in finite samples; (3) offering practical guidance for
applied researchers in fields such as medical statistics, where accurate scale estimation is crucial for variability assessment,
power analysis, and reliable inference; and (4) laying a methodological foundation for extending the RP approach to other
location-scale distributions.

Keywords: Laplace distribution, Minimum chi-square estimation, Representative points.

INTRODUCTION market movements. In engineering, it describes certain
types of noise and signals. In the life sciences,
particularly medical and biological research, it emerges
in contexts where data exhibit robust central
tendencies alongside pronounced outliers or
asymmetric variations—common in measurements like
biomarker  concentrations, growth rates, or
physiological response times [1]. Its mathematical

The Laplace (or double exponential) distribution,
with its characteristic sharp peak and heavier tails
compared to the Gaussian, has long transcended its
origins in Laplace’s work on error theory to become a
vital tool across scientific disciplines. In economics and
finance, it effectively models asset returns and extreme

elegance, defined by a location parameter (u, the
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Parameters u, location (real)
b > 0, scale (real)
Support R=(—00, +0)
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realistic error model than the normal distribution for
many real-world processes characterized by
"spikiness" and "burstiness." Here is a simple summary
on the basic properties of the Laplace distribution.

The utility of the Laplace model hinges on two

foundational statistical tasks: accurate parameter
estimation and rigorous assessment of model
adequacy. For estimation, practitioners require

methods that are not only theoretically sound but also
efficient and robust across varying sample sizes. While
Maximum Likelihood Estimation (MLE) is the gold
standard for the Laplace distribution, offering
consistency and asymptotic efficiency, its
performance—particularly in terms of finite-sample bias
and variance—can be suboptimal when dealing with
the modest sample sizes frequently encountered in
specialized medical studies or pilot trials. Alternative
methods, such as method of moments (MM) or various
chi-square techniques, offer different trade-offs
between robustness, simplicity, and efficiency, yet a
systematic, empirical comparison of these contenders,
especially under small-sample conditions, remains a
pertinent research gap.

A sophisticated approach to bridging parametric
estimation and nonparametric testing lies in the
concept of Representative Points (RPs) or Principal
Points [2, 3, 4]. RPs are a finite set of points optimally
selected to represent a continuous probability

distribution, minimizing a quantizer error such as the
mean squared error (MSE) [5]. This concept, rooted in
information theory and numerical analysis, has found
applications in numerical integration and stochastic
optimization [6]. Statistically, a set of RPs and their
associated probabilities can be used to construct a
discrete approximation of a continuous distribution.
This discretization provides a natural and statistically
efficient framework for designing chi-square distance:
the RPs can serve as the midpoints or "representative"
values for constructing cells, and their associated
probabilities define the expected cell frequencies.

This RP-based discretization is not arbitrary; it is
optimal in capturing the distribution's shape.
Consequently, the chi-square distance built on RP cells
are hypothesized to be more sensitive to discrepancies
between the empirical data and the theoretical model,
as the cells are aligned with the distribution's inherent
structure rather than a simple probability-equalizing
rule. Furthermore, the objective function used to select
RPs—often a form of distance minimization—can be
repurposed to define a minimum chi-square estimation
criterion, potentially leading to parameter estimators
with favorable small-sample properties.

This paper makes a dual contribution to the
statistical methodology for the Laplace distribution,
unified by the innovative application of Representative
Points in parametric estimation. We conduct an
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extensive Monte Carlo simulation study to compare the
finite-sample performance of four estimation methods
for the parameters of the Laplace distribution. The
study evaluates root mean squared error (RMSE)
across a range of sample sizes and the number of RPs.

1. Method of Moments (MM);

2. Maximum Likelihood Estimation (MLE);

3. Minimum Chi-Square Estimation using traditional
equiprobable cells (MCE-EQ);

4. Minimum Chi-Square Estimation using cells
defined by Representative Points (MCE-RP).

The central thesis of this work is that the optimal
discretization afforded by Representative Points

provides a superior framework for both inferential tasks.

We hypothesize that the MCE-RP estimator will be
highly competitive with, and potentially superior to,
MLE in small samples. Our findings aim to provide
medical and applied researchers with more reliable
tools for parameter estimation when using the Laplace
distribution, thereby strengthening the statistical rigor of
their analyses. Finally, we posit that the success of the
RP methodology here signals its potential for fruitful
application to the broader family of location-scale
distributions. This paper is organized as follows.
Section 2 presents the empirical comparisons among
the four estimation methods as mentioned. Some
concluding remarks are given in the last section.

2. AN EMPIRICAL COMPARISON IN PARAMETRIC
ESTIMATION

2.1. Method of Moment (MM)

The table in section 1 gives the Laplace population
moments. The first population moment is just the
expected value E(X) =pu. The second population
moment E(X?2) = var(X) + (EX)? = 2b? + u? . Based
on the principle of the method of moment (MM), the
MM estimators for pandb are solutions to the

following equations from an i.i.d. sample {X,,..,X,}

from the Laplace population:

p==3r,X =X, 2b2 +p? =3 X7 (1)
Which give the MM estimators for yand b as

fmm =X, by =550 SE=2ELG -0 (2)

2.2. The Maximum Likelihood Estimation (MLE)

Define the log-likelihood function:
I(x; u,b) = —nllog(2b)] — 7 1y |X; — ul 3)

It is well-known that maximization of equation (3) is

:amle = median{Xp ,Xn},

=~ 1 A
bmie = ;Z?zl |X; = Amie |-
4)

These are the MLEs for u and b, respectively.

2.3. The Minimum Chi-square Estimator under
Equiprobable Cells

Write the probability density function (PDF) of the
Laplace distribution as

fCe;u,b) = %fo (%), fot) = %exp(—|t|),—oo <t<
+o0 (5)

where f,(t) is the PDF of the standard Laplace
distribution. For any given positive integer m, let
constants c, ...,c,,—; be determined by

fcj lfo()’)dy = iﬂj = 1!"'lmlC0 =00 = +oo

Cj—l o

(6)

Define the cells:
]j = (ﬁmle + Bmlecj > ﬁmle + Bmlecj+1)'j =1..,m,
(7)

and the cell probabilities:

piwb) = [, %fo (%) dx, i=1,..,m (8)

Define the intervals {I; = (a;_4,a;)):i=1,..,m,
ag = —»,a,, = +o} with a; given by
1
ml

f;i_lfg(t)dt =—,i=1,..,m (9)
Let n; (i =1, ...,m) be the observed frequency that
the sample points {X,,..,X,} fall inside the interval
I; = (aj_1,a;), X%,n; =n. The Pearson chi-square
distance between the observed frequency n; and the
expected frequency e; = np;(u, b) is defined by

XZ( p) =3¥m (ni—npi(ﬂrb))z
n i, =1 npi(u,b) >

(10)

where p;(u,b) is given by (8). The equiprobable
minimum chi-square estimator (MCE-EQ) for y and b
are the point (u, b) that minimizes (10). That is, the
MCE-EQ for y and b are the solutions to the following
equation

2 X3(0) = 2, [Py
26,

ni—np;(@)°) 9 9
pi(6) : : } Pi(0)
0,j=1,2

2‘n.p,:(0) 69]'
(11)

where 0 = (0,,0,) = (u,b) Fisher (1924) [7]
commented that for a relatively large sample size n,

m (ni—npi(8))°

e ) — 0, in probability.
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As a result,
equivalent to

equation

(11)

is approximately

iXZ(H) = 0 approximately =
pi(0) =

m ni—np;(6) 0
=1 5.(9) ae

(12)

The solution (fmce—eqr Pmee-eq) is called the
MCE-EQ for y and b. It is obvious that equation (12) is
a nonlinear equation that has to be solved by computer
programs like R, Python, or MATLAB.

2.4. The Minimum Chi-square Estimator under RP
Cells

A set of RPs {R;:i=1,..,m} for a continuous
probability distribution with PDF f(x) is a set of points
that minimize the mean-squared-error (MSE) defined
by the function [2]:

L(xq, oy X)) = Varl(x) f min (x—x)*f(x)dx  (13)

The corresponding weight p; for each RP R; is the
probability given by
R;+R; )/2 .
f(iﬁ 1+;3/2 f(x)dx,i=1,..,m Ry, =—00,R,, ., =
+o00, (14)

The following website provides the RPs {R;, ..., R;;}
for the standard Laplace distribution (x = 0,b = 1) and
their associated probabilities {p,, ..., p,,} as defined by
(14) for a number of standard location-scale probability
distributions:

https://fst.uic.edu.cn/isci_en/Representative_Points/M
SE_Representative_Points_for_Different_Statistica.ht
m.

For the location-scale Laplace distribution in the
table in Section 1, the estimated RPs are obtained by
ﬁi = ljmle + BmleRi' i = 1, W, m (15)

The weight p; for R; is equal to the weight p; for
R; because

b =
Ri+Riyq YTy
2 mle —
fRL 1+RL bimie fO( binie )dx
R;+R; Ri+R;
#mle‘*‘bmle l+1 x—0mi L
1 fo( = me) dx = le 1+R fo)dy =
l‘-mle"’bmle bmie
p; (16)
for i=1,..,mRy=—o,Rp,; =+0c0 . Similar to

equations (11)-(12), the RP minimum chi-square
estimator (MCE-RP) for y and b are the solutions to
equation (12) with

1 - Rij_1+R; R;+R; .
pi(”’ b) = fKi ;fO (%) dx, Ki = (—; ,—2 +1)’l =
1, ...,m,RO = —0o, Rm+1 =+ (17)

The solution  (fAmce—rps Pmee—rp) is called the
MCE-RP for y and b. It is true that equation (12) with
pi;(u, b) given by (17) is also a nonlinear equation that
has to be solved by computer programs like R, Python,
or MATLAB.

2.5. Monte Carlo Comparison

This subsection presents the above four estimation
methods in subsections 2.1-2.4. We use the MATLAB
code to generate the i.i.d. samples for a given set of
(u, b) and then implement the methods in subsections
2.1-2.4 to obtain the four types of estimators for (u, b).
The Monte Carlo experiments were carried out for
1,000 replications because of the time to solve the
nonlinear equations for the MCE-EQ and MCE-RP
estimators. The Root Mean Square Error (RMSE) is
employed to evaluate the accuracy between each type
of estimator and its true value. The RMSE is defined by

RMSE(6;) = N6 —6,)? (18)

where 9j denotes the estimator for y or b, 6, denotes
the true value of y or b, correspondingly, N stands for
the number of Monte Carlo replications. The Monte
Carlo outcomes under 1,000 replications are given in
Tables 1-4 under sample sizes ranging from n=50 to
n=400, where the estimates for the location and scale
parameters pand b are the mean values from the
1,000 replications, the columns Vs. MLE1= RMSE(#)/
RMSE (i), and Vs. MLE2= RMSE(b)/RMSE (b,y).
This means that each estimation method is compared
with the MLE. At the two columns Vs. MLE1 and Vs.
MLEZ2, the smaller the number at these two columns,
the better the average performance of the estimation
method. The following empirical conclusions can be
summarized:

1) For the location parameter, the MLE has the best
average performance in the sense of the RMSE
for the sample sizes ranging from n=50 to n=400.
The MM estimate and the MCE-EQ estimates are
generally worse than the MLE. but the MCE-RP is
comparable with the MLE with Vs. MLE1 numbers
close to 1. MCE-RP could improve the estimation
for the location parameter if the number of RPs is
appropriately chosen, for example, for n=50 in
Table 1 and n=100 in Table 2, the numbers (.6579
and .9175, respectively) at the column Vs. MLE1
are less than 1 for the number of RPs m=10,
indicating that the RP minimum chi-square
estimate  MCE-RP2 could improve the MLE
significantly;
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Table 1:

(Sample Size n=50, True Values (u,b) = (0,1))

Monte Carlo Comparison Among Four Estimation Methods

Method i b RMSE(t) Vs. MLE1 RMSE(b) Vs. MLE2
MM .0021 .9852 .2020 1.4018 .1585 .9950
MLE .0068 .9928 1441 1 .1593 1
MCE-EQ1 .0361 .9913 .2250 1.5614 .3215 2.0182
MCE-EQ2 .0897 .7955 1827 1.2679 .3034 1.9046
MCE-RP1 .0335 .9611 .1951 1.3539 1316 .8261
MCE-RP2 .0014 1.0104 .0948 .6579 1195 .7502
MCE-RP3 .0325 .9632 1487 1.0319 .1459 .9159
MCE-RP4 .0054 1.0040 .1901 1.3192 .0853 .5355

Note:

1.
2.

MCE-EQ1 corresponds to the number of cells k = 4, MCE-EQ2 (k = 9);

MCE-RP1 corresponds to the number of RPs m = 5, MCE-RP2 (m = 10), MCE-RP3 (m = 15), MCE-RP4 (m = 20).

2) For the scale parameter,
chi-square estimate MCE-RP has

the RP minimum
the best

average performance in the sense of the RMSE
for the sample sizes ranging from n=50 to n=400.

The numbers at the column Vs.

always

MLE2 for
MCE-RP are all smaller than 1, indicating that the
RP minimum chi-square estimate MCE-RP
improves the MLE. The RMSE for
MCE-RP could be around half of the RMSE for

MLE, implying MCE-RP estimate for the scale
parameter could reduce the RMSE by around
50% compared to MLE.

Table 2: Monte Carlo Comparison Among Four Estimation Methods

(Sample Size n=100, True Values (u,b) = (0,1))

In small samples (n=50), MCE-RP with m=10
reduces the RMSE for the scale parameter by
approximately 25% compared to MLE, demonstrating
its practical advantage in pilot studies or rare disease
research where sample sizes are limited.

Method 73 b RMSE(f) Vs. MLE1 RMSE(b) Vs. MLE2
MM .0008 .9946 1312 1.3360 .1103 1.0204
MLE .0079 .9910 .0982 1 .1081 1
MCE-EQ1 .00457 .8938 11942 1.9776 .2343 2.1674
MCE-EQ2 .0170 1.0616 .1101 1.1212 .2258 2.0888
MCE-RP1 .0515 .9785 .1469 1.4959 .0724 .6698
MCE-RP2 .0089 .9854 .0901 9175 .0985 9112
MCE-RP3 .0232 1.0029 .1005 1.0234 .1031 .9537
MCE-RP4 .0165 .9864 .1104 1.1242 .1045 .9667
Table 3: Monte Carlo Comparison Among Four Estimation Methods
(Sample Size n=200, True Values (u,b) = (0,1))
Method 73 b RMSE(fi) Vs. MLE1 RMSE(b) Vs. MLE2
MM .0006 .9951 .0993 1.3678 .0809 1.0715
MLE .0011 .9940 .0726 1 .0755 1
MCE-EQ1 .0391 9734 1372 1.8898 1217 1.6119
MCE-EQ2 .0144 .9578 .1648 2.2700 .0969 1.2834
MCE-RP1 .0362 .9903 .0803 1.1061 .0685 .9073
MCE-RP2 .0064 1.0011 .0864 1.1901 .0459 .6079
MCE-RP3 .0301 .9800 .0754 1.0386 .0391 5179
MCE-RP4 .0080 1.0341 .0634 .8733 .0664 .8795
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Table 4: Monte Carlo Comparison Among Four Estimation Methods
(Sample Size n=400, True Values (i, b) = (0,1))
Method 73 b RMSE(f) Vs. MLE1 RMSE(b) Vs. MLE2
MM .0007 9972 .0702 1.4182 .0539 1.0228
MLE .0022 .9981 .0495 1 .0527 1
MCE-EQ1 .0483 .9793 .0620 1.2525 1112 2.1100
MCE-EQ2 .0019 1.0174 .1156 2.3354 .0413 .7837
MCE-RP1 .0173 1.0057 .0446 0.9010 .0501 .9507
MCE-RP2 .0137 .9822 .0563 1.1374 .0517 .9810
MCE-RP3 .0426 1.0181 .0510 1.0303 .0416 .7894
MCE-RP4 .0484 1.0048 .0633 1.2788 .0517 .9810

For moderate samples, MCE-RP continues to
outperform MLE in scale estimation, with RMSE
reductions up to 33% (MCE-RP1, m=5 RPs),
supporting its use in clinical trials where precise
variability estimation is essential for power calculations.

As sample size increases, MCE-RP maintains
superior scale estimation efficiency, with RMSE values
nearly half (MCE-RP3, m=15 RPs) of those from MLE
in some configurations, reinforcing its robustness in
larger biomedical datasets.

Even in larger samples, MCE-RP remains
competitive, particularly for scale estimation,
suggesting its  utility in  meta-analyses or

population-level medical studies where accurate
dispersion estimation is key to pooled effect size
interpretation.

3. CONCLUDING REMARKS

This study has introduced and empirically validated
the use of Representative Points (RPs) within a
minimum chi-square estimation framework for the
Laplace distribution. Our Monte Carlo simulations
demonstrate that the RP-based minimum chi-square
estimator (MCE-RP)  significantly  outperforms
traditional methods—including Maximum Likelihood
Estimation (MLE)—for estimating the scale parameter,
particularly in small to moderate samples. While MLE
remains robust for location parameter estimation,
MCE-RP provides a more precise and reliable
estimator for the scale parameter, often reducing
RMSE by up to 50% compared to MLE. This
improvement stems from the optimal discretization of
the distribution afforded by Representative Points,
which aligns the chi-square distance metric with the
inherent structure of the underlying probability model.

The primary methodological contribution of this
work is the demonstration that an
information-theoretically optimal discretization—via

Representative Points—can substantially enhance
parameter estimation within a minimum distance
framework. By bridging numerical approximation theory
and statistical inference, MCE-RP offers a principled
alternative to likelihood-based methods, especially
valuable in finite-sample settings. The approach is
generalizable and lays a foundation for extending
RP-based estimation to other location-scale
distributions, such as the logistic, Student's t, or
generalized extreme value families.

Medical research implications can be summarized
as follows. Accurate estimation of variability is critical in
medical and biomedical research, where the scale
parameter governs dispersion in key measures such as
biomarker concentrations, physiological response
times, or treatment effect heterogeneity. The superior
performance of MCE-RP for scale estimation directly
supports more reliable sample size calculations,
improved risk assessment, robust diagnostic threshold
determination, and enhanced evaluation of therapeutic
efficacy. In practice, this can contribute to
better-powered studies, more reproducible findings,
and clinically actionable inference—particularly in pilot
studies, rare disease research, and clinical trials where
sample sizes are often limited.

Several limitations should be acknowledged. First,
the performance of MCE-RP depends on the
appropriate selection of the number of Representative
Points (m); our simulations suggest m = 10 or 15 as
generally effective, but context-specific tuning may be
warranted. Second, the method involves nonlinear
optimization and is computationally more intensive than
MLE or MM, though remains feasible with modern
computational tools. Third, the approach assumes
correct specification of the Laplace model;
performance under model misspecification or in the
presence of outliers warrants further investigation.
Finally, while this study focuses on the standard
Laplace distribution, future work should explore
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