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Abstract: This study investigates the performance of four parameter estimation methods for the Laplace distribution: Method of 
Moments (MM), Maximum Likelihood Estimation (MLE), Minimum Chi-Square Estimation using equiprobable cells (MCE-EQ), 
and Minimum Chi-Square Estimation using Representative Points (MCE-RP). Through comprehensive Monte Carlo simulations 
with sample sizes ranging from 50 to 400, we compare the root mean squared error (RMSE) of the location (µ) and scale (b) 
parameter estimates. Our results demonstrate that while MLE remains robust for location estimation, the MCE-RP method 
consistently outperforms other estimators—including MLE—for the scale parameter, particularly in small to moderate samples. 
The use of Representative Points, which provide an optimal discretization of the distribution, significantly enhances estimation 
precision. These findings are especially relevant for medical research, where accurate estimation of variability—such as in 
biomarker concentration levels or physiological response times—is critical for reliable sample size determination, risk 
assessment, and clinical decision-making. MCE-RP thus offers a superior, reliable estimator for the Laplace scale parameter, 
with direct implications for improving statistical inference in applied biomedical studies. 

Purpose: The purpose of this research is to empirically evaluate and compare the finite-sample performance of four estimation 
methods for the Laplace distribution’s parameters, with a focus on the novel application of Representative Points in minimum 
chi-square estimation. This work seeks to bridge the gap between theoretical estimation methods and practical applications, 
providing applied researchers with a more robust estimation tool when modeling data with Laplace characteristics, such as those 
commonly encountered in medical and biomedical studies. 

Methods: We conducted an extensive Monte Carlo simulation study to compare the four estimation methods: MM, MLE, 
MCE-EQ, and MCE-RP. For each method, we generated independent and identically distributed samples from a standard 
Laplace distribution (µ=0, b=1) with sample sizes n = 50, 100, 200, and 400. Each scenario was replicated 1,000 times. The 
performance of each estimator was assessed using the root mean squared error (RMSE) for both µ and b. The MCE-RP method 
utilized pre-computed Representative Points for the standard Laplace distribution, which were transformed according to 
preliminary MLE estimates to form an optimal cell structure for chi-square minimization. All nonlinear optimizations required for 
MCE-EQ and MCE-RP were implemented programmatically. 

Results: The simulation results indicate that MLE performs best for estimating the location parameter µ across all sample sizes. 
However, for the scale parameter b, the MCE-RP method consistently yields lower RMSE values compared to MLE, MM, and 
MCE-EQ. In many cases, particularly for smaller samples, the RMSE of MCE-RP is approximately half that of MLE for b. The 
advantage of MCE-RP is evident across varying numbers of Representative Points (m = 5, 10, 15, 20), with optimal performance 
often observed at m = 10 or 15. These findings confirm that MCE-RP provides a more precise and reliable estimator for the scale 
parameter, making it particularly advantageous in small-sample settings. 

Contribution: This paper contributes to the statistical methodology for the Laplace distribution by introducing and validating the 
use of Representative Points within a minimum chi-square estimation framework. The key contributions are: (1) demonstrating 
that MCE-RP significantly outperforms established methods for estimating the scale parameter; (2) providing empirical evidence 
that RP-based discretization enhances estimation efficiency, especially in finite samples; (3) offering practical guidance for 
applied researchers in fields such as medical statistics, where accurate scale estimation is crucial for variability assessment, 
power analysis, and reliable inference; and (4) laying a methodological foundation for extending the RP approach to other 
location-scale distributions. 

Keywords: Laplace distribution, Minimum chi-square estimation, Representative points. 

INTRODUCTION 

The Laplace (or double exponential) distribution, 
with its characteristic sharp peak and heavier tails 
compared to the Gaussian, has long transcended its 
origins in Laplace’s work on error theory to become a 
vital tool across scientific disciplines. In economics and 
finance, it effectively models asset returns and extreme  
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market movements. In engineering, it describes certain 
types of noise and signals. In the life sciences, 
particularly medical and biological research, it emerges 
in contexts where data exhibit robust central 
tendencies alongside pronounced outliers or 
asymmetric variations—common in measurements like 
biomarker concentrations, growth rates, or 
physiological response times [1]. Its mathematical 
elegance, defined by a location parameter (µ, the 
median and mode) and a scale parameter (b > 0), 
facilitates analytical tractability while providing a more 
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realistic error model than the normal distribution for 
many real-world processes characterized by 
"spikiness" and "burstiness." Here is a simple summary 
on the basic properties of the Laplace distribution. 

 The utility of the Laplace model hinges on two 
foundational statistical tasks: accurate parameter 
estimation and rigorous assessment of model 
adequacy. For estimation, practitioners require 
methods that are not only theoretically sound but also 
efficient and robust across varying sample sizes. While 
Maximum Likelihood Estimation (MLE) is the gold 
standard for the Laplace distribution, offering 
consistency and asymptotic efficiency, its 
performance—particularly in terms of finite-sample bias 
and variance—can be suboptimal when dealing with 
the modest sample sizes frequently encountered in 
specialized medical studies or pilot trials. Alternative 
methods, such as method of moments (MM) or various 
chi-square techniques, offer different trade-offs 
between robustness, simplicity, and efficiency, yet a 
systematic, empirical comparison of these contenders, 
especially under small-sample conditions, remains a 
pertinent research gap. 

A sophisticated approach to bridging parametric 
estimation and nonparametric testing lies in the 
concept of Representative Points (RPs) or Principal 
Points [2, 3, 4]. RPs are a finite set of points optimally 
selected to represent a continuous probability 

distribution, minimizing a quantizer error such as the 
mean squared error (MSE) [5]. This concept, rooted in 
information theory and numerical analysis, has found 
applications in numerical integration and stochastic 
optimization [6]. Statistically, a set of RPs and their 
associated probabilities can be used to construct a 
discrete approximation of a continuous distribution. 
This discretization provides a natural and statistically 
efficient framework for designing chi-square distance: 
the RPs can serve as the midpoints or "representative" 
values for constructing cells, and their associated 
probabilities define the expected cell frequencies. 

This RP-based discretization is not arbitrary; it is 
optimal in capturing the distribution's shape. 
Consequently, the chi-square distance built on RP cells 
are hypothesized to be more sensitive to discrepancies 
between the empirical data and the theoretical model, 
as the cells are aligned with the distribution's inherent 
structure rather than a simple probability-equalizing 
rule. Furthermore, the objective function used to select 
RPs—often a form of distance minimization—can be 
repurposed to define a minimum chi-square estimation 
criterion, potentially leading to parameter estimators 
with favorable small-sample properties. 

This paper makes a dual contribution to the 
statistical methodology for the Laplace distribution, 
unified by the innovative application of Representative 
Points in parametric estimation. We conduct an 
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extensive Monte Carlo simulation study to compare the 
finite-sample performance of four estimation methods 
for the parameters of the Laplace distribution. The 
study evaluates root mean squared error (RMSE) 
across a range of sample sizes and the number of RPs. 

1. Method of Moments (MM); 

2. Maximum Likelihood Estimation (MLE); 

3. Minimum Chi-Square Estimation using traditional 
equiprobable cells (MCE-EQ); 

4. Minimum Chi-Square Estimation using cells 
defined by Representative Points (MCE-RP). 

The central thesis of this work is that the optimal 
discretization afforded by Representative Points 
provides a superior framework for both inferential tasks. 
We hypothesize that the MCE-RP estimator will be 
highly competitive with, and potentially superior to, 
MLE in small samples. Our findings aim to provide 
medical and applied researchers with more reliable 
tools for parameter estimation when using the Laplace 
distribution, thereby strengthening the statistical rigor of 
their analyses. Finally, we posit that the success of the 
RP methodology here signals its potential for fruitful 
application to the broader family of location-scale 
distributions. This paper is organized as follows. 
Section 2 presents the empirical comparisons among 
the four estimation methods as mentioned. Some 
concluding remarks are given in the last section. 

2. AN EMPIRICAL COMPARISON IN PARAMETRIC 
ESTIMATION 

2.1. Method of Moment (MM) 

The table in section 1 gives the Laplace population 
moments. The first population moment is just the 
expected value ! ! = ! . The second population 
moment ! !! = !"# ! + (!")! = 2!! + !! . Based 
on the principle of the method of moment (MM), the 
MM estimators for !  and  !  are solutions to the 
following equations from an i.i.d. sample {!!, … , !!} 
from the Laplace population: 

! = !
!

!!!
!!! = !,       2!! + !! = !

!
!!!!

!!! ,     (1) 

Which give the MM estimators for !  and  ! as 

!!! = !,          !!! = !
!
!!,      !!! =

!
!

(!! − !)!!
!!!      (2) 

2.2. The Maximum Likelihood Estimation (MLE) 

Define the log-likelihood function: 

! !;   !, ! = −! log 2! − !
!

|!!!
!!! − !|     (3) 

It is well-known that maximization of equation (3) is 

!!"# = !"#$%& !!, … , !! ,              !!"# =
!
!

|!! − !!"#!
!!! |.  

          (4) 

These are the MLEs for !  and  !, respectively. 

2.3. The Minimum Chi-square Estimator under 
Equiprobable Cells 

Write the probability density function (PDF) of the 
Laplace distribution as 

! !; !, ! = !
!
!!
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!

,      !! ! = !
!
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where !! !  is the PDF of the standard Laplace 
distribution. For any given positive integer m, let 
constants !!, … , !!!! be determined by 

!
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Define the cells: 

!! = (!!"# + !!"#!! , !!"# + !!"#!!!!), ! = 1, … ,!, 
    (7) 

and the cell probabilities: 
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Define the intervals {!! = (!!!!, !!): ! = 1, … ,!,
!! = −∞, !! = +∞} with !! given by  
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Let !!  (! = 1, … ,!) be the observed frequency that 
the sample points {!!, … , !!} fall inside the interval 
!! = (!!!!, !!) , !!!

!!! = ! . The Pearson chi-square 
distance between the observed frequency !! and the 
expected frequency !! = !!! !, !  is defined by 

!!! !, ! = !!!!!! !,!
!

!!! !,!
!
!!! ,     (10) 

where !! !, !  is given by (8). The equiprobable 
minimum chi-square estimator (MCE-EQ) for µ and b 
are the point (!, !) that minimizes (10). That is, the 
MCE-EQ for µ and b are the solutions to the following 
equation 

!
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where ! = !!, !! = (!, !) . Fisher (1924) [7] 
commented that for a relatively large sample size n,   
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As a result, equation (11) is approximately 
equivalent to  

!
!!!

!!! ! = 0  !""#$%&'!()*+   ⇒
!!!!!! !
!! !

!
!!!

!
!!!

!! ! = 0     (12) 

The solution (!!"#!!" , !!"#!!")  is called the 
MCE-EQ for µ and b. It is obvious that equation (12) is 
a nonlinear equation that has to be solved by computer 
programs like R, Python, or MATLAB. 

2.4. The Minimum Chi-square Estimator under RP 
Cells 

A set of RPs {!!: ! = 1, … ,!}  for a continuous 
probability distribution with PDF !(!) is a set of points 
that minimize the mean-squared-error (MSE) defined 
by the function [2]: 

! !!, … , !! = !
!"#(!)

min  
!!!!!

(! − !!)!!(!)  !"
!

!!
   (13) 

The corresponding weight !!  for each RP !! is the 
probability given by 

!! = !(!)  !"(!!!!!!!)/!
(!!!!!!!)/!

, ! = 1, … ,!,!! = −∞,!!!! =
+∞.        (14) 

The following website provides the RPs {!!, … ,!!} 
for the standard Laplace distribution (! = 0, ! = 1) and 
their associated probabilities {!!, … , !!} as defined by 
(14) for a number of standard location-scale probability 
distributions:  

https://fst.uic.edu.cn/isci_en/Representative_Points/M
SE_Representative_Points_for_Different_Statistica.ht
m. 

For the location-scale Laplace distribution in the 
table in Section 1, the estimated RPs are obtained by 
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for ! = 1, … ,!,!! = −∞,!!!! = +∞ . Similar to 
equations (11)-(12), the RP minimum chi-square 
estimator (MCE-RP) for µ and b are the solutions to 
equation (12) with 
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The solution (!!"#!!", !!"#!!")  is called the 
MCE-RP for µ and b. It is true that equation (12) with 
!! !, !  given by (17) is also a nonlinear equation that 
has to be solved by computer programs like R, Python, 
or MATLAB. 

2.5. Monte Carlo Comparison 

This subsection presents the above four estimation 
methods in subsections 2.1-2.4. We use the MATLAB 
code to generate the i.i.d. samples for a given set of 
!, !  and then implement the methods in subsections 

2.1-2.4 to obtain the four types of estimators for !, ! . 
The Monte Carlo experiments were carried out for 
1,000 replications because of the time to solve the 
nonlinear equations for the MCE-EQ and MCE-RP 
estimators. The Root Mean Square Error (RMSE) is 
employed to evaluate the accuracy between each type 
of estimator and its true value. The RMSE is defined by 

!"#$ !! = !
!

(!! − !!)!!
!!!     (18) 

where !! denotes the estimator for µ or b, !! denotes 
the true value of µ or b, correspondingly, N stands for 
the number of Monte Carlo replications. The Monte 
Carlo outcomes under 1,000 replications are given in 
Tables 1-4 under sample sizes ranging from n=50 to 
n=400, where the estimates for the location and scale 
parameters !  and  !  are the mean values from the 
1,000 replications, the columns Vs. MLE1= RMSE(!)/
RMSE(!!"#), and Vs. MLE2= RMSE(!)/RMSE(!!"#). 
This means that each estimation method is compared 
with the MLE. At the two columns Vs. MLE1 and Vs. 
MLE2, the smaller the number at these two columns, 
the better the average performance of the estimation 
method. The following empirical conclusions can be 
summarized: 

1) For the location parameter, the MLE has the best 
average performance in the sense of the RMSE 
for the sample sizes ranging from n=50 to n=400. 
The MM estimate and the MCE-EQ estimates are 
generally worse than the MLE. but the MCE-RP is 
comparable with the MLE with Vs. MLE1 numbers 
close to 1. MCE-RP could improve the estimation 
for the location parameter if the number of RPs is 
appropriately chosen, for example, for n=50 in 
Table 1 and n=100 in Table 2, the numbers (.6579 
and .9175, respectively) at the column Vs. MLE1 
are less than 1 for the number of RPs m=10, 
indicating that the RP minimum chi-square 
estimate MCE-RP2 could improve the MLE 
significantly; 
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2) For the scale parameter, the RP minimum 
chi-square estimate MCE-RP has the best 
average performance in the sense of the RMSE 
for the sample sizes ranging from n=50 to n=400. 
The numbers at the column Vs. MLE2 for 
MCE-RP are all smaller than 1, indicating that the 
RP minimum chi-square estimate MCE-RP 
always improves the MLE. The RMSE for 
MCE-RP could be around half of the RMSE for 

MLE, implying MCE-RP estimate for the scale 
parameter could reduce the RMSE by around 
50% compared to MLE. 

In small samples (n=50), MCE-RP with m=10 
reduces the RMSE for the scale parameter by 
approximately 25% compared to MLE, demonstrating 
its practical advantage in pilot studies or rare disease 
research where sample sizes are limited. 

Table 1: Monte Carlo Comparison Among Four Estimation Methods  

(Sample Size n=50, True Values !, ! = (0,1)) 

Method ! ! RMSE(!) Vs. MLE1 RMSE(!) Vs. MLE2 

MM .0021 .9852 .2020 1.4018 .1585 .9950 

MLE .0068 .9928 .1441 1 .1593 1 

MCE-EQ1 .0361 .9913 .2250 1.5614 .3215 2.0182 

MCE-EQ2 .0897 .7955 .1827 1.2679 .3034 1.9046 

MCE-RP1 .0335 .9611 .1951 1.3539 .1316 .8261 

MCE-RP2 .0014 1.0104 .0948 .6579 .1195 .7502 

MCE-RP3 .0325 .9632 .1487 1.0319 .1459 .9159 

MCE-RP4 .0054 1.0040 .1901 1.3192 .0853 .5355 

Note:  
1. MCE-EQ1 corresponds to the number of cells ! = 4, MCE-EQ2 (! = 9); 
2. MCE-RP1 corresponds to the number of RPs ! = 5, MCE-RP2 (! = 10), MCE-RP3 (! = 15), MCE-RP4 (! = 20). 

Table 2: Monte Carlo Comparison Among Four Estimation Methods 

(Sample Size n=100, True Values !, ! = (!, !)) 

Method ! ! RMSE(!) Vs. MLE1 RMSE(!) Vs. MLE2 

MM .0008 .9946 .1312 1.3360 .1103 1.0204 

MLE .0079 .9910 .0982 1 .1081 1 

MCE-EQ1 .00457 .8938 .1942 1.9776 .2343 2.1674 

MCE-EQ2 .0170 1.0616 .1101 1.1212 .2258 2.0888 

MCE-RP1 .0515 .9785 .1469 1.4959 .0724 .6698 

MCE-RP2 .0089 .9854 .0901 .9175 .0985 .9112 

MCE-RP3 .0232 1.0029 .1005 1.0234 .1031 .9537 

MCE-RP4 .0165 .9864 .1104 1.1242 .1045 .9667 

 
Table 3: Monte Carlo Comparison Among Four Estimation Methods 

(Sample Size n=200, True Values !, ! = (!, !)) 

Method ! ! RMSE(!) Vs. MLE1 RMSE(!) Vs. MLE2 

MM .0006 .9951 .0993 1.3678 .0809 1.0715 

MLE .0011 .9940 .0726 1 .0755 1 

MCE-EQ1 .0391 .9734 .1372 1.8898 .1217 1.6119 

MCE-EQ2 .0144 .9578 .1648 2.2700 .0969 1.2834 

MCE-RP1 .0362 .9903 .0803 1.1061 .0685 .9073 

MCE-RP2 .0064 1.0011 .0864 1.1901 .0459 .6079 

MCE-RP3 .0301 .9800 .0754 1.0386 .0391 .5179 

MCE-RP4 .0080 1.0341 .0634 .8733 .0664 .8795 
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For moderate samples, MCE-RP continues to 
outperform MLE in scale estimation, with RMSE 
reductions up to 33% (MCE-RP1, m=5 RPs), 
supporting its use in clinical trials where precise 
variability estimation is essential for power calculations. 

As sample size increases, MCE-RP maintains 
superior scale estimation efficiency, with RMSE values 
nearly half (MCE-RP3, m=15 RPs) of those from MLE 
in some configurations, reinforcing its robustness in 
larger biomedical datasets. 

Even in larger samples, MCE-RP remains 
competitive, particularly for scale estimation, 
suggesting its utility in meta-analyses or 
population-level medical studies where accurate 
dispersion estimation is key to pooled effect size 
interpretation. 

3. CONCLUDING REMARKS 

This study has introduced and empirically validated 
the use of Representative Points (RPs) within a 
minimum chi-square estimation framework for the 
Laplace distribution. Our Monte Carlo simulations 
demonstrate that the RP-based minimum chi-square 
estimator (MCE-RP) significantly outperforms 
traditional methods—including Maximum Likelihood 
Estimation (MLE)—for estimating the scale parameter, 
particularly in small to moderate samples. While MLE 
remains robust for location parameter estimation, 
MCE-RP provides a more precise and reliable 
estimator for the scale parameter, often reducing 
RMSE by up to 50% compared to MLE. This 
improvement stems from the optimal discretization of 
the distribution afforded by Representative Points, 
which aligns the chi-square distance metric with the 
inherent structure of the underlying probability model.  

The primary methodological contribution of this 
work is the demonstration that an 
information-theoretically optimal discretization—via 

Representative Points—can substantially enhance 
parameter estimation within a minimum distance 
framework. By bridging numerical approximation theory 
and statistical inference, MCE-RP offers a principled 
alternative to likelihood-based methods, especially 
valuable in finite-sample settings. The approach is 
generalizable and lays a foundation for extending 
RP-based estimation to other location-scale 
distributions, such as the logistic, Student’s t, or 
generalized extreme value families. 

Medical research implications can be summarized 
as follows. Accurate estimation of variability is critical in 
medical and biomedical research, where the scale 
parameter governs dispersion in key measures such as 
biomarker concentrations, physiological response 
times, or treatment effect heterogeneity. The superior 
performance of MCE-RP for scale estimation directly 
supports more reliable sample size calculations, 
improved risk assessment, robust diagnostic threshold 
determination, and enhanced evaluation of therapeutic 
efficacy. In practice, this can contribute to 
better-powered studies, more reproducible findings, 
and clinically actionable inference—particularly in pilot 
studies, rare disease research, and clinical trials where 
sample sizes are often limited. 

Several limitations should be acknowledged. First, 
the performance of MCE-RP depends on the 
appropriate selection of the number of Representative 
Points (m); our simulations suggest m = 10 or 15 as 
generally effective, but context-specific tuning may be 
warranted. Second, the method involves nonlinear 
optimization and is computationally more intensive than 
MLE or MM, though remains feasible with modern 
computational tools. Third, the approach assumes 
correct specification of the Laplace model; 
performance under model misspecification or in the 
presence of outliers warrants further investigation. 
Finally, while this study focuses on the standard 
Laplace distribution, future work should explore 

Table 4: Monte Carlo Comparison Among Four Estimation Methods  

(Sample Size n=400, True Values !, ! = (!, !)) 

Method ! ! RMSE(!) Vs. MLE1 RMSE(!) Vs. MLE2 

MM .0007 .9972 .0702 1.4182 .0539 1.0228 

MLE .0022 .9981 .0495 1 .0527 1 

MCE-EQ1 .0483 .9793 .0620 1.2525 .1112 2.1100 

MCE-EQ2 .0019 1.0174 .1156 2.3354 .0413 .7837 

MCE-RP1 .0173 1.0057 .0446 0.9010 .0501 .9507 

MCE-RP2 .0137 .9822 .0563 1.1374 .0517 .9810 

MCE-RP3 .0426 1.0181 .0510 1.0303 .0416 .7894 

MCE-RP4 .0484 1.0048 .0633 1.2788 .0517 .9810 



Comparison of Four Estimation Methods for the Laplace Distribution International Journal of Statistics in Medical Research, 2025, Vol. 14   885 

extensions to contaminated data, weighted 
distributions, or heteroscedastic settings commonly 
encountered in medical applications. 

Based on our findings, we strongly recommend the 
use of MCE-RP for estimating the scale parameter of 
the Laplace distribution, especially in small to moderate 
samples. For the location parameter, MLE remains a 
reliable choice, though MCE-RP can offer comparable 
performance with appropriate RP selection. 
Researchers in medical statistics and applied fields are 
encouraged to adopt RP-based estimation when 
modeling data with Laplace characteristics, as it 
provides a more accurate and efficient tool for 
variability assessment—a cornerstone of rigorous 
scientific inference. 

In summary, this research illustrates that 
Representative Points are more than a numerical 
convenience; they are a potent methodological asset 
that enhances statistical estimation and inference. By 
integrating optimal discretization into estimation 
procedures, MCE-RP offers a robust, efficient 
alternative to conventional methods, with meaningful 
implications for the precision and reliability of statistical 
analysis in medical research and beyond. 
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