
886 International Journal of Statistics in Medical Research, 2025, 14, 886-919  

 
E-ISSN: 1929-6029/25 

A New Family of Generalized Distributions, with Applications and 
Benchmarking against Machine Learning Models  

Bassant Elkalzah1,2, Emmanuel E. Oguadimma3, Victory C. Obieke3, Chinonso Michael 
Eze4,*, Okechukwu J. Obulezi5 and Mohammed Elgarhy6,7,8 

1Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University 
(IMSIU), Riyadh, 11432, Saudi Arabia 
2Department of Statistics, Mathematics and Insurance, Faculty of Business, Alexandria University, Alexandria, 
21526, Egypt 
3Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA 
4Department of Statistics, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria 
5Department of Statistics, Faculty of Physical Sciences, Nnamdi Azikiwe University, P.O. Box 5025 Awka, 
Nigeria 
6Faculty of Computers and Information Systems, Egyptian Chinese University, Nasr City, Egypt 
7Department of Basic Sciences, Higher Institute of Administrative Sciences, Belbeis, AlSharkia, Egypt 
8Department of Computer Engineering, Biruni University, 34010, Istanbul, Turkey 

Abstract: In this study, we introduce a new family of generalized distributions using the Lomax tangent generalized 
transformation. We derive the general formulas for its cumulative distribution function (CDF) and probability density 
function (PDF). As a specific sub-model, we construct the new generalized Lomax tangent transformed exponential 
(NGLTGE) distribution by using the exponential distribution as the baseline. We investigate the model’s key 
mathematical properties and conduct a Monte Carlo simulation, which confirms that the estimators exhibit good 
asymptotic behavior. A group acceptance sampling plan is also designed to demonstrate its utility in quality control. The 
NGLTGE model is then applied to real-world datasets from cryptocurrency, COVID-19, and breast cancer, where it 
consistently provides a superior statistical fit compared to related distributions. Finally, we apply the NGLTGE distribution 
within a machine learning framework using a PyTorch maximum likelihood estimation. The model’s predictive 
performance is found to be competitive with, and in some cases superior to, state-of-the-art machine learning density 
estimators like the Log-Gaussian Mixture Model (Log-GMM) and Masked Autoregressive Flow (MAF), especially for data 
with heavy tails. This work positions the NGLTGE distribution as a valuable, interpretable, and scalable model for both 
classic statistical and modern data science applications.  

Keywords: Generalized distributions, Lomax tangent generalized family, Monte Carlo Simulation, Log-Gaussian 
Mixture Model, Masked Autoregressive Flow.  

1. INTRODUCTION 

Choosing the right statistical distribution for a 
dataset is a critical step, as there is often no single, 
obvious choice. A common, but not always objective, 
method involves testing multiple distributions and 
selecting the one that best fits the data, but a more 
efficient approach is to use a general family of 
distributions, such as Pearson’s, that can be adjusted 
to fit a wide range of data [1]. Generalization is a 
common and fascinating approach to designing new 
families of distributions. In the end, the structural cum 
functional form of the based distribution is altered. This 
often leads to a more robust model with better 
goodness-of-fit, parameter estimates with minimum 
standard errors, and tractable characteristics. The new 
families fashioned this way are known for being able to 
capture intricate properties of datasets that the parent  
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distributions could not capture. Such generalizations 
include the Kumaraswamy generalized family by [2], 
the log-logistic tangent generalized family by [3], new 
sine family of generalized distributions by [4], new two-
parameter mixture family of generalized distributions by 
[5], new Kumaraswamy Kumaraswamy family of 
generalized distributions by [6], new flexible 
generalized family by, new generalized Weibull family 
by [7], weighted general family by [8], a new 
generalized normal family by [9], new power 
generalized Weibull family by [10], odd generalized 
exponential family of distributions by [11], generalized 
gamma family by [12], generalized symmetric family by 
[13], generalized transmuted family by [14], novel 
generalized family by [15]. Other readings include [16-
25] to mention a few. 

[26] was the first to introduce a new family of 
generalized distributions using the transformation of the 
cdf of another family of distributions. That is, the cdf of 
alpha power family. [27] proposed a new family of 
generalized distributions based on the logistic x 



A New Family of Generalized Distributions International Journal of Statistics in Medical Research, 2025, Vol. 14      887 

transformation. In the present study, we design a new 
family of generalized distributions based on the lomax 
tangent generalized transformation. Let X  be a 
nonnegative real-valued random variable that is lomax 
tangent generalized distributed [28], the cumulative 
distribution function (CDF) is given in Eq. (1.1) as; 

G(x;s,k,ζ ) =1− 1+
tan π
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; x > 0, s,k > 0, (1.1) 

where F(x;ζ )  is any continuous baseline distribution. 
Taking F(x;ζ )  as the subject in Eq. (1.1), we have 

F(x;s,k,ζ ) = 2
π
arctan s 1−G(x;ζ )[ ]−

1
k − s
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; x > 0, s,k > 0, (1.2) 

where ζ  is the vector of parameters for the baseline 
distribution, now redesigned as G(x;ζ ).  Differentiating 
Eq. (1.2) produces the associated probability density 
function (PDF) given in Eq. (1.3) as; 

f (x;s,k,ζ ) = 2s
πk
⎛

⎝
⎜

⎞

⎠
⎟
g(x;ζ ) 1−G(x;ζ )[ ]−

1
k
−1

1+ s 1−G(x;ζ )[ ]−
1
k − s

⎧
⎨
⎩

⎫
⎬
⎭

2 ; x > 0, s,k > 0. (1.3) 

The quantile function is 

Q(u) =G−1 1−
tan πu
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; u ∈ (0,1).  

The rationale for this work is multi-faceted, founded 
on the perennial problem of adequate modeling of 
complex and diverse data sets in economics, finance, 
and medical sciences. Most standard econometric 
models and statistical distributions can seldom explain 
the non-linear dynamics, heavy tails, and volatility of 
economic time series, financial returns like Bitcoin, and 
survival times from diseases like COVID-19 and breast 
cancer. The novel Lomax Tangent (LT) generalized 
transformation is specifically introduced to address this 
gap because its structure is hypothesized to provide 
enhanced flexibility: it leverages the Lomax generator 
for superior heavy-tail modeling (allowing for greater 
kurtosis control) and uses the tangent function for non-
linear domain mapping and complex PDF shape 
generation. It is this need to create a uniform, robust, 
and extremely versatile probability distribution 
specifically the New Generalized Lomax Tangent 
Transformed Exponential (NGLTGE) distribution that 
can best account for these varied phenomena that this 
paper attempts to focus on. The work aims to 
demonstrate that this novel distribution not only 

achieves a better statistical fit compared to the classic 
rivals but is also a competitive parametric density 
estimator in a modern machine learning framework, 
thus combining classical statistics and recent data 
science. The ultimate aim is to develop a robust, 
interpretable, and scalable model that can be employed 
to address a wide range of real-world issues for which 
existing models do not work. 

In the remaining sections, the NGLTGE model is 
constructed in Section 2. Its structural properties are 
examined in Section 3 while the parameters are 
estimated in Section‘4. In Section 5, a comprehensive 
simulation study is carried out to determine the 
behaviour of the estimators in the presence of small 
and large sample sizes. In Section 6 a group 
acceptance sampling plan is designed to support the 
utility of the NGLTGE in the assessment of quality 
control. Numerical analysis is presented in Section 7 
with the extension of the proposed NGLTGE 
distribution to a broader machine learning concept 
demonstrated in Section 8. The study is concluded in 
Section 9, which provides ideas for future research. 

2. SUBMODEL: NGLTG-EXPONENTIAL (NGLTGE) 
DISTRIBUTION 

The CDF and PDF of the exponential distribution 
with scale parameter θ  are given as  

G(x;θ ) =1− e−θx; x > 0, θ > 0,       (2.1) 

and  

g(x;θ ) =θe−θx .         (2.2) 

Substituting Eqs. (2.1) and (2.2) in Eqs. (1.2) and 
(1.3) accordingly, we realized the CDF and PDF of the 
NGLTGE distribution, respectively given as 
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; x > 0, s,k,θ > 0.     (2.4) 

The quantile function is expressed as  

Q(u) = k
θ
log 1+ 1

s
tan πu
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Figure 1 represents plots of the PDF and hazard 
function of the proposed NGLTGE distribution. In panel 
1, the curves exhibit diverse shapes, including 
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unimodal, bimodal, and positively skewed forms, 
indicating the NGLTGE distribution’s flexibility in 
modeling different data patterns. The varying peaks 
and tails of these curves suggest that the distribution 
can adapt to a wide range of real-world phenomena. In 
panel 2, the shapes are also varied, showing 
decreasing, increasing, and bathtub-shaped hazard 
rates. This diversity demonstrates the distribution’s 
utility in reliability and survival analysis, where it can 
model different failure behaviors over time. 

3. STRUCTURAL PROPERTIES 

In this section, we develop the structural properties 
of the NGLTGE submodel. 

3.1. Boundary Limits 

Proposition 1.1 For all s,k,θ > 0 , and using the 
definition (2.3)  

x↓0
limF(x;s,k,θ ) = 0 and

x↑∞
limF(x;s,k,θ ) =1.  

Proof. Define g(x) := s(eθx/k −1) . Then (2.3) reads 
F(x) = (2 / π )arctan(g(x)) . 

Limit at 0 . Since e0 =1  and exp  is continuous, 
x↓0lim g(x) = 0 . By continuity of arctan  and arctan(0) = 0 ,  

x↓0
limF(x) =

2
π
arctan(

x↓0
limg(x)) = 0.  

For a quantitative bound, note the inequalities 
arctan y ≤ y  for y ≥ 0  and eu −1≤ ueu  for u ≥ 0 ; thus, for 
x > 0 ,  

0 ≤ F(x)≤ 2
π
g(x) = 2s

π
(eθx/k −1)≤ 2s

π
θx
k
eθx/k

x↓0
⎯ →⎯⎯ 0.  

Limit at +∞ . Since θ / k > 0 , eθx/k →∞  and hence 
g(x)→∞  as x↑∞ . Using y→∞lim arctan y = π / 2 ,  

x↑∞
limF(x) =

2
π
⋅
π
2
=1.  

as desired.  

Corollary 1.1 For x > 0 , 0 < F(x) <1 . Moreover, 
x↓0lim F(x) = 0  and x↑∞lim F(x) =1 . Thus F  maps (0,∞)  

into (0,1) , is right-continuous at 0 , and approaches 1  
at +∞ .  

Lemma 1.1 As x↓0 ,  

 
F(x) = 2sθ

πk
x+O (x), f (0+ ) = 2sθ

πk
.  

As x↑∞ ,  

 
1−F(x) = 2

π
1

seθx/k
+O (e−θx/k ) = 2

π s
e−θx/k +O (e−θx/k ).  

Proof. For x↓0 , use  e
u =1+u+O (u)  and 

 arctan y = y+O (y)  as u, y→ 0 :  

 
F(x) = 2

π
arctan(s(eθx/k −1)) = 2

π
(sθ
k
x)+O (x).  

Differentiating (2.3) or evaluating (2.4) at x = 0  
yields f (0+ ) = 2sθ

πk . 

 
Figure 1: Plots of (a) pdf (b) hazard function for NGLTGE distribution. 
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For x↑∞ , write F(x) =1− 2
π
arccot(g(x))  and use 

 arccoty = y
−1 +O (y−1)  as y→∞  to obtain  

 
1−F(x) = 2

π
1
g(x)

+O (g(x)−1) = 2
π

1
seθx/k − s

+O (e−θx/k ) = 2
π s
e−θx/k +O (e−θx/k ),  

a tail estimate that will feed moment/tail-class results 
later.  

3.2. Regularity 

Proposition 2.1 Consider (2.3)-(2.4). Then:  

1. F ∈ C∞((0,∞)) . In particular, for every x > 0 , 
ʹ′F (x) = f (x) .  

2. For any 0 < a < b <∞ ,  is absolutely continuous 
on [a,b] ; with the extension at 0 , F  is absolutely 
continuous on every [0,b]  and  

F(x) =
0

x
∫ f (t)dt (x > 0).  

Proof. (i) On (0,∞) , both exp  and arctan  are C∞ , 
and compositions of C∞  functions are C∞ , hence 
F ∈ C∞((0,∞)) . Writing h(x) := seθx/k − s , the chain rule 
yields  

ʹ′F (x) = 2
π

ʹ′h (x)
1+ h(x)2

= 2
π
⋅

1
1+ (seθx/k − s)2

⋅ (seθx/k θ
k
) = f (x).  

(iii) On any compact subinterval [a,b]⊂ (0,∞) ,  is 
continuous, hence integrable, and the Fundamental 
Theorem of Calculus gives F(x) = F(a)+

a

x
∫ f (t)dt . 

Using the continuous extension F(0) = 0  and the fact 
that f  is bounded near 0  (indeed x↓0lim f (x) = 2sθ

πk ), we 

obtain F(x) =
0

x
∫ f (t)dt  for all x > 0 . Thus F  is 

absolutely continuous on each [0,b]  and the stated 
integral representation holds.  

Corollary 2.1 For s,k,θ > 0 , one has f (x) > 0  for all 
x > 0 , hence F  is strictly increasing on (0,∞) . 
Consequently, the quantile function Q(p) := F−1(p)  
exists for every p ∈ (0,1)  and is continuous and strictly 
increasing in p .  

Proof. Each factor in f (x)  is positive for x > 0 , so 
f (x) > 0  and F  is strictly increasing. The inverse and 

its properties then follow from standard results for 
continuous strictly increasing functions on (0,∞)  with 
limits 0  and 1  at the endpoints.  

Proposition 2.2 For each fixed x > 0 ,  

∂F
∂s
(x;s,k,θ ) > 0, ∂F

∂θ
(x;s,k,θ ) > 0, ∂F

∂k
(x;s,k,θ ) < 0.  

Hence, F  is strictly increasing in s  and θ , and 
strictly decreasing in k   

Proof. Differentiate (2.3) with respect to each 
parameter and result follows.  

3.3. Survival Function 

For an absolutely continuous CDF F , the survival 
function is defined by S(x) =1−F(x) . For the NGLTGE 
model (2.3), and for each x > 0  and s,k,θ > 0 , the 
closed form is derived as follows  

S(x;s,k,θ ) =1−F(x;s,k,θ ) =1− 2
π
arctan se
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k − s
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Proof. For x > 0 , we have se
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identity arctanu+ arctan(1 / u) = π / 2  for u > 0 , we obtain  
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       (3.2) 

Proposition 3.1 For all x > 0  and s,k,θ > 0 ,  

∂
∂x
S(x;s,k,θ ) = − 2sθ e

θx
k

πk(1+ (se
θx
k − s)2 )

< 0.  

In particular, S(⋅;s,k,θ )  is strictly decreasing on 
(0,∞)  and 0 < S(x;s,k,θ ) <1  for all x > 0 .  

Proof. Differentiate (3.2) and result follows.  

Proposition 3.2 For s,k,θ > 0 ,  

x↓0
limS(x;s,k,θ ) =1,

x↑∞
limS(x;s,k,θ ) = 0.  
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Proof. Follows directly from proof of Proposition 1.1.  

Lemma 3.2 As x↓0 ,  

 
S(x;s,k,θ ) =1− 2sθ

πk
x+O (x2 ).  

As x↑∞ ,  

 
S(x;s,k,θ ) = 2

π s
e
−
θx
k +O (e

−
3θx
k ).  

Proof. For : 
 
e
θx
k =1+θx

k
+O (x2 ) , hence 

 
se

θx
k − s = sθx

k
+O (x2 )  and  arctan y = y+O (y3) , which 

gives the linear term. For x↑∞ : use Lemma 3.1 with 

y = 1

se
θx
k − s

 and 
 
arctan y = y− y

3

3
+O (y5 ) ; since 

 
y  1

s
e
−
θx
k , 

the stated expansion follows.  

Proposition 3.3 Fix x > 0 . Then, for s,k,θ > 0 ,  

∂S
∂s
(x;s,k,θ ) < 0, ∂S

∂θ
(x;s,k,θ ) < 0, ∂S

∂k
(x;s,k,θ ) > 0.  

Hence, for fixed x > 0 , S  is strictly decreasing in s  
and θ , and strictly increasing in k .  

Proof. Differentiate (3.1) with respect to each 

parameter using d
du
arctanu = 1

1+u2
 and the chain rule. 

Since e
θx
k >1  for x > 0 , the stated signs follow.  

Lemma 3.3 For every x > 0  and s,k,θ > 0 ,  

2
π
⋅

se
θx
k − s

1+ (se
θx
k − s)2

≤ S(x;s,k,θ )≤ 2
π
⋅

1

se
θx
k − s

.  

Proof. By Lemma 3.1 write 

S(x;s,k,θ ) = 2
π
arctan 1

se
θx
k − s

⎛

⎝

⎜
⎜

⎞

⎠

⎟
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. For y ≥ 0  the inequalities 

arctan y ≥ y
1+ y2

 and arctan y ≤ y  yield the stated bounds 

with y = 1

se
θx
k − s

.  

Corollary 3.1 There exists x0 > 0  such that, for all 
x ≥ x0 ,  

S(x;s,k,θ )≤ 2
π s
e
−
θx
k .  

Proof. From Lemma 3.3, S(x;s,k,θ )≤ 2
π

1

se
θx
k − s

. For 

large x , se
θx
k − s ≥ 1

2
se

θx
k , giving S(x;s,k,θ )≤ 2

π s
e
−
θx
k .  

3.4. Odds 

For each x > 0  and s,k,θ > 0 , we consider the CDF 
(2.3). The cumulative odds function is defined by  

O(x;s,k,θ ) := F(x;s,k,θ )
1−F(x;s,k,θ )

=

2
π
arctan(se

θx
k − s)

1− 2
π
arctan(se

θx
k − s)

= arctan(se
θx
k − s)

arctan 1

se
θx
k − s

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

     (3.3) 

Proposition 4.1 For s,k,θ > 0 , O : (0,∞)→ (0,∞)  is 
continuous, and  

x↓0
limO(x;s,k,θ ) = 0,

x↑∞
limO(x;s,k,θ ) =∞.  

Proof. Since 0 < F(x;s,k,θ ) <1  for x > 0 , the 
quotient in (3.3) is well-defined and strictly positive. 
Continuity follows from continuity of F  and 1−F . The 
limits use F(0+ ) = 0  and F(∞) =1 .  

Proposition 4.2 For all x > 0 ,  

d
dx
O(x;s,k,θ ) = f (x;s,k,θ )

(1−F(x;s,k,θ ))2
> 0.      (3.4) 

In particular, O  is strictly increasing on (0,∞) .  

Proof. Differentiate O = F / (1−F) ; since ʹ′F = f  and 
(1−F ʹ′) = − f ,  

ʹ′O = f (1−F)+Ff
(1−F)2

= f
(1−F)2

> 0.  

Proposition 4.3 For each fixed x > 0 ,  

∂O
∂s
(x;s,k,θ ) > 0, ∂O

∂θ
(x;s,k,θ ) > 0, ∂O

∂k
(x;s,k,θ ) < 0  

Hence, for fixed x > 0 , O  is strictly increasing in s  
and θ , and strictly decreasing in k   

Proof. Differentiate (2.3) with respect to each 

parameter; apply the chain rule and d
du
arctanu = 1

1+u2
. 

Insert these into ∂O /∂⋅ = (∂F /∂⋅) / (1−F)2 .  



A New Family of Generalized Distributions International Journal of Statistics in Medical Research, 2025, Vol. 14      891 

3.5. Log-Odds 

The log-odds (logit) is defined by  

 
(x;s,k,θ ) := log F(x;s,k,θ )

1−F(x;s,k,θ )
⎛

⎝
⎜

⎞

⎠
⎟, x > 0  

= logF(x;s,k,θ )− log(1−F(x;s,k,θ ))  

= log(arctan(se
θx
k − s))− log arctan 1

se
θx
k −s

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
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⎞

⎠

⎟
⎟

     (3.5) 

Proposition 5.1 For s,k,θ > 0 ,   : (0,∞)→  is 
continuous and  

 x↓0
lim(x;s,k,θ ) = −∞,

x↑∞
lim(x;s,k,θ ) =+∞.  

Proof. From corollary 1.1 we have 0 < F(x) <1  for 
x > 0 , F(0+ ) = 0 , and F(∞) =1 . Hence logF(x)→−∞  
and − log(1−F(x))→ 0  as x↓0 , while logF(x)→ 0  and 
− log(1−F(x))→+∞  as x↑∞ . Continuity follows from 
continuity of F  and 1−F  on (0,∞) .  

Corollary 5.1 For all x > 0 ,  

 
F(x;s,k,θ ) = 1

1+ e−(x;s,k ,θ )
, 1−F(x;s,k,θ ) = 1

1+ e(x;s,k ,θ )
.  

Theorem 5.1 For x > 0 ,  

 
ʹ′ (x;s,k,θ ) = f (x;s,k,θ )

F(x;s,k,θ )(1−F(x;s,k,θ ))
> 0.     (3.6) 

In particular,  (⋅;s,k,θ )  is strictly increasing on 
(0,∞) .  

Proof. Differentiate (3.5) and use ʹ′F = f .  

Proposition 5.2 As x↑∞ ,  ʹ′ (x;s,k,θ )→θ / k .  

Proof. From the survival and density tails, 

 
1−F(x)  2

π s
e
−
θx
k  and 

 
f (x)  2θ

πks
e
−
θx
k  as x↑∞ . Insert 

these into (3.6).  

Proposition 5.3 For each fixed x > 0 ,  

 

∂
∂s
(x;s,k,θ ) > 0, ∂

∂θ
(x;s,k,θ ) > 0, ∂

∂k
(x;s,k,θ ) < 0,  

Hence, for fixed x > 0 ,    is strictly increasing in s  
and θ , and strictly decreasing in k   

Proof. Differentiate (3.5) with respect to each 

parameter. The signs follow since e
θx
k >1  for x > 0  and 

all denominators are positive.  

Remark 5.1 Using the standard bounds 
y

1+ y2
≤ arctan y ≤ y  for y ≥ 0  in (3.5) yields, for every 

x > 0 ,  

 

log (se
θx
k − s)2

1+ (se
θx
k − s)2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
≤ (x;s,k,θ )≤ log(1+ (se

θx
k − s)2 ).     (3.7) 

These are convenient for tail bracketing and 
numerical guarding.  

3.6. Hazard, Cumulative Hazard, and Reversed 
Hazard 

In this section, we study the hazard rate, cumulative 
and reversed hazard rate functions, which are 
important indicators in survival analysis.  

Hazard Rate Function 

For each x > 0  and s,k,θ > 0 , we consider the CDF 
(2.3), the hazard rate function is given by  

h(x;s,k,θ ) := f (x;s,k,θ )
S(x;s,k,θ )

=

2sθ e
θx
k

πk(1+ (se
θx
k − s)2 )

2
π
arctan 1

se
θx
k − s

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 

= sθ e
θx
k

k(1+ (se
θx
k − s)2 ) arctan 1

se
θx
k − s

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

     (3.8) 

Proposition 6.1 For every s,k,θ > 0 , the hazard 
h(x;s,k,θ )  on (0,∞)  is unimodal with a unique mode 
x* ∈ (0,∞) . Moreover,  

h(0+;s,k,θ ) = 2sθ
πk

,
x→∞
limh(x;s,k,θ ) =

θ
k
,  

and the right–tail refinement is  

h(x;s,k,θ ) = θ
k
+
θ
k
e
−
θx
k +O(e

−2θx
k ) (x→∞).  

Proof. Set u(x) := se
θx
k − s > 0  and write  

h(x;s,k,θ ) = θ
k
Φ(u(x)), Φ(u) := u+ s

(1+u2 )arctan(1 / u)
, u > 0.  

Since ʹ′u (x) = θ
k (u+ s) > 0 , the sign of ʹ′h (x)  is the sign 

of ʹ′Φ (u) . A direct differentiation yields  
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ʹ′Φ (u) = N(u)
(1+u2 )2 arctan(1 / u)2

,

N(u) := s+u+ arctan(1 / u)(1− 2su −u2 ).
 

The denominator is positive, so sign( ʹ′λ ) = sign(N ) . 
Now observe that  

ʹ′N (u) = 2(u+ s) u
1+u2

− arctan1
u

⎛

⎝
⎜

⎞

⎠
⎟< 0 (u > 0),  

because arctan t ≥ t
1+t2

 for all t ≥ 0  applied at t =1/ u . 

Hence N  is strictly decreasing on (0,∞) . Its endpoint 
limits are  

u↓0
limN(u) = s+

π
2
> 0,

u↑∞
limN(u) = −s < 0,  

so by the intermediate value theorem N  has a unique 
zero u* > 0 . It follows that ʹ′Φ (u) > 0  for u < u*  and 
ʹ′Φ (u) < 0  for u > u* , hence h  increases on 

{x :u(x) < u*}  and decreases on {x :u(x) > u*}  with a 
unique mode at the unique x*  solving  

u(x*) = se
θx*

k − s = u* ⇔ x* = k
θ
log(1+ u

*

s
).  

The endpoint values follow from the small-  and 
tail expansions already established in Section 3.1.  

Remark 6.1 The unique u*  is characterized by 
N(u*) = 0 , i.e.  

s+u* + arctan 1
u*
⎛

⎝
⎜

⎞

⎠
⎟ 1− 2su* − (u*)2( ) = 0,  

and x* = k
θ
log(1+ u

*

s
) . There is no simpler closed form, 

but the monotonicity of N  makes Newton or bisection 
immediate.  

Proposition 6.2 For each fixed x > 0  and s,k,θ > 0 ,  

∂h
∂s
(x;s,k,θ ) > 0, ∂h

∂θ
(x;s,k,θ ) > 0, ∂h

∂k
(x;s,k,θ ) < 0.  

Hence, for fixed x > 0 , h  is strictly increasing in s  
and θ , and strictly decreasing in k   

Proof. Differentiate (3.8) with respect to each 
parameter and the result follows.  

Cummulative Hazard Rate Function 

For each x > 0  and s,k,θ > 0 , the cummulative 
hazard rate function (CHRF) is given by  

H (x;s,k,θ ) := − log S(x;s,k,θ )( )

= − log 2
π
arctan 1

se
θx
k − s

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

      (3.9) 

Reversed Hazard Rate Function 

For each x > 0  and s,k,θ > 0 , the reversed hazard 
rate function (RHRF) [29] is given by  

r(x;s,k,θ ) := f (x;s,k,θ )
F(x;s,k,θ )

=

2sθ e
θx
k

πk(1+ (se
θx
k − s)2 )

2
π
arctan(se

θx
k − s)

 

= sθ e
θx
k

k(1+ (se
θx
k − s)2 ) arctan(se

θx
k − s)

    (3.10) 

Proposition 6.3 For all x > 0 ,  

ʹ′H (x;s,k,θ ) = h(x;s,k,θ ), S(x;s,k,θ ) = e−H (x;s,k ,θ ),
d
dx
logF(x;s,k,θ ) = r(x;s,k,θ ).

 

Proof. These follow from S =1−F , ʹ′F = f , and the 
chain rule.  

3.7. Moment 

Moment of a random variable X  is the mean value 
of the power of the variable. It is essential in defining 
the distribution of the random since its measures 
include the mean, variance, etc. For the NGLTGE 
model, the crude moment is  

 

µr
' = 2sθ

πk i=0

∞

∑
h=0

∞

∑
j=0

2i

∑(−1)i+ j 2i
j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
(2i+1)h

h!
k
θ

⎛

⎝
⎜
⎞

⎠
⎟
r+1

Γ (h+ r+1)
jh+r+1

; r =1,2,

  (3.11) 

Pluggin 1 for r in (3.11) yields the arithmetic mean 
of  X  NGLTGE (s,k,θ ),  hence 

µ = 2sθ
πk i=0

∞

∑
h=0

∞

∑
j=0

2i

∑(−1)i+ j 2i
j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
(2i+1)h

h!
k
θ

⎛

⎝
⎜
⎞

⎠
⎟
2
Γ (h+ 2)
jh+2

.  

Similarly, one can obtain the 2nd crude moment by 
replacing r with 2 in (3.11) and so on. 

3.8. Moment Generating Function 

The moment generating function (MGF) of 
 X  NGLTGE(s,k,θ )  is  
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MX (t) = E[e
tX ] =

0

∞

∫ etx f (x;s,k,θ )dx,    (3.12) 

whenever the integral is finite.  

Proposition 8.1 For | t |<θ / k  the MGF admits the 
convergent power series  

MX (t) =
r=0

∞

∑µ ʹ′r

r!
t r , µ ʹ′r = 0

∞

∫ xr f (x;s,k,θ )dx,   (3.13) 

and, substituting the crude moment formula (3.11) for 
 (with ), one obtains  

MX (t) =1+
2sθ
πk r=1

∞

∑
i=0

∞

∑
h=0

∞

∑
j=1

2i

∑(−1)i+ j

2i
j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
(2i+1)h

h!
k
θ

⎛

⎝
⎜
⎞

⎠
⎟
r+1
Γ (h+ r+1)

j h+r+1
t r

r!
.
   (3.14) 

The series (3.13)-(3.14) is absolutely and locally 
uniformly convergent on every compact | t |≤ t0 <θ / k , 
hence MX  is analytic on (−θ / k,θ / k) .  

Proof. For any fixed t  with | t |<θ / k , pick t0  so that 
| t |< t0 <θ / k . Using the right-tail behavior of f ,  

 
f (x;s,k,θ )  2θ

πks
e
−
θx
k (x→∞),  

we have for large x  the bound etx f (x)≤Ce
−(θ
k
−t0 )x , which 

is integrable on (0,∞) . Hence etx f (x)  is dominated by 
an integrable function and  

etx =
r=0

∞

∑ t rxr

r!
 

can be integrated termwise by dominated convergence 
(or Tonelli/Fubini on compact t -intervals inside 
(−θ / k,θ / k) ), which yields (3.13). Substituting the 
crude moment identity (3.11) for µ ʹ′r  (valid for r ≥1 , 
with µ ʹ′0 =1 ) gives (3.14). The same domination shows 
absolute and locally uniform convergence on 
| t |≤ t0 <θ / k , proving analyticity there. The restriction 
| t |<θ / k  is sharp since the tail test applied to (3.12) 
shows divergence at t =θ / k .  

3.9. Mean Residual Life Function 

For  X  NGLTGE(s,k,θ ) , we consider the survival 
function (3.2). The mean residual life (MRL) at age 
t ≥ 0  is  

m(t) = E[X − t | X > t] = 1
S(t;s,k,θ ) t

∞

∫ S(x;s,k,θ )dx.   (3.15) 

Let y = e
θx
k  so that x = k

θ
log y  and dx = k

θ
y−1dy , 

which maps x ∈ (t,∞)  to y ∈ (e
θt
k ,∞) . Then  

t

∞

∫ S(x)dx = 2k
πθ

e
θt
k

∞

∫
arctan( 1

s(y−1)
)

y
dy.  

Now set u = 1
s(y−1)

 (equivalently, y =1+ 1
su

), so 

that  

dy = − 1
su2

du, dy
y
= − 1

u(1+ su)
du,  

and the limits transform as 

 

y = e
θt
k  u = 1

se
θt
k − s

=:wt , 

while  y→∞ u↓0 . Therefore  

t

∞

∫ S(x)dx = 2k
πθ 0

wt∫ arctan(u)
u(1+ su)

du.     (3.16) 

Applying (3.15) yields  

m(t) = k
θ

0

wt∫ arctan(u)
u(1+ su)

du

arctan(wt )
, wt :=

1

se
θt
k − s

.   (3.17) 

Alternatively, from (3.16), integrate by parts with  

u1 = arctan(u), dv1 =
du

u(1+ su)
= (1
u
−

s
1+ su

)du,  

so that  

du1 =
du
1+u2

, v1 = log(
u

1+ su
).  

Hence,  

0

wt∫ arctan(u)
u(1+ su)

du = [arctan(u)log( u
1+su )]0

wt −
0

wt∫
log( u

1+ su
)

1+u2
du.  

The boundary term at u = 0  vanishes, and at u = wt  
we have  

log( wt

1+ swt

) = log( 1

se
θt
k

) = − log s−θ
k
t.  
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Therefore, (3.16) implies  

t

∞

∫ S(x)dx = 2k
πθ

arctan(wt )(− log s−
θ
k
t)−

0

wt∫
log( u

1+ su
)

1+u2
du

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,  

and dividing by S(t) = 2
π
arctan(wt )  gives  

m(t) = k
θ
− log(se

θt
k )− 1

arctan(wt ) 0

wt∫ log( u
1+su )

1+u2
du

⎡

⎣
⎢

⎤

⎦
⎥,

wt =
1

se
θt
k − s

.
  (3.18) 

which is an alternative representation of (3.17). 

3.10. Stochastic Orderings 

The following corollary follows from Proposition 
(2.2).  

Corollary 10.1 (Usual stochastic order) Fix any 
two parameter triples that differ in only one coordinate.  

1. If s2 > s1  (with k,θ  fixed), then 
F(⋅;s2,k,θ )≥ F(⋅;s1,k,θ )  and hence  

X(s2,k,θ )≤st X(s1,k,θ ).  

2. If θ2 >θ1  (with s,k  fixed), then  

X(s,k,θ2 )≤st X(s,k,θ1).  

3. If k2 > k1  (with s,θ  fixed), then  

X(s,k1,θ )≤st X(s,k2,θ ).  

The following corollary follows from Proposition 
(6.2).  

Corollary 10.2 (Hazard--rate order) Fix two 
parameter triples that differ in only one coordinate.  

1. If s2 > s1  (with k,θ  fixed), then 
h(x;s2,k,θ )≥ h(x;s1,k,θ )∀x > 0,  hence  

X(s2,k,θ )≤hr X(s1,k,θ ).  

2. If θ2 >θ1  (with s,k  fixed), then  

X(s,k,θ2 )≤hr X(s,k,θ1).  

3. If k2 > k1  (with s,θ  fixed), then  

X(s,k1,θ )≤hr X(s,k2,θ ).  

Corollary 10.3 In each case above, 
X ≤hr Y ⇒ X ≤st Y .   

Remark 10.1 For two parameter sets  

η1 = (s1,k1,θ1), η2 = (s2,k2,θ2 ),  

the ratio f (⋅;η2 ) / f (⋅;η1)  is not monotone in x  in 
general, so a global likelihood–ratio order across s , k , 
or θ  does not hold without further restrictions.  

3.11. Order Statistics 

Let  X1,…,Xn  be an i.i.d. sample from 
NGLTGE(s,k,θ )  with CDF (2.3) and PDF (2.4). We 
denote the order index by  r ∈ {1,…,n} . The CDF and 
PDF of Xr:n  are  

Fr:n (x) =
j=r

n

∑ n
j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟[F(x)]

j [1−F(x)]n− j ,  

fr:n (x) =
n!

(r −1)!(n− r)!
[F(x)] r−1[1−F(x)]n−r f (x),

x > 0,
 

Using the definitions (2.3) and (2.4), we obtain  

fr:n (x) =
n!

(r −1)!(n− r)!
2
π
arctan(se

θx
k − s)

⎡

⎣
⎢

⎤

⎦
⎥

r−1

2
π
arctan 1

se
θx
k − s

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

n−r  

×
2sθ e

θx
k

πk(1+ (se
θx
k − s)2 )

, x > 0.  

Moreover, the CDF and PDF of the minimum X1:n  
are given by  

F1:n (x) =1−[1−F(x)]
n =1− 2

π
arctan( 1

se
θx
k − s

)
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

n

,  

f1:n (x) = n[1−F(x)]
n−1 f (x) = n 2

π
arctan( 1

se
θx
k − s

)
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

n−1

2sθ e
θx
k

πk(1+ (se
θx
k − s)2 )

.
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Finally, the CDF and PDF of the maximum Xn:n  are 
given by  

Fn:n (x) = [F(x)]
n = 2

π
arctan(se

θx
k − s)

⎡

⎣
⎢

⎤

⎦
⎥

n

,  

fn:n (x) = n[F(x)]
n−1 f (x) = n 2

π
arctan(se

θx
k − s)

⎡

⎣
⎢

⎤

⎦
⎥

n−1

2sθ e
θx
k

πk(1+ (se
θx
k − s)2 )

.

 

3.12. Rényi Entropy 

Let  X  NGLTGE(s,k,θ )  with density (2.4). For 
α > 0 , α ≠1 , the Rényi entropy is  

Hα (X) =
1

1−α
log

0

∞

∫ f (x;s,k,θ )α dx( ).  

With the substitutions y = e
θx
k  (so dx = k

θ
y−1dy , 

y ∈ (1,∞) ) and then u = s(y−1) , one obtains  

0

∞

∫ f (x)α dx = 2sθ
πk

⎛

⎝
⎜

⎞

⎠
⎟
α

1

∞

∫ yα

(1+ s2 (y−1)2 )α
k
θ
dy
y
=

2α

π α
sα−1θα−1k1−α

0

∞

∫
(1+ u

s
)α−1

(1+u2 )α
du

 

Hence  

 
Hα (X) =

1
1−α

(α −1)log( sθk )+α log2
−α logπ + log( Jα (s))
⎡

⎣
⎢

⎤

⎦
⎥,  

with  

 
Jα (s) = 0

∞

∫
(1+ u

s
)α−1

(1+u2 )α
du  

Remark 12.1 For every α > 0 , the integral 

0

∞

∫ f (x)α dx  is finite: near u = 0  the integrand is 

bounded; as u→∞  it behaves like u−(α+1) , which is 
integrable. Thus Hα (X)  exists for all α > 0 , α ≠1 .  

Collision entropy (α = 2 ). 

For α = 2 ,  

 
J 2 (s) = 0

∞

∫
1+ u

s
(1+u2 )2

du = π
4
+
1
2s
,  

so  

0

∞

∫ f (x)2dx = θ
k

s
π
+
2
π 2

⎛

⎝
⎜

⎞

⎠
⎟, H 2 (X) = − log

θ
k

s
π
+
2
π 2

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥.  

Asymptotics in s . 

As s→∞ ,  

 
Jα (s)→ 0

∞

∫ du
(1+u2 )α

= π Γ(α − 1
2 )

2Γ (α)
,  

so  

Hα (X) = − log s+
1

1−α

α log2−α logπ +

log π Γ (α − 1
2 )

2Γ (α)
+ (α −1)log(θk )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+ o(1).  

As s↓0 ,  

  
Jα (s)  s

1−α
0

∞

∫ uα−1

(1+u2 )α
du = 1

2
s1−α B α

2
,α
2

⎛

⎝
⎜

⎞

⎠
⎟,  

and the exterior factor sα−1  cancels, so ∫ f α  converges 

to a finite positive limit and Hα (X)  tends to a constant. 

3.13. Stress–Strength Reliability 

Let  X  NGLTGE(s1,k1,θ1)  denote the strength and 

 Y  NGLTGE(s2,k2,θ2 )  the stress, independent. With 
CDF (2.3) and PDF (2.4), the stress–strength reliability 
[30-34] is  

R = Pr(X >Y ) =
0

∞

∫ SY (x) fX (x)dx = 0

∞

∫ (1−FY (x)) fX (x)dx. (3.19) 

Starting from (3.19),  

R =
0

∞

∫ (1−FY (x)) fX (x)dx.  

Using the CDF in (2.3) for Y ,  

1−FY (x) =1−
2
π
arctan(s2e

θ2x
k2 − s2 ) =

2
π
arctan 1

s2e
θ2x
k2 − s2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,

 

Next, perform the change of variables  

y = e
θ1x
k1 ⇒ dx = k1

θ1

dy
y
, y ∈ (1,∞).  
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By the PDF in (2.4) for X ,  

fX (x)dx =
2s1θ1e

θ1x
k1

πk1 1+ (s1e
θ1x
k1 − s1)

2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⋅
k1
θ1

dy
y
= 2s1
π

dy
1+ (s1y− s1)

2 .  

For the same x , we have  

e
θ2x
k2 = (e

θ1x
k1 )

θ2k1
θ1k2 = y a , a := θ2k1

θ1k2
> 0.  

Therefore  

1−FY (x) =
2
π
arctan 1

s2y
a − s2

⎛

⎝
⎜

⎞

⎠
⎟,  

and substituting into (3.19) yields the single-integral 
closed form  

R = 4s1
π 2 1

∞

∫
arctan 1

s2y
a − s2

⎛

⎝
⎜

⎞

⎠
⎟

1+ (s1y− s1)
2 dy, a = θ2k1

θ1k2
.  

A numerically convenient equivalent form follows 

under u = s1(y−1)  (so y =1+ u
s1

, dy = du
s1

, u ∈ (0,∞) ):  

R = 4
π 2 0

∞

∫

arctan 1

s2 ((1+
u
s1
)a −1)

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1+u2
du,  

which has a (1+u2 )−1  kernel that damps the tail. 

In Figure 2, the trend of panel 4 indicates the mean 
of the distribution to be a monotonic surface that 
decreases with increases in the parameters and thus to 
signify a uniform trend. Variance, as shown in panel 5, 

 
Figure 2: Plots of (a) Mean, (b) Variance, (c) Skewness and (d) Kurtosis of NGLTGE distribution. 
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has an evident peak that signifies that there is one set 
of parameters to which the spread or variability of the 
distribution is optimized. This exercise is fascinating in 
that it picks out a region of high variability in the 
parameter space. The skewness plot for panel 6 is one 
of flat surface with variation, which means that the 
asymmetry of the distribution does not shift markedly 
across the parameter space but is fairly stable. Finally, 
the kurtosis plot for panel 7 is similar to that of the 
variance with a clear peak. This peak shows that the 
tail heaviness of the distribution is highest for a 
particular set of parameter values, implying a greater 
chance of outlier values than for a normal distribution 
for that particular point. 

4. PARAMETER ESTIMATION 

In this section, the parameters of the NGLTGE 
model namely s,k  and θ  are estimated using some 
non-Bayesian estimation procedures; viz, Maximum 
likelihood, Maximum product of spacing, Least 
squares, Weighted least squares and Cramér-von 
Mises methods. 

4.1. Maximum Likelihood Estimation (MLE) 

Consider a random sample of size n , denoted by 

 x1, x2,…, xn , where each observation is independently 
and identically distributed (i.i.d.) following the New 
Generalized Lomax Tangent Transformed Exponential 
(NGLTGE) distribution with parameters s , k  and θ . 

The PDF of the NGLTGE distribution, substituting 
the Exponential baseline g(x;θ ) =θe−θx  and 
G(x;θ ) =1− e−θx  into Equation (3), is correctly 
formulated as:  

f (x;s,k,θ ) = 2sθ
πk

⎛

⎝
⎜

⎞

⎠
⎟

e
θx
k

1+ se
θx
k − s

⎛

⎝
⎜

⎞

⎠
⎟

2  

The likelihood function,  L (s,k,θ | x) , is the product 
of the densities:  

 
L (s,k,θ | x) =

i=1

n

∏ f (xi;s,k,θ )  

Consequently, the correct log-likelihood function, 

  (s,k,θ ) = log L[ ] , is derived as:  

 

(s,k,θ ) = n log 2θ
π

⎛

⎝
⎜

⎞

⎠
⎟+ n log(s)− n log(k)+

θ
k i=1

n

∑xi

−
i=1

n

∑log 1+ se
θxi
k − s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

The Maximum Likelihood Estimators (MLEs) of the 
parameters Θ̂ = (ŝ, k̂,θ̂ )  are obtained by simultaneously 
solving the system of score equations,  ∇ = 0 , where 

 
∇ = (∂

∂s
, ∂
∂k
, ∂
∂θ
)T . 

Let Wi = s e
θxi
k −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ , such that Wi + s = se

θxi
k . 

4.1.1. Score Equations 

The partial derivatives (score equations) are: 

 

∂
∂s
= n
s
−

i=1

n

∑ 2Wi

1+Wi
2 ⋅ e

θxi
k −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = 0,  (4.1) 

 

∂
∂k
= − n

k
−
θ
k2 i=1

n

∑xi −
i=1

n

∑ 2Wi

1+Wi
2 ⋅ −

sθxi
k2

e
θxi
k

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = 0,     (4.2) 

and 

 

∂
∂θ
= n
θ
+
1
k i=1

n

∑xi −
i=1

n

∑ 2Wi

1+Wi
2 ⋅

sxi
k
e
θxi
k

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = 0.      (4.3) 

4.2. Numerical Optimization Component 

The system of coupled, non-linear score equations 
(Eqs. (4.1)-(4.3)) cannot be solved analytically for the 
MLEs. Therefore, a numerical maximization technique 
is required to find the parameter estimates that 
maximize the log-likelihood function  (s,k,θ ) . 

4.2.1. Optimization Algorithm 

The MLEs are typically obtained using iterative, 
gradient-based optimization algorithms. The most 
common choice is a Quasi-Newton method such as the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. 
BFGS iteratively updates the parameter vector Θ  by 
utilizing the gradient (score equations) and 
approximating the inverse of the Hessian matrix (matrix 
of second partial derivatives), thus avoiding the 
complex derivation of the analytical second derivatives. 

4.2.2. Initial Values and Constraints 

1. Initial Guess (Θ0 ): The choice of starting values 
(s0,k0,θ0 )  is critical for the convergence and efficiency 
of the optimizer. A common practice is to use simple 
moment estimators for the baseline distribution (e.g., 
θ̂0 =1 / x ) and set s0 =1  and k0 =1 , or use estimators 
obtained via the Method of Least Squares (LSE) or 
Cramer-von Mises (CVM) methods for a more robust 
start.  



898     International Journal of Statistics in Medical Research, 2025, Vol. 14 Elkalzah et al. 

2. Constraints: The optimization must be 
performed under the parameter space constraints: 
s > 0 , k > 0 , and θ > 0 . The numerical solver must be 
configured to respect these boundaries (constrained 
optimization).  

4.2.3. Asymptotic Properties 

The Monte Carlo simulation confirms the good 
asymptotic behavior of the estimators. This is 
theoretically underpinned by the standard properties of 
MLE, which state that as the sample size n→∞ , the 
MLE vector Θ̂  is consistent, asymptotically normally 
distributed, and asymptotically efficient. The asymptotic 
variance-covariance matrix of the MLEs is estimated by 
the inverse of the observed Fisher information matrix, 
often calculated as the negative inverse of the Hessian 
matrix evaluated at Θ̂ .  

V (Θ̂ ) ≈ −H −1(Θ̂ )  

4.3. Maximum Product of Spacing (MPS) Estimation 

 The MPS method, proposed by [35], is a stable 
alternative to MLE, particularly useful for distributions 
with heavy tails or when the likelihood function is poorly 
behaved. The technique focuses on maximizing the 
geometric mean of the differences (spacings) between 
consecutive values of the NGLTGE Cumulative 
Distribution Function (CDF), F(x) , evaluated at the 
ordered data points x j:n . The MPS estimators 

( ŝMPS , k̂MPS ,θ̂MPS ) are obtained by maximizing the log-
product of spacings, N(Θ ) :  

N s,k,θ( ) = 1
n+1 j=1

n+1

∑ln F xj:n |Θ( )−F xj−1:n |Θ( )⎡⎣ ⎤⎦,     (4.4) 

where F x0:n( ) = 0  and F xn+1:n( ) =1 . 

4.4. Least Squares Estimation (LSE) 

The LSE method, first proposed by [36], belongs to 
the family of minimum distance estimators. The LSE 
principle minimizes the sum of squared differences 
between the theoretical CDF, F xj:n |Θ( ) , and the 

empirical plotting position, j
n+1

, for the ordered 

observations. The LSE estimators ( ŝLSE , k̂LSE ,θ̂LSE ) are 
computed by minimizing the objective function L(Θ ) :  

L(s,k,θ ) = arg
Θ
min

j=1

n

∑ F xj:n |Θ( )− j
n+1

⎡

⎣⎢
⎤

⎦⎥

2

.      (4.5) 

4.5. Weighted Least Squares Estimation (WLSE) 

WLSE is a refined version of LSE that accounts for 
the varying precision of the ordered statistics. The 
method minimizes a weighted sum of squared 
differences, using weights (wj ) inversely proportional 
to the variance of the plotting positions. This naturally 
gives less influence to the extreme observations and 
improves the stability of the estimates. The weights are 

given by wj =
n+1( )2 n+ 2( )
j n− j +1( )

. The WLSE estimators 

( ŝWLSE , k̂WLSE ,θ̂WLSE ) minimize the objective function 
W (Θ ) :  

W (s,k,θ ) = arg
Θ
min

j=1

n

∑wj F x j:n |Θ( )− j
n+1

⎡

⎣⎢
⎤

⎦⎥

2

.     (4.6) 

4.6. Cramer-von Mises Estimation (CvM) 

The CvM method is another robust minimum 
distance estimator that aims to minimize the quadratic 
distance between the empirical and theoretical CDFs 
across the entire distribution. This method is known for 
providing a good overall fit and stability. The CvM 
estimators ( ŝCvM , k̂CvM ,θ̂CvM ) are derived by minimizing 
the CvM criterion function WCvM (Θ ) :  

WCvM s,k,θ( ) = arg
Θ
min

1
12n

+
j=1

n

∑ F xj:n |Θ( )− 2 j −12n
⎡

⎣⎢
⎤

⎦⎥

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.  

 The non-linear systems of equations resulting from 
these minimization criteria require the use of numerical 
optimization techniques.  

5. MONTE CARLO SIMULATION STUDY 

For the parameters ξ = (s,k,θ )  of the NGLTGE 
distribution, a Monte Carlo simulation of 10,000 
replicates was demonstrated at sample sizes 
n =15,25,75  and 100  with true parameter settings (a) 
s = 0.05,k = 0.75,θ = 0.2  (b) s = 0.07,k = 0.80,θ = 0.35  (c) 
s = 0.05,k = 0.70,θ = 0.45  (d) s = 0.08,k = 0.55,θ = 0.7 . 
The average bias and Root Mean Squared Error 
(RMSE) were computed, where  

bias(ξ ) = 1
N i=1

N

∑ ξ̂i −ξ0( ); and RMSE(ξ ) = 1
N i=1

N

∑ ξ̂i −ξ0( )
2
.  

 Tables 1 and 2 contain the results of the simulation.  

The simulation results in Tables 1 and 2 display 
how the performances of different estimators; MLE, 
MPS, LS, WLS, and CvM change for different sample 
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Table 1: Simulation Results for True Value Settings (a) and (b) 

 n =15    n = 25    n = 75    n =100   True Value  Estimator  
  

 Parameter  
   bias   RMSE   bias   RMSE   bias   RMSE   bias   RMSE  

 ŝ    0.01243   0.07021   0.00796   0.04811   0.00232   0.02355   0.00158   0.01989  

 k̂    0.01737   0.13329   0.01596   0.09636   0.01253   0.05760   0.00817   0.05064  

MLE 

 θ̂    0.01716   0.05022   0.01056   0.03875   0.00601   0.02237   0.00414   0.01775  

 ŝ    0.06462   0.13905   0.03775   0.07860   0.01304   0.02949   0.00995   0.02352  

 k̂    0.11265   0.26302   0.06964   0.15738   0.03125   0.07560   0.02355   0.06324  

MPS 

 θ̂    0.00527   0.04096   0.00576   0.03134   0.00223   0.01773   0.00252   0.01338  

 ŝ    0.05619   0.16969   0.02951   0.07665   0.00807   0.02910   0.00610   0.02434  

 k̂    0.05517   0.15708   0.03623   0.11089   0.02145   0.06623   0.01547   0.05809  

LS 

 θ̂    0.00405   0.05251   0.00191   0.04291   0.00280   0.02672   0.00162   0.02144  

    0.04684   0.13363   0.02387   0.06890   0.00567   0.02619   0.00399   0.02168  

 k̂    0.08409   0.25586   0.04171   0.14502   0.01741   0.07263   0.01283   0.06182  

WLS  

 θ̂    0.00311   0.04493   0.00163   0.03689   0.00338   0.02244   0.00264   0.01899  

 ŝ    0.02158   0.10135   0.01291   0.05863   0.00354   0.02630   0.00277   0.02253  

 k̂    0.01580   0.11615   0.01275   0.08442   0.01269   0.06102   0.01161   0.06421  

s = 0.05,
k = 0.75,
θ = 0.2

  

CvM 

 θ̂    0.01212   0.05154   0.00781   0.04253   0.00571   0.02666   0.00464   0.02477  

 ŝ    0.00845   0.07775   0.00852   0.06253   0.00190   0.03012   0.00093   0.02592  

 k̂    0.01288   0.14034   0.01745   0.11718   0.01035   0.06325   0.00855   0.05641  

 MLE 

 θ̂    0.03231   0.08539   0.02068   0.06372   0.00905   0.03370   0.00779   0.02833  

 ŝ    0.07238   0.15591   0.04710   0.10113   0.01500   0.03807   0.01088   0.03106  

 k̂    0.12534   0.27409   0.08517   0.19264   0.03411   0.08287   0.02711   0.07106  

MPS 

 θ̂    0.00656   0.06476   0.00601   0.05216   0.00194   0.02850   0.00064   0.02464  

 ŝ    0.06031   0.15742   0.03817   0.10758   0.00963   0.03694   0.00767   0.03211  

 k̂    0.05605   0.16002   0.04036   0.11998   0.02164   0.07765   0.01589   0.05883  

LS 

 θ̂    0.00584   0.08229   0.00392   0.06438   0.00356   0.04637   0.00169   0.03337  

 ŝ    0.04996   0.14011   0.02913   0.08796   0.00673   0.03369   0.00445   0.02868  

 k̂    0.09001   0.27213   0.05097   0.17690   0.01698   0.08072   0.01535   0.07095  

WLS 

 θ̂    0.00814   0.07807   0.00410   0.05206   0.00403   0.03266   0.00537   0.03534  

 ŝ    0.01856   0.10072   0.01580   0.08216   0.00358   0.03350   0.00322   0.02980  

 k̂    0.00513   0.11891   0.01502   0.10846   0.01006   0.06482   0.00864   0.05667  

s = 0.07,
k = 0.80,
θ = 0.35

  

CvM 

 θ̂    0.02207   0.08504   0.01558   0.07441   0.00807   0.04024   0.00586   0.03568 
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Table 2: Simulation Results for True Value Settings (c) and (d) 

 n =15    n = 25    n = 75    n =100    True Value  Estimator  
  

 Parameter  
   bias   RMSE   bias   RMSE   bias   RMSE   bias   RMSE  

 ŝ    0.00954   0.06759   0.00683   0.04747   0.00148   0.02298   0.00147   0.02005  

 k̂    0.00495   0.13435   0.00741   0.10421   0.00755   0.06274   0.00584   0.04983  

MLE 

 θ̂    0.03331   0.09179   0.02232   0.06818   0.01081   0.04223   0.00843   0.03272  

 ŝ    0.06009   0.13350   0.03577   0.07661   0.01131   0.02896   0.00911   0.02424  

 k̂    0.10829   0.23957   0.06965   0.16231   0.02923   0.07573   0.02336   0.06129  

MPS 

 θ̂    0.00746   0.07504   0.00619   0.05446   0.00178   0.03121   0.00097   0.02744  

 ŝ    0.04928   0.14618   0.02799   0.07446   0.00690   0.02848   0.00541   0.02386  

 k̂    0.05458   0.16479   0.03889   0.11690   0.01858   0.07143   0.01630   0.06486  

LS 

 θ̂    0.00638   0.08640   0.00032   0.07279   0.00543   0.04677   0.00642   0.04815  

 ŝ    0.04115   0.12009   0.02181   0.06545   0.00460   0.02550   0.00376   0.02193  

 k̂    0.07240   0.22797   0.03972   0.15316   0.01441   0.07654   0.01079   0.06260  

WLS 

 θ̂    0.00619   0.07596   0.00717   0.06644   0.00679   0.04254   0.00579   0.03655  

 ŝ    0.01722   0.09149   0.01183   0.05726   0.00246   0.02587   0.00212   0.02215  

 k̂    0.00360   0.12074   0.00753   0.09730   0.01013   0.06955   0.00913   0.05973  

s = 0.05,
k = 0.70,
θ = 0.45

  

CvM 

 θ̂    0.02129   0.08567   0.01509   0.07090   0.01176   0.04754   0.01058   0.04448  

 ŝ    0.01669   0.11103   0.00603   0.06645   0.00181   0.03390   0.00038   0.02857  

 k̂    0.00653   0.13791   0.00466   0.10138   0.00288   0.05403   0.00239   0.04601  

MLE 

 θ̂    0.02987   0.08751   0.02680   0.07624   0.01087   0.03867   0.01351   0.04043  

 ŝ    0.09631   0.23061   0.04821   0.10755   0.01629   0.04259   0.01153   0.03414  

 k̂    0.12152   0.25084   0.07284   0.15762   0.02748   0.06818   0.02064   0.05599  

MPS 

 θ̂    0.00204   0.05653   0.00322   0.04697   0.00205   0.02928   0.00498   0.03006  

 ŝ    0.08720   0.27201   0.03804   0.10783   0.01089   0.04270   0.00654   0.03349  

 k̂    0.09199   0.28570   0.04241   0.13396   0.01554   0.06407   0.00992   0.05349  

LS 

 θ̂   0.00434   0.06213   0.00021   0.05076   0.00360   0.03232   0.00616   0.03500  

 ŝ    0.07250   0.22604   0.02811   0.09259   0.00713   0.03792   0.00405   0.03114  

 k̂    0.09042   0.27937   0.03878   0.13990   0.01126   0.06114   0.00760   0.05277  

WLS 

 θ̂    0.00934   0.05388   0.01261   0.06844   0.00647   0.03095   0.00970   0.03838  

 ŝ    0.03145   0.15990   0.01391   0.08269   0.00407   0.03879   0.00160   0.03124  

 k̂    0.01604   0.18152   0.00592   0.10988   0.00376   0.06001   0.00201   0.05175  

s = 0.08,
k = 0.50,
θ = 0.70

  

CvM  

 θ̂    0.01493   0.06509   0.01320   0.06028   0.00727   0.03370   0.01005   0.03959 

 

sizes ( n ) for four different true parameter values 
( s,k,θ ). Performance is considered on the basis of bias 
and RMSE. The smaller the values of bias and RMSE, 
the better and more accurate is the estimator. There is 
a universal pattern in all the true value settings and 
estimators that as the sample size ( n ) increases, both 
RMSE and bias decrease. This confirms the theoretical 
property that the greater the data utilized, the more 

precise are the parameter estimates. For instance, in 
the Table 1 with true parameters 
s = 0.05,k = 0.75,θ = 0.2 , MLE of s  has 0.01243 of bias 
and 0.07021 of RMSE for n =15  but decrease 
significantly to 0.00158 and 0.01989, respectively, at 
n =100 . Same for all the other estimators and 
parameters. The MLE generally has the smallest bias 
and RMSE for each of the estimators, especially for big 
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samples ( n =100  and n =100 ). This suggests that the 
MLE is the most efficient and unbiased estimator of the 
parameters of this distribution among those being 
considered. While other estimators like MPS and CvM 
could be as good or even marginally better for 
particular parameters at small sample sizes, the MLE 
performs the best at higher sample sizes. For example, 
at true values s = 0.07,k = 0.80,θ = 0.35  and n =100 , the 
MLE of θ̂  is biased by 0.00779 and has an RMSE of 
0.02833, both of which are lower than respective 
values for all other estimators. The LS, WLS, and MPS 
estimates have higher bias and RMSE, particularly at 
small sample sizes, and hence are less efficient under 
such conditions. 

 In Figure 3, panels 9, 10, 11 and 12 respectively 
represents the plots of the bias and RMSE at sample 
sizes n =15,25,75  and 100  for the respective true 
parameter settings. Notice that the behavior of the plots 

is consistent with conventional theory of asymptotic 
convergence, as the sample size becomes large, the 
RMSE decreases while the bias stays positive and 
relatively small. The implication is that the NGLTGE 
distribution is applicable in real life situations to model 
varying datasets. 

6. GASP BASED ON TRUNCATED LIFE TESTS FOR 
NGLTGE MODEL 

In quality control, acceptance sampling is a critical 
procedure for deciding whether to accept or reject a 
production lot based on a sample of items. While 
traditional single-item sampling plans can be time-
consuming and costly, particularly for products with 
long lifetimes, the Group Acceptance Sampling Plan 
(GASP) offers an efficient alternative. GASP is a 
modern sampling technique that reduces the overall 
test time and cost by testing items in groups rather than 

 
Figure 3: Plots of (a) Case I, (b) II, (c) III and (d) IV for Non-Bayesian Simulation Results. 
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individually. This approach is especially well-suited for 
reliability studies and truncated life tests, where the test 
is terminated at a pre-specified time ( t0 ) regardless of 
whether all units have failed. 

This section presents the design of a GASP for the 
NGLTGE distribution under a truncated life test. We 
define the key parameters of the plan including the 
number of groups ( g ), the group size ( r ), and the 
acceptance number ( c ) by considering the median 
lifetime of the products. Our methodology is focused on 
minimizing the average sample number (ASN) while 
simultaneously satisfying the producer’s and 
consumer’s risk constraints. This optimization problem 
ensures that the sampling plan provides a statistically 
sound and cost-effective way to make lot acceptance 
decisions, thus balancing the interests of both the 
producer and the consumer. Recently, different 
distributions have been used to design GASP, see [37-
40], The mathematical framework, including the 
derivation of the failure probability p  and the 
formulation of the acceptance probabilities, is detailed 
as follows; 

Let the median lifetime be 

µ = k
θ
log 1+ 1

s
tan πu

2
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Define  

ω = k log 1+ 1
s
tan πu
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so that for u = 0.5  ω = log 1+ 1
s
tan π
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⎬
⎭
.  Therefore, we 

can write µ = ω
θ
.  

In a truncated life testing scenario, the duration of 
the test is given as t0 = a1 ×µ0,  where a1  is a 
predetermined constant and µ0  is the hypothesized 
median lifetime. The ratio of the actual median lifetime 

to the hypothesized median lifetime is r2 =
µ
µ0

. The 

failure probability, p , of a single item before time t0  is 
derived by inserting these relationships into the CDF of 
the NGLTGE distribution in Equation (2.3). 

p = 2
π
arctan sexp a1 ×ω

kr2

⎛

⎝
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This expression for p  plays a crucial role in 
calculating the acceptance probabilities in the GASP 
scheme. 

The GASP design parameters, i.e., the number of 
groups ( g ), the acceptance number ( c ), the group size 
( r ), and the test duration ( t0 ), are determined such 
that both consumer and producer risks are balanced. 
For determining the optimal GASP design parameters, 
we formulate an optimization problem. We want to 
minimize the Average Sample Number (ASN), which is 
c = r× g . This minimization is subject to the following, 
which balance consumer risk ( β ) and producer risk 
(α ): 

Paccept (p1 | µµ0 = r1) =
i=0

n

∑ r
i

⎛

⎝
⎜

⎞

⎠
⎟ p1

i (1− p1)
r−i

⎡

⎣
⎢
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⎤

⎦
⎥
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g

≤ β,     (6.1) 

Paccept (p2 | µµ0 = r2 ) =
i=0

n

∑ r
i

⎛

⎝
⎜

⎞

⎠
⎟ p2

i (1− p2 )
r−i

⎡

⎣
⎢
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⎤

⎦
⎥
⎥

g

≥1−α.     (6.2) 

Here, r1  and r2  are the mean ratios relating to the 
consumer and producer risks, respectively. The failure 
probabilities p1  and p2  are calculated in these Paccept  
functions, as provided in Equations (6.1) and (6.2). 

Table 3 presents an illustrative set of GASP design 
parameters for the NGLTGE distribution, based on 
specific parameter values ( s = 0.5,k = 2.25 ). The table 
shows the minimum required number of groups ( g ) 
and the acceptance number ( c ) for varying consumer 

risks ( β ), mean ratios ( µ
µ0

), and test duration 

constants ( a1 ), for fixed group sizes ( r = 5  and r =10 ). 
The Paccept (p)  values indicate the probability of 
accepting a lot under these conditions. 

Tables 3 and 4 give the performance of the GASP 
under the NGLTGE distribution, which aims to minimize 
the values of g  and c , which are the number of groups 
and acceptance number, respectively. The tables give 
the results for various values of β , the true mean µ  to 

the specified mean µ0  ( µ
µ0

), the number of groups , 

and the coefficient a1 . The primary assessment 
criterion is the probability of acceptance ( Paccept (p) ). 

The results consistently show that as the ratio µ
µ0

 

increases, the probability of acceptance is high, 
typically above 95% in most instances, demonstrating 
the effectiveness of the sampling plan in terms of 
accepting lots with or higher than the required mean 

life. Conversely, if the ratio is low, especially at µ
µ0
= 2 , 

the plan will have zero groups ( g = 0 ) and zero 
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Table 3: GASP under NGLTGE at s = 0.5, k = 2.25  and with Minimum g  and c  

 r = 5    r =10   

 a1 = 0.5    a1 =1    a1 = 0.5    a1 =1   

 β   µ
µ0

 

 g   c   Paccept (p)    g   c   Paccept (p)    g   c   Paccept (p)    g   c   Paccept (p)   

 2   0   0   –   0   0   –   44   4   0.97582   73   4   0.960203  

 4   18   2   0.982989   29   2   0.972736   2   2   0.983057   4   2   0.966401  

 6   4   1   0.965478   29   2   0.992178   1   1   0.964301   4   2   0.990637  

0.25  

 8   4   1   0.980596   7   1   0.96629   1   1   0.9801   2   1   0.960595  

 2   0   0   –   0   0   –   0   0   –   0   0   –  

 4   38   2   0.964427   449   3   0.989712   5   2   0.958179   23   3   0.989562  

 6   38   2   0.989763   58   2   0.984417   5   2   0.98831   7   2   0.983672  

0.10  

 8   9   1   0.956869   58   2   0.993538   2   1   0.960595   7   2   0.99335  

 2   27   4   0.957196   204   5   0.970826   3   5   0.966688   13   6   0.977626  

 4   3   2   0.971533   5   2   0.953007   1   3   0.987301   2   3   0.974763  

 6   3   2   0.991337   5   2   0.985603   1   2   0.97786   1   2   0.97786  

0.05  

 8   2   1   0.959622   2   1   0.959622   1   2   0.990419   1   2   0.990419  

 2   266   5   0.962129   0   0   –   16   6   0.972534   25   6   0.957417  

 4   17   3   0.986483   26   3   0.979402   2   3   0.974763   3   3   0.962384  

 6   6   2   0.982748   10   2   0.971413   2   2   0.956211   2   2   0.956211  

0.01  

 8   6   2   0.992632   10   2   0.987751   2   2   0.980931   2   2   0.980931 

 

Table 4: GASP under NGLTGE at s =1.25,k = 0.25  and with Minimum g  and c  

 r = 5    r =10   

 a1 = 0.5    a1 =1    a1 = 0.5    a1 =1   

β   µ
µ0

 

 g   c   Paccept (p)    g   c   Paccept (p)    g   c   Paccept (p)    g   c   Paccept (p)   

 2   0   0   –   0   0   –   44   4   0.951891   0   0   –  

 4   12   2   0.976062   20   2   0.960422   2   2   0.968604   12   3   0.987154  

 6   3   1   0.956588   20   2   0.988114   2   2   0.990491   4   2   0.981072  

0.25  

 8   3   1   0.975191   5   1   0.958995   1   1   0.967642   4   2   0.991956  

 2   0   0   –   0   0   –   0   0   –   0   0   –  

 4   172   3   0.989105   264   3   0.983326   15   3   0.983968   23   3   0.975523  

 6   26   2   0.984576   40   2   0.97637   5   2   0.976397   7   2   0.967112  

0.10  

 8   26   2   0.993473   40   2   0.989975   5   2   0.989955   7   2   0.985965  

 2   61   5   0.970205   101   5   0.951151   721   6   0.972205   0   0   –  

 4   6   3   0.98752   9   3   0.981338   11   3   0.977239   17   3   0.965043  

 6   3   2   0.981606   4   2   0.975551   5   2   0.969532   7   2   0.957607  

0.05  

 8   1   1   0.966008   4   2   0.989238   5   2   0.986565   7   2   0.981242  

 2   8   6   0.967281   41   7   0.97932   54   7   0.972853   82   7   0.959068  

 4   1   3   0.973006   3   4   0.986994   4   4   0.982697   5   4   0.978418  

 6   1   2   0.958029   1   2   0.958029   2   3   0.987659   3   3   0.981545  

0.01  

 8   1   2   0.98075   1   2   0.98075   2   2   0.961871   2   2   0.961871 
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Figure 4: OC Curve for s = 0.5,k = 2.25.  

acceptance numbers ( c = 0 ), hence giving an 
indeterminate or undefined acceptance probability. It is 
clear at the lowest levels of β  (0.10 and 0.25). A major 
discovery is that the g  and c  values simply rely on the 
number of groups ( r ) and on the coefficient a1 . For a 

fixed β  and µ
µ0

, increasing r  from 5 to 10 will 

generally give smaller g  and c , and generally also a 
small increase in the probability of acceptance. 
Similarly, increasing a1  from 0.5 to 1 will generally give 
larger g  and c , with negligible impact on the 
probability of acceptance. Minimum values of g  and c  

will be obtained when the ratio µ
µ0

 is maximum, 

showing that if the actual mean life is much greater 
than the assigned mean, lower number of groups and 
smaller acceptance number will be required to ensure 
high probability of acceptance. 

Figure 4 is the Operating Characteristic (OC) curve 
for s = 0.5,k = 2.25 . In panel 14 is when r = 5  and 

a1 = 0.5 , panel 15 is when r = 5  and a1 =1 , panel 16 is 
when r =10  and a1 = 0.5 , panel 17 is when r =10  and 
a1 =1.  

Figure 5 is the Operating Characteristic (OC) curve 
for s =1.25,k = 0.25 . In panel 19 is when r = 5  and 
a1 = 0.5 , panel 20 is when r = 5  and a1 =1 , panel 21 is 
when r =10  and a1 = 0.5 , panel 22 is when r =10  and 
a1 =1.   

7. NUMERICAL ANALYSIS 

The first application is the weekly volume of traded 
bitcoin-usd from 17/09/2023 to 15/9/2024 in 1,000,000, 
000. 

The second application focuses on the COVID-19 
death rate for Angola from 14/06/2020 to 20/2/2022.  

The third data set represents the survival times (in 
months) for 121 breast cancer patients treated between 
1929 and 1938. It was first reported by lawless [41] 
statistical and presented in Table 
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Figure 5: OC Curve for s =1.25,k = 0.25.  

 

Table 5: Weekly Volume of Traded Bitcoin-USD  

0.256559779 0.822519052 0.730122407 0.821837757 0.726736545 1.134023831 1.65718773 

.155200566 1.347674948 1.435353611 1.30439894 1.34360108 1.885036149 1.68493482 

.520841715 1.578071262 2.02311774 2.599718197 1.391358248 1.553146029 1.351841874 

.578263954 2.135600415 1.607691456 3.228956661 4.057096933 4.059577506 3.280971217 

.163246258 2.294272601 2.882436754 2.578895559 1.760310882 2.177170118 1.616178571 

.91456349 2.25779718 1.709494099 1.875695007 1.759732716 1.634490154 1.710300939 

.131075314 1.8740702 2.221618762 2.27265185 2.510023388 3.171587346 1.937313931 

.006702741 2.085891553 2.070528442 1.832794312 
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Table 6: COVID-19 Death Rate for Angola 

0.0588235 0.0229885 0.1034483 0.0437956 0.0196078 0.0436681 0.0604839 0.0392157 

.0521173 0.0313725 0.0311751 0.0260417 0.0375000 0.0265018 0.0285344 0.0272206 

.0376712 0.0189145 0.0166240 0.0095559 0.0104575 0.0182868 0.0134745 0.0133531 

.0200445 0.0192000 0.0430108 0.0267686 0.0152505 0.0164234 0.0246305 0.0431894 

.0168675 0.0392857 0.0599251 0.0411765 0.0282686 0.0219780 0.0298507 0.0160858 

.0208955 0.0127737 0.0132979 0.0113519 0.0134228 0.0173847 0.0180505 0.0133191 

.0334262 0.0206795 0.0261669 0.0308151 0.0308765 0.0335498 0.0357143 0.0267983 

.0302663 0.0272109 0.0278578 0.0404908 0.0446334 0.0420561 0.0412044 0.0472779 

.0368393 0.0311383 0.0397910 0.0228466 0.0166540 0.0284974 0.0334686 0.0217028 

.0392857 0.0326531 0.0267857 0.0234375 0.0190476 0.0130719 0.0021231 0.0015169 

.0023099 0.0058021 0.0101074 0.0121951 0.0037123 0.0068027 0.0122699 0.0097087 

 

Table 7: Breast Cancer Patients Survival Times  

 0.3 0.3 4 5 5.6 6.2 6.3 6.6 6.8 7.4 7.5 8.4 8.4 10.3 11 

.8 12.2 12.3 13.5 14.4 14.4 14.8 15.5 15.7 16.2 16.3 16.5 16.8 17.2 17.3 

.5 17.9 19.8 20.4 20.9 21 21 21.1 23 23.4 23.6 24 24 27.9 28.2 

.1 30 31 31 32 35 35 37 37 37 38 38 38 39 39 

 40 40 41 41 41 42 43 43 43 44 45 45 46 46 

 48 49 51 51 51 52 54 55 56 57 58 59 60 60 

 61 62 65 65 67 67 68 69 78 80 83 88 89 90 

 96 103 105 109 109 111 115 117 125 126 127 129 129 139 

 

Table 8: Summary of Basic Statistics 

 Statistics   Data I   Data II   Data III  

   53   88   121  

   0.1520842   0.016339   17.5  

   0.217717   0.03599555   60  

IQR   0.06563284   0.01965655   42.5  

 0.02565598, 0.3228957  125, 126, 127 

Outlier  0.4057097, 0.4059578, 0.1034483  129, 129, 139 

 0.3280971, 0.3171587  154 

Mean   0.1900383   0.0268645   46.32893  

Median   0.1832794   0.02633435   40  

Variance   0.005644836   0.000246428   1244.464  

Standard Deviation   0.07513212   0.01569803   35.27697  

Range   0.38030182   0.1019314   153.7  

Skewness   0.7768817   1.477419   1.04318  

Kurtosis   4.267464   8.012109   3.402139 
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Table 9: Model Evaluation Measures 

 Data  Distribution   LL   AIC   CAIC   BIC   HQIC   W   A   KS   p-value  

 NGLTGE   66.78   -125.5512   -125.0614   -119.6403   -123.2781   0.0517   0.3558   0.0650   0.9677  

 NGLXTE   61.05   -118.1091   -117.8691   -114.1685   -116.5937   0.2191   1.2936   0.1550   0.1407  

 APWQ   63.07   -120.1605   -119.6707   -114.2496   -117.8875   0.1503   0.8985   0.1294   0.3101  

 LTW   63.03   -118.9463   -118.1129   -111.0651   -115.9155   0.1400   0.8787   0.1315   0.2919  

Data I  

 LW   63.46   -120.9195   -120.4297   -115.0086   -118.6464   0.1040   0.6590   0.0867   0.7880  

 NGLTGE   251.05   -496.1013   -495.8156   -488.6693   -493.1071   0.0372   0.2699   0.0515   0.9738  

 NGLXTE   243.86   -483.7146   -483.5734   -478.7599   -481.7185   0.1097   0.8680   0.1055   0.2809  

 APWQ   249.40   -492.9296   -492.6439   -485.4976   -489.9354   0.0461   0.4167   0.0607   0.9015  

 LTW   250.31   -492.6203   -492.1384   -482.7109   -488.6281   0.0497   0.4220   0.0698   0.7852  

Data II  

 LW   245.39   -489.7755   -484.4898   -477.3435   -481.7813   0.1757   1.1997   0.0860   0.5325  

 NGLTGE   -579.66   1165.3210   1165.5270   1173.7090   1168.7280   0.0553   0.4272   0.0583   0.8059  

 NGLXTE   -580.25   1164.5000   1164.6020   1170.0920   1166.7710   0.1434   0.9557   0.0799   0.4233  

 APWQ   -579.26   1164.6410   1164.2460   1172.4280   1167.4470   0.0540   0.4064   0.0584   0.8036  

 LTW   -591.40   1170.6950   1171.0400   1181.8780   1175.2370   0.1410   0.8005   0.1337   0.0264  

Data III  

 LW   -587.60   1181.1990   1181.4040   1189.5870   1184.6060   0.2097   1.2578   0.0936   0.2391 

 

Table 8 provides a statistical overview of the three 
distinct datasets, Data I, Data II, and Data III, reporting 
their central tendency, dispersion, and shape. Data I 
has a sample size of , mean of approximately 
0.190 and median 0.183, showing a moderate positive 
skew. Having a variance of 0.0056 and standard 
deviation of 0.075, it has a relatively small spread of 
values. This is also indicated by the 0.777 skewness 
and 4.267 kurtosis, suggesting a heavier-than-normal 
distribution with more than one outlier. For Data II, 

, the mean is 0.0269 and the median 0.0263. 
The 1.477 skewness and 8.012 kurtosis are both 
extremely high, indicating a strong positive skew and 
an extremely leptokurtic distribution with a more 
extreme peak and heavier tails than a normal 
distribution. The 0.00025 variance and 0.0157 standard 
deviation, along with the narrow Interquartile Range 
(IQR) of 0.0197, illustrate that the data values are 
clustered together. The single outlier at 0.1034 is 
distant from the body of data. Data III, which has the 
largest number of data at , is the most 
dispersed. Its mean at 46.33 and median at 40 are 
widely separated, and the large skewness of 1.043 
indicates high positive skew. The variance of 1244.46 
and standard deviation of 35.28 are considerably larger 
than those of the other two datasets, suggesting a wide 
spread of values. The kurtosis of 3.402 is close to that 
of a normal distribution. A number of outliers, from 125 
to 154, also explain the big range of 153.7. Overall, 
each dataset exhibits a different set of features, 
including Data III being the most spread out, Data II the 
most compact and most skewed, and Data I 
intermediate in dispersion. 

Table 9 provides a comprehensive comparison of 
the fit of five statistical distributions NGLTGE, 
NGLXTE, APWQ, LTW, and LW to three data sets: 
Data I, Data II, and Data III. The models are compared 
according to various criteria, including LL, AIC, CAIC, 
Bayesian Information Criterion (BIC), and Hannan-
Quinn Information Criterion (HQIC). The analysis 
suggests that smaller values of these information 
criteria indicate a better-fitting model. Goodness-of-fit is 
also assessed by Anderson-Darling (W, A) and 
Kolmogorov-Smirnov (KS) statistics, where a large p-
value of the KS test shows that the data likely meet the 
specified distribution. For Data I, the NGLTGE 
distribution gives the best fit. It has the highest log-
likelihood (LL = 66.78) and the lowest values of all 
information criteria (AIC = -125.5512, CAIC = -
125.0614, BIC = -119.6403, HQIC = -123.2781). 
Additionally, its Kolmogorov-Smirnov (KS) statistic of 
0.0650 is the lowest and its p-value of 0.9677 is the 
highest, providing strong evidence that NGLTGE is the 
most appropriate model for this data. For Data II, the 
NGLTGE distribution once more offers the best fit. It 
has the highest log-likelihood (LL = 251.05) and the 
lowest information criteria values. Its KS p-value of 
0.9738 is the largest of all the models, which further 
confirms its adequacy. Even though the APWQ 
distribution also has a high p-value (0.9015), the 
NGLTGE model is much better due to having lower 
values of the information criteria. For Data III, the 
NGLTGE distribution is once again the best-fitting 
model. Although the LL is negative (-579.66), it is the 
highest, and the information criteria (AIC = 1165.3210, 
CAIC = 1165.5270, BIC = 1173.7090, HQIC = 
1168.7280) are the lowest. The KS p-value 0.8059 is 
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the highest, indicating a good fit. For comparison, the 
LTW model to Data III has a very low KS p-value 
(0.0264), indicating that it is not a good fit for this data. 
Concisely, the NGLTGE distribution provides the best 
fit to all three datasets on every evaluation measure 
used, ranging from log-likelihood to information criteria 
and goodness-of-fit tests. 

Table 10 displays the Maximum Likelihood 
Estimates (MLEs) and standard errors of the 
parameters of five distributions that were fitted to three 
data sets. Standard errors are an indication of the 
estimates’ accuracy, with lower values indicating more 
precise parameter estimates. For Data I, the NGLTGE 
distribution provides the parameter estimates 
ŝ = 0.0232 , k̂ = 0.0963 , and θ̂ =1.9881 . The standard 
errors of k̂  and θ̂  are especially large, indicating great 

variability in estimating them. The NGLXTE and LTW 
models, however, have relatively small standard errors 
for respective parameters, indicating better estimates. 
APWQ and LW models also have parameters with 

large standard errors, notably α̂ ,  and all the 
parameters of the LW model. In Data II, the NGLTGE 
model is estimating parameters with varying degrees of 
precision. ŝ  has a fairly precise estimate (standard 
error of 0.0541), while estimates of k̂  and θ̂  both have 
much greater standard errors, specifically θ̂  with a 
standard error of 4.4711. The NGLXTE model again 
has very precise estimates, with the standard errors for 
â  and l̂  both small. The APWQ, LTW, and LW models 
all possess great standard errors for the majority of 
their parameters, indicating these parameter estimates 
are less reliable. Finally, within Data III, the NGLTGE 
model contains estimates with mixed precision. The 

Table 10: Parameter Estimates for the Fitted Models 

Data Distribution MLEs (Standard Errors)  

NGLTGE ŝ  
0.0232(0.0131) 

k̂  
0.0963(0.2047) 

θ̂  
1.9881(4.2374) 

 

NGLXTE  â  
0.5289(0.0555) 

l̂  
3.1585(0.1713) 

  

APWQ  α̂  
2.4949(4.4809) 

β̂  
2.9698(0.7018) 

λ̂  
72.6897(41.1816) 

 

LTW  ŝ  
1.7196(1.0183)  

0.1832(0.0305) 

â  
0.1118(0.0010) 

b̂  
2.8109(0.0013) 

Data I 

LW  â  
1.0860(–) 

b̂  
6.4300(–) 

l̂  
4.0575(–) 

 

 NGLTGE  ŝ  
0.1484(0.0541) 

k̂  
0.0428(0.0543) 

θ̂  
3.4920(4.4711) 

 

NGLXTE  â  
0.8234(0.0678) 

l̂  
21.2834(1.3384) 

  

 APWQ  α̂  
0.3171(0.6273) 

β̂  
1.6163(0.2867) 

λ̂  
383.7133(233.1578) 

 

 LTW  ŝ  
0.0753(0.3791) 

k̂  
5.8251(5.1657) 

â  
0.2958(0.7065) 

b̂  
2.0415(0.2516) 

Data II  

 LW  â  
0.3908(5.3189) 

b̂  
4.3174(85.9392) 

l̂  
6.9070(93.9956) 

 

NGLTGE  ŝ  
0.5821(0.1769) 

k̂  
1.7354(3.8367) 

θ̂  
0.0458(0.1009) 

 

NGLXTE â  
1.0443(0.0805) 

l̂  
0.0125(0.0008) 

  

APWQ α̂  
0.8709(0.5828) 

β̂  
1.2865(0.0758) 

λ̂  
0.0068(0.0028) 

 

LTW  ŝ  
9.9149(4.6474) 

k̂  
0.1008(0.0103) 

â  
2.3466(0.0049) 

b̂  
0.8683(0.0043) 

Data III 

LW  â  
0.7676(0.7618) 

b̂  
0.0650(0.1763) 

l̂  
2.4179(2.4089) 
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standard error for ŝ  is small in magnitude (0.1769), 
while the standard errors for k̂  and θ̂  are larger. As in 
the case with the other datasets, the NGLXTE model 
for Data III is characterized by extremely accurate 
parameter estimates, with standard errors of 0.0805 for 
â  and 0.0008 for l̂ . The other distributions (APWQ, 
LTW, LW) tend to have parameters with greater 
standard errors, though the LTW model’s k̂  and the 
APWQ model’s β̂  are estimated more accurately. 
Generally, although the NGLTGE distribution was 
previously mentioned to be most information-criteria 
and goodness-of-fit favorable, the NGLXTE distribution 
is always providing the best parameter estimates with 
all three datasets, as evident from its analysis with 
smaller standard errors of the parameters. This shows 
that although NGLTGE may be a better fitting for the 
overall shape of the data, the parameters of the 
NGLXTE model are better estimated and robust. 

The plots in Figure 6 show the distributions of three 
datasets. Panel 24, has a fairly symmetric distribution 
with the median near the center of the box, and a few 
minor density peaks. Panel 25 is highly right-skewed, 
indicated by a long upper tail, a median positioned low 
in the box, and a dense concentration of data at the 
lower end of the range. Panel 26 also exhibits right-

skewness, but with a much wider spread than the other 
two datasets, shown by the broader violin plot and 
larger box, and a median situated in the lower half of its 
box. 

The provided TTT (Total Time on Test) plots in 
Figure 7 are used to assess the shape of the hazard 
rate of a distribution. The plots show the relationship 
between T (i / n) , the TTT plot function, and i / n , the 
empirical cumulative distribution. In panel 28, the TTT 
plot for Data I is concave, indicating that the distribution 
has an increasing hazard rate (IHR). This suggests that 
the risk of an event occurring increases over time. For 
panel 29, the TTT plot for Data II is also concave. This 
indicates an increasing hazard rate (IHR) for this 
dataset as well, similar to Data I. In panel 30, the TTT 
plot for Data III is a straight line, which suggests that 
the distribution has a constant hazard rate. This implies 
that the risk of an event is uniform over time. 

Figure 8 show how well different distributions fit 
three datasets. In panel 32, for Data I, the NGLTGE 
distribution, shown in red, provides the closest fit to the 
histogram’s shape compared to the other distributions. 
In panel 33, for Data II, the NGLTGE distribution again 

 
Figure 6: Boxplot superimposed on Violin plot for (a) Data I, (b) Data II, (c) Data III. 

 
Figure 7: TTT plots for (a) Data I, (b) Data II, (c) Data III. 
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appears to be the best fit, closely following the high 
peak and the long tail of the data. For panel 34, Data 
III, the NGLTGE and APWQ distributions both provide 
a good fit to the histogram, with the NGLTGE line 
tracking the overall shape of the bars quite well. 

Figure 9 compare the empirical cumulative 
distribution function (CDF) of the data with the 
theoretical CDFs of five fitted distributions. A good fit is 
indicated by the theoretical curve closely following the 
step-like empirical curve. In panel 36, for Data I, the 

NGLTGE distribution (red line) provides a very close fit 
to the empirical CDF, aligning well with the black dots 
that represent the data. In panel 37, for Data II, the 
theoretical curves for NGLTGE (red), APWQ (green), 
and LTW (blue) all appear to fit the empirical CDF well, 
showing that they are all suitable models for this 
dataset. In panel 38, for Data III, the NGLTGE (red) 
and LTW (blue) curves closely match the empirical 
CDF of the data, indicating a better fit compared to the 
other distributions. 

 
Figure 8: Density plot superimposed on Histogram for (a) Data I, (b) Data II, (c) Data III. 

 

 
Figure 9: CDF plots for (a) Data I, (b) Data II, (c) Data III. 

 
Figure 10: SF plots for (a) Data I, (b) Data II, (c) Data III. 
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Figure 10 compare the fitted survival functions 
(SFs) with the empirical survival function of the data. 
The survival function, S(t) , represents the probability of 
an item surviving beyond time t . A good fit is indicated 
by a theoretical curve that closely follows the empirical 
step-wise curve. In panel 40, for Data I, the NGLTGE 
distribution (red line) provides the best fit, closely 
tracking the empirical survival function across the entire 
range of data. In panel 41, for Data II, the NGLTGE 
distribution again appears to be the best fit, as its curve 
aligns most closely with the empirical plot, particularly 
in the initial, steep drop-off phase. In panel 42, for Data 
III, the NGLTGE and NGLXTE distributions are the 
most suitable, as their curves closely match the 
empirical data points, showing a good fit for this 
dataset as well. The other models do not capture the 
shape of the empirical data as accurately. 

 Figures 11, 12, and 13 are the Probability-
Probability (P-P) plots for Data I, II and III respectively. 
Figures 14, 15, and 16 represent the Quantile-Quantile 
(Q-Q) plots for Data I, II and III respectively. 

8. MACHINE LEARNING PERSPECTIVE 

From a machine learning perspective, the proposed 
NGLTGE distribution can be understood as a 

parametric density estimator that balances parsimony, 
interpretability, and predictive performance. While 
much of the recent literature in probabilistic modeling 
has shifted toward highly flexible nonparametric or 
neural network-based density estimators, such as 
Gaussian mixtures [42], variational autoencoders [43], 
and normalizing flows [44], there remains strong value 
in developing new closed-form families with tractable 
likelihoods. 

8.1. PyTorch Implementation 

We fit the NGLTGE parameters (s,k,θ )  by 
maximum likelihood in PyTorch [45]. The negative log-
likelihood is differentiated using autograd and 
minimized with the Adam optimizer [46], removing the 
need to derive or solve score equations analytically. To 
enforce positivity and improve conditioning, we 
optimize unconstrained variables passed through a 
softplus transform to obtain (s,k,θ ) > 0 . For numerical 
stability we (i) rescale inputs by the empirical 95th 
percentile, (ii) clamp the argument of the exponential to 
avoid overflow, and (iii) clip gradients at a fixed norm. 

Training uses double precision (float64) and 
reproducible seeds. Hyperparameters (learning rate, 
iterations, and optional mini-batch size) are tuned by 

 
Figure 11: P-P plots for Data I. 
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Figure 12: P-P plots for Data II. 

 

 
Figure 13: P-P plots for Data III. 
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Figure 14: Q-Q plots for Data I. 

 

 
Figure 15: Q-Q plots for Data II. 



914     International Journal of Statistics in Medical Research, 2025, Vol. 14 Elkalzah et al. 

 
Figure 16: Q-Q plots for Data III. 

 

 
Figure 17: Comparison of the fitted NGLTGE PDF (blue) with empirical KDE scatter (red) for (a) DATA I, (b) DATA II, and (c) 
DATA III. 

 

 
Figure 18: Comparison of the Fitted NGLTGE probability density functions (red curves) compared against empirical histograms 
(black bars with white fill) for three datasets, (a) DATA I, (b) DATA II, and (c) DATA III. 
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Table 11: NGLTGE Parameter Estimates by Dataset. Inputs were Scaled by the Empirical 95th Percentile during 
Optimization; θ  is on the Original Scale 

 Dataset   Init (s0,k0,θ0 )    s  (fit)   k  (fit)   θ  (fit)  

Bitcoin   (0.3,1.0,0.6)    0.02330   0.22978   0.47400  

COVID-Angola   (0.3,1.0,0.6)    0.14834   0.32878   26.8387  

Breast cancer   (0.3,1.0,0.6)    0.58276   0.38634   0.01019  

 

monitoring held-out predictive log-likelihood using 5-
fold cross-validation [47]. Adam can be replaced by a 
hybrid schedule (e.g., Adam warm-start followed by L-
BFGS) without changing the model code. For 
diagnostics, we overlay the fitted PDF on data 
summaries using a Freedman–Diaconis histogram [48] 
and a kernel density estimate (KDE) [49]. This 
implementation integrates seamlessly with deep-
learning pipelines while retaining the interpretability of a 
closed-form distribution. 

8.2. Comparison with Machine Learning Density 
Estimators 

To evaluate performance, we benchmarked 
NGLTGE against two state-of-the-art machine learning 
baselines:  

1. a Log-Gaussian Mixture Model (Log-GMM), 
representing a flexible parametric mixture 
estimator in log-space [42, 50], and  

2. a one-dimensional Masked Autoregressive Flow 
(MAF), a normalizing flow trained on log x  with 
change-of-variables back to the original domain 
[44].  

Predictive performance was assessed via 5-fold 
cross-validation of the predictive log-likelihood [47] 
(Table 12, Figure 19). Across all three real datasets-
Bitcoin trading volumes, COVID-19 mortality in Angola, 
and breast cancer survival times-NGLTGE achieved 
competitive or superior performance. In particular, 
NGLTGE provided higher predictive log-likelihoods 

than both GMM and MAF in modeling heavy-tailed 
outcomes (e.g., survival times), highlighting its strength 
in domains where tail fidelity is crucial. 

8.3. Data-Driven Validation 

Beyond predictive log-likelihood, we validated 
model adequacy by generating synthetic datasets from 
the flow-based baseline [44] and visually comparing 
their kernel density estimates against both real data 
and the fitted NGLTGE PDF (Appendix A). While MAF 
reproduced the central modes of the distributions, it 
systematically underestimated tail behavior. By 
contrast, NGLTGE provided close alignment with 
empirical densities across the entire range, with fewer 
parameters and interpretable structure. Empirical 
densities were computed via kernel density estimation 
[49, 51-58]. This result underscores a core advantage: 
NGLTGE offers both statistical interpretability and ML-
level competitiveness. 

8.4. Scalability and Extensions 

The computational pipeline presented here 
demonstrates that new distribution families can be 
directly embedded into modern ML frameworks [45]. 
Extensions such as Bayesian inference (e.g., with 
probabilistic programming systems) or variational 
inference provide posterior uncertainty quantification 
for (s,k,θ ) ; in all cases, mini-batch optimization with 
adaptive methods like Adam [46] makes training 
practical at scale. Moreover, the gradient-based 
training opens the door to integrating NGLTGE within 
larger ML systems, such as survival prediction models, 

Table 12: 5-Fold Predictive Log-Likelihood (Mean  std). Higher Values Indicate Better Generalization. Best Results 
for each Dataset are Shown in Bold 

 Dataset   NGLTGE   Log-GMM(3)   MAF  

Bitcoin   -1.089  0.208   -1.565  0.885   -1.303  0.410  

COVID–Angola   2.833  0.218   2.745  0.190   2.675  0.318  

Breast Cancer   -4.812  0.113   -5.112  0.538   -5.027  0.241  



916     International Journal of Statistics in Medical Research, 2025, Vol. 14 Elkalzah et al. 

probabilistic forecasting pipelines, and deep generative 
architectures. 

In summary, the ML perspective highlights that 
NGLTGE is not only a theoretical generalization but 
also a practical, scalable, and interpretable model that 
can compete with modern machine learning density 
estimators. This dual positioning strengthens its value 
for both the statistical and ML communities. 

9. CONCLUSION AND FUTURE WORK 

The study was successful in introducing a new 
family of generalized distributions, and a submodel, the 
new generalized Lomax tangent transformed 
exponential (NGLTGE) distribution. The NGLTGE 
distribution proved to be a more suitable model for 
various real datasets like cryptocurrency, COVID-19, 
and breast cancer data. A Monte Carlo simulation also 
confirmed that the parameter estimators are well-
behaved asymptotically. In addition, the utility of the 
distribution in practice was demonstrated through its 
application to a group acceptance sampling plan for 
quality control. From a machine learning perspective, 
we showed that the NGLTGE model is not just an 
abstract concept but also an effective, scalable, and 
interpretable tool. By implementing it within a modern 
deep-learning framework like PyTorch and making use 
of automatic differentiation for parameter estimation, 
the NGLTGE distribution competed favorably with 
recent machine learning density estimators like Log-
Gaussian Mixture Model (Log-GMM) and Masked 
Autoregressive Flow (MAF), particularly in the modeling 
of heavy-tailed data details. 

The increased flexibility of the NGLTGE model, 
while beneficial, introduces certain practical limitations. 

The model has three parameters ( s,k,θ ), making the 
parameter space larger and estimation more complex 
than the two-parameter baseline Exponential or Lomax 
distributions. Consequently, the Maximum Likelihood 
Estimation (MLE) procedure requires careful selection 
of initial values and can be computationally intensive 
for very large datasets, potentially leading to 
convergence issues or multiple local maxima on 
complex likelihood surfaces. Furthermore, while the 
NGLTGE excels with heavy-tailed, non-linear data, it 
may underperform compared to simpler models (e.g., 
Weibull or Gamma) when applied to data that is strictly 
symmetrical or possesses only very thin tails, as the 
added complexity becomes unnecessary overhead. 
Specifically, it might lack the inherent flexibility to model 
bi-modal or multi-modal data without further 
extensions, a domain where non-parametric models 
like Log-GMM or MAF (as shown in Section 8) often 
maintain an advantage. 

For future work, Bayesian parameter estimation can 
be used to better understand the parameter 
uncertainty. The emphasis in the present work is on the 
univariate NGLTGE distribution; thus, one natural 
extension would be to build a multivariate counterpart 
to describe dependence between two or more variables 
and estimate it to describe dependence structures in 
finance and econometrics, say. While we have shown 
that the NGLTGE can be adapted using adaptive 
optimization, exploration of regularization techniques 
might prevent overfitting and improve generalization on 
small datasets. The usefulness of the NGLTGE 
distribution with heavy-tailed data suggests its possible 
application in other contexts where such features are 
common, e.g., network traffic simulation or actuarial 
science. Finally, the NGLTGE distribution could be 

 
Figure 19: 5-fold predictive log-likelihood (mean ±  std) comparison between NGLTGE, Log-GMM(3), and MAF across the three 
real datasets (Bitcoin trading volumes, COVID-19 mortality in Angola, and breast cancer survival times).  
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added to time series models or used to design new 
survival analysis models that can accommodate 
complex data.  
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APPENDIX A: ML ESTIMATION & VALIDATION DETAILS 

A.1. Implementation 

9.0.1 Kernel Density Estimation 

Given samples  x1,…, xn , the KDE is  

f̂h (x) =
1
nh i=1

n

∑K x − xi
h

⎛

⎝
⎜

⎞

⎠
⎟,  

with Gaussian kernel K(u) = (2π )−1/2e−u
2 /2 . The bandwidth h > 0  controls smoothness. 

Defaults. [leftmargin=1.2em]  

• Optimizer: Adam (lr =10−2  for CV, 10−2 -10−3  for final fits); steps =1500 - 2000 ; mini-batch size = 32 ; grad clip 
=10 .  

• KDE: scipy.stats.gaussian_kde (Scott’s rule for bandwidth).  

• Log-GMM baseline: 3 lognormal components fit on log x  (sklearn GaussianMixture); prediction uses change-
of-variables.  

• Flow baseline (MAF): 3 affine autoregressive transforms on log x  with two hidden layers (width 16), Adam lr 
= 5×10−3 , 1500 steps; prediction includes the − log x  Jacobian term.  

• Cross-validation: 5-fold, shuffled with fixed seed; we report mean ±  std test log-likelihood.  

A.2. Flow Simulation  

Train the flow on y = log x , then sample y*  from the flow and set x* = exp(y*) . We compare  f

KDE (x)  of the real 

data (solid black) against the KDE of {x*}  (blue dashed) and the fitted NGLTGE PDF (red). 

A.3. Reproducibility 

Code is written in PyTorch/NumPy; all experiments use a fixed random seed. Figures are rendered with 
Matplotlib; histograms use Freedman-Diaconis bins. 

A.4. Additional Figures 

 
Figure 20: KDE overlays: empirical (black), flow-simulated(MAF) (blue dashed), NGLTGE PDF (red). 
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A.5. Limitations and Future Work 

[leftmargin=1.2em]  

• Sensitivity to KDE bandwidth and mini-batch size; alternative optimizers or hybrid schedules.  

• Tail-weighted losses and mixture-NGLTGE extensions for multi-modal data.  

• Scalable Bayesian variants via stochastic variational inference (SVI).  

• Covariate-dependent (conditional) NGLTGE for regression/time-varying settings.  

REFERENCES 

[1] Muino JM, Voit EO, Sorribas A. GS-distributions: A new family of 
distributions for continuous unimodal variables. In: Computational 
statistics & data analysis 2006; 50(10): 2769-2798.  
https://doi.org/10.1016/j.csda.2005.04.016 

[2] Cordeiro GM, De Castro M. A new family of generalized 
distributions. In: Journal of statistical computation and simulation 
2011; 81(7): 883-898.  
https://doi.org/10.1080/00949650903530745 

[3] Mehboob ZS, Sobhi MMA, El-Morshedy M, Afify AZ. A new 
generalized family of distributions: Properties and applications. 
In: Aims Math 2021; 6(1): 456-476. 

[4] Benchiha SA, Sapkota LP, Al Mutairi A, Kumar V, Khashab RH, 
Gemeay AM, Elgarhy M, Nassr SG. A new sine family of 
generalized distributions: Statistical inference with applications. 
In: Mathematical and Computational Applications 2023; 28(4): 
83.  
https://doi.org/10.3390/mca28040083 

[5] El-Alosey AR, Alotaibi MS, Gemeay AM. A new two-parameter 
mixture family of generalized distributions: Statistical properties 
and application. In: Heliyon 2024; 10(19): 
https://doi.org/10.1016/j.heliyon.2024.e38198 

[6] Ahmed MA, Mahmoud MR, ElSherbini EA. The new 
Kumaraswamy Kumaraswamy family of generalized distributions 
with application. In: Pakistan Journal of Statistics and Operation 
Research 2015; 159-180.  
https://doi.org/10.18187/pjsor.v11i2.969 

[7] Tahir MH, Adnan Hussain M, Cordeiro GM. A new flexible 
generalized family for constructing many families of distributions. 
In: Journal of Applied Statistics 2022; 49(7): 1615-1635.  
https://doi.org/10.1080/02664763.2021.1874891 

[8] Cordeiro GM, Ortega EMM, Ramires TG. A new generalized 
Weibull family of distributions: mathematical properties and 
applications. In: Journal of Statistical Distributions and 
Applications 2015; 2(1): 13.  
https://doi.org/10.1186/s40488-015-0036-6 

[9] Bakouch H, Chesneau C, Enany M. A weighted general family of 
distributions: Theory and practice. In: Computational and 
Mathematical Methods 2021 3 (6): e1135. 
https://doi.org/10.1002/cmm4.1135 

[10] Alzaatreh A, Lee C, Famoye F. T-normal family of distributions: a 
new approach to generalize the normal distribution. In: Journal of 
Statistical Distributions and Applications 2014; 1(1): 16.  
https://doi.org/10.1186/2195-5832-1-16 

[11] Nofal ZM, Afify AZ, Yousof HM, Cordeiro GM. The generalized 
transmuted-G family of distributions. In: Communications in 
Statistics-Theory and Methods 2017; 46(8): 4119-4136.  
https://doi.org/10.1080/03610926.2015.1078478 

[12] Salahuddin N, Khalil A, Mashwani WK, Shah H, Jomsri P, 
Panityakul T. A novel generalized family of distributions for 
engineering and life sciences data applications. In: Mathematical 
Problems in Engineering 2021; 2021(1): 9949999.  
https://doi.org/10.1155/2021/9949999 

[13] Gemeay AM, Moakofi T, Balogun OS, Ozkan E, Md Moyazzem 
H. Analyzing real data by a new heavy-tailed statistical model. In: 
Modern Journal of Statistics 2025; 1(1): 1-24. 
https://doi.org/10.64389/mjs.2025.01108 

[14] Mousa MN, Moshref ME, Youns N, Mansour MMM. Inference 
under hybrid censoring for the quadratic hazard rate model: 
Simulation and applications to COVID-19 mortality. In: Modern 
Journal of Statistics 2026; 2(1): 1-31.  
https://doi.org/10.64389/mjs.2026.02113 

[15] Obulezi OJ. Obulezi distribution: a novel one-parameter 
distribution for lifetime data modeling. In: Modern Journal of 
Statistics 2026; 2(1): 32-74.  
https://doi.org/10.64389/mjs.2026.02140 

[16] Onyekwere CK, Aguwa OC, Obulezi OJ. An updated lindley 
distribution: Properties, estimation, acceptance sampling, 
actuarial risk assessment and applications. In: Innovation in 
Statistics and Probability 2025; 1(1): 1-27.  
https://doi.org/10.64389/isp.2025.01103 

[17] El Gazar AM, Ramadan DA, ElGarhy M, El-Desouky BS. 
Estimation of parameters for inverse power Ailamujia and 
truncated inverse power Ailamujia distributions based on 
progressive type-II censoring scheme. In: Innovation in Statistics 
and Probability 2025; 1(1): 76-87.  
https://doi.org/10.64389/isp.2025.01106 

[18] Hassan AS, Metwally DS, Semary HE, Benchiha SA, Gemeay 
AM, Elgarhy M. Improved estimation based on ranked set 
sampling for the Chris-Jerry distribution with application to 
engineering data. In: Computational Journal of Mathematical and 
Statistical Sciences 2025.  
https://doi.org/10.21608/cjmss.2025.375962.1156 

[19] Hassan AS, Metwally DS, Elgarhy M, Gemeay AM. A new 
probability continuous distribution with different estimation 
methods and application. In: Computational Journal of 
Mathematical and Statistical Sciences 2025; 4(2): 512-532.  
https://doi.org/10.21608/cjmss.2025.375970.1157 

[20] Bousseba FZ, Zeghdoudi H, Sapkota LP, Tashkandy YA, Bakr 
ME, Kumar A, Gemeay AM. Novel two-parameter quadratic 
exponential distribution: Properties, simulation, and applications. 
In: Heliyon 2024; 10(19):  
https://doi.org/10.1016/j.heliyon.2024.e38201 

[21] Alsadat N, Tanis C, Sapkota LP, Kumar A, Marzouk W, Gemeay 
AM. Inverse unit exponential probability distribution: Classical 
and Bayesian inference with applications. In: AIP Advances 
2024; 14(5): 
https://doi.org/10.1063/5.0210828 

[22] M Nassar, A Alzaatreh, O Abo-Kasem, M Mead, and M Mansoor. 
“A new family of generalized distributions based on alpha power 
transformation with application to cancer data”. In: Annals of Data 
Science 5.3 (2018: 421-436. 
https://doi.org/10.1007/s40745-018-0144-5 

[23] Obulezi OJ, Obiora-Ilouno HO, Osuji GA, Kayid M, Balogun OS. 
A new family of generalized distributions based on logistic-x 
transformation: sub-model, properties and useful applications. In: 
Research in Statistics 2025; 3(1): 2477232.  
https://doi.org/10.1080/27684520.2025.2477232 

[24] Zaidi SM, Mahmood Z, Nicodème MA, Tashkandy YA, Bakr ME, 
Almetwally EM, Hussam E, Gemeay AM, Kumar A. Lomax 
tangent generalized family of distributions: Characteristics, 
simulations, and applications on hydrological-strength data. In: 
Heliyon 2024; 10(12). 
https://doi.org/10.1016/j.heliyon.2024.e32011 

[25] Gurler U. Reverse Hazard. Bilkent University, Ankara, Turkey 
2016. 



A New Family of Generalized Distributions International Journal of Statistics in Medical Research, 2025, Vol. 14      919 

[26] Al-Mutairi DK, Ghitany ME, Kundu D. Inferences on stress-
strength reliability from Lindley distributions. In: Communications 
in statistics-theory and methods 2013; 42(8): 1443-1463. 

[27] Kotb MS, Raqab MZ. Inferential analysis of the stress-strength 
reliability for a new extended family of distributions. In: Research 
in Statistics 2025; 3(1): 2452926. 

[28] Asgharzadeh A, Valiollahi R, Raqab MZ. Estimation of the stress-
strength reliability for the generalized logistic distribution. In: 
Statistical Methodology 2013; 15: 73-94. 

[29] Eryilmaz S. On Stress-Strength Reliability with a Time-
Dependent Strength. In: Journal of Quality and Reliability 
Engineering 2013; 2013(1): 417818. 

[30] Mokhlis NA, Ibrahim EJ, Gharieb DM. Stress- strength reliability 
with general form distributions. In: Communications in Statistics-
Theory and Methods 2017; 46(3): 1230-1246. 

[31] Cheng R, Amin N. Maximum product of spacings estimation with 
application to the lognormal distribution (Mathematical Report 79-
1). In: Cardiff: University of Wales IST 1979. 

[32] Swain JJ, Venkatraman S, Wilson JR. Least-squares estimation 
of distribution functions in Johnson’s translation system. In: 
Journal of Statistical Compu- tation and Simulation 1988; 29(4): 
271-297.  
https://doi.org/10.1080/00949658808811068 

[33] Nwankwo BC, Obiora-Ilouno HO, Almulhim FA, Mustafa MSA, 
Obulezi OJ. Group acceptance sampling plans for type-I 
heavytailed exponential distribution based on truncated life tests. 
In: AIP Advances 2024; 14(3).  
https://doi.org/10.1063/5.0194258 

[34] Nwankwo MP, Alsadat N, Kumar A, Bahloul MM, and Obulezi 
OJ. Group acceptance sampling plan based on truncated life 
tests for Type-I heavy-tailed Rayleigh distribution. In: Heliyon 
2024; 10(19).  
https://doi.org/10.1016/j.heliyon.2024.e38150 

[35] Ekemezie D-FN, Alghamdi FM, Aljohani HM, Riad FH, Abd El-
Raouf MM, Obulezi OJ. A more flexible Lomax distribution: 
characterization, estimation, group acceptance sampling plan 
and applications. In: Alexandria Engineering Journal 2024; 109: 
520-531.  
https://doi.org/10.1016/j.aej.2024.09.005 

[36] Nadir S, Aslam M, Anyiam KE, Alshawarbeh E, Obulezi OJ. 
Group acceptance sampling plan based on truncated life tests for 
the Kumaraswamy Bell-Rayleigh distribution. In: Scientific African 
2025; 27: e02537. 
https://doi.org/10.1016/j.sciaf.2025.e02537 

[37] Lawless JF. Statistical models and methods for lifetime data. 
John Wiley & Sons 2011. 

[38] McLachlan G, Peel D. Finite Mixture Models. Wiley 2000. 
[39] Kingma DP, Welling M. Auto-Encoding Variational Bayes. In: 

Proceedings of the 2nd International Conference on Learning 
Representations (ICLR). 2014; arXiv: 1312. 6114 [stat.ML]. 

[40] Papamakarios G, Pavlakou T, Murray I. Masked Autoregressive 
Flow for Density Estimation. In: Advances in Neural Information 
Processing Systems 2017. 

[41] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et 
al. PyTorch: An Imperative Style, High-Performance Deep 
Learning Library. In: Advances in Neural Information Processing 
Systems 2019. 

[42] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. 
In: International Conference on Learning Representations 2015. 
arXiv: 1412.6980. 

[43] Stone M. Cross-Validatory Choice and Assessment of Statistical 
Predictions. In: Journal of the Royal Statistical Society. Series B 
1974. 

[44] Freedman D, Diaconis P. On the Histogram as a Density 
Estimator: L2 Theory. In: Zeitschrift fÅNur 
Wahrscheinlichkeitstheorie und Verwandte Gebiete 1981. 

[45] Silverman BW. Density Estimation for Statistics and Data 
Analysis. Chapman & Hall 1986. 

[46] Dempster AP, Laird NM, Rubin DB. Maximum Likelihood from 
Incomplete Data via the EM Algorithm. In: Journal of the Royal 
Statistical Society. Series B 1977. 

[47] Rosenblatt M. Remarks on Some Nonparametric Estimates of a 
Density Function. In: The Annals of Mathematical Statistics 1956. 

[48] Parzen E. On Estimation of a Probability Density Function and 
Mode. In: The Annals of Mathematical Statistics 1962. 

[49] Okechukwu CP, Asogwa EC, Aguwa OC, Obulezi OJ, Ezzeldin 
MR. Prediction of gender power dynamics and political 
representation in Nigeria using machine learning models. In: 
Innovation in Computer and Data Sciences 2025; 1(1): 1-18.  
https://doi.org/10.64389/icds.2025.01122 

[50] Onyekwere CK, Nwankwo CK, Abonongo J, Asogwa EC, Shafiq 
A. Economic growth dynamics: a machine learning-augmented 
nonlinear autoregressive distributed lag model of asymmetric 
effect. In: Innovation in Computer and Data Sciences 2025; 1(1): 
19-31. 
https://doi.org/10.64389/icds.2025.01125 

[51] Asogwa EC, Nwankwo MP, Oguadimma EE, Okechukwu CP, 
Suleiman AA. Hybrid LSTM-CNN deep learning framework for 
stock price prediction with google stock and reddit sentiment 
data. In: Innovation in Computer and Data Sciences 2025; 1(1): 
32-50.  
https://doi.org/10.64389/icds.2025.01126 

[52] Nnaekwe K, Ani E, Obieke V, Okechukwu C, Usman A, Othman 
M. Forecasting seasonal rainfall with time series, machine 
learning and deep learning. In: Innovation in Computer and Data 
Sciences 2025; 1(1): 51-65.  
https://doi.org/10.64389/icds.2025.01127 

[53] Ugbor G, Jamal F, Khan S, Shawki AW. Generative AI for drug 
discovery: Accelerating molecular design with deep learning 
using Nigerian local content. In: Innovation in Computer and Data 
Sciences 2025; 1(1): 66-77.  
https://doi.org/10.64389/icds.2025.01128 

[54] Onyekwere CK, Nwankwo CK, Apameh DG. A hybrid machine 
learning framework for multi-objective performance optimization 
and anomaly detection in maritime operations. In: Innovation in 
Computer and Data Sciences 2026; 2(1): 1-10.  
https://doi.org/10.64389/icds.2026.02131 

 
Received on 10-11-2025 Accepted on 15-12-2025 Published on 30-12-2025 
 
https://doi.org/10.6000/1929-6029.2025.14.80 
 
© 2025 Elkalzah et al. 
This is an open-access article licensed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the work is properly cited. 


