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Abstract: In this study, we introduce a new family of generalized distributions using the Lomax tangent generalized
transformation. We derive the general formulas for its cumulative distribution function (CDF) and probability density
function (PDF). As a specific sub-model, we construct the new generalized Lomax tangent transformed exponential
(NGLTGE) distribution by using the exponential distribution as the baseline. We investigate the model's key
mathematical properties and conduct a Monte Carlo simulation, which confirms that the estimators exhibit good
asymptotic behavior. A group acceptance sampling plan is also designed to demonstrate its utility in quality control. The
NGLTGE model is then applied to real-world datasets from cryptocurrency, COVID-19, and breast cancer, where it
consistently provides a superior statistical fit compared to related distributions. Finally, we apply the NGLTGE distribution
within a machine learning framework using a PyTorch maximum likelihood estimation. The model's predictive
performance is found to be competitive with, and in some cases superior to, state-of-the-art machine learning density
estimators like the Log-Gaussian Mixture Model (Log-GMM) and Masked Autoregressive Flow (MAF), especially for data
with heavy tails. This work positions the NGLTGE distribution as a valuable, interpretable, and scalable model for both

classic statistical and modern data science applications.

Keywords: Generalized distributions, Lomax tangent generalized family, Monte Carlo Simulation, Log-Gaussian

Mixture Model, Masked Autoregressive Flow.

1. INTRODUCTION

Choosing the right statistical distribution for a
dataset is a critical step, as there is often no single,
obvious choice. A common, but not always objective,
method involves testing multiple distributions and
selecting the one that best fits the data, but a more
efficient approach is to use a general family of
distributions, such as Pearson’s, that can be adjusted
to fit a wide range of data [1]. Generalization is a
common and fascinating approach to designing new
families of distributions. In the end, the structural cum
functional form of the based distribution is altered. This
often leads to a more robust model with better
goodness-of-fit, parameter estimates with minimum
standard errors, and tractable characteristics. The new
families fashioned this way are known for being able to
capture intricate properties of datasets that the parent
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distributions could not capture. Such generalizations
include the Kumaraswamy generalized family by [2],
the log-logistic tangent generalized family by [3], new
sine family of generalized distributions by [4], new two-
parameter mixture family of generalized distributions by
[6], new Kumaraswamy Kumaraswamy family of
generalized distributions by [6], new flexible
generalized family by, new generalized Weibull family
by [7], weighted general family by [8], a new
generalized normal family by [9], new power
generalized Weibull family by [10], odd generalized
exponential family of distributions by [11], generalized
gamma family by [12], generalized symmetric family by
[13], generalized transmuted family by [14], novel
generalized family by [15]. Other readings include [16-
25] to mention a few.

[26] was the first to introduce a new family of
generalized distributions using the transformation of the
cdf of another family of distributions. That is, the cdf of
alpha power family. [27] proposed a new family of
generalized distributions based on the logistic x
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transformation. In the present study, we design a new
family of generalized distributions based on the lomax
tangent generalized transformation. Let X be a
nonnegative real-valued random variable that is lomax
tangent generalized distributed [28], the cumulative
distribution function (CDF) is given in Eq. (1.1) as;

tan(nF(x;C)) ]

G(x;8,k,0)=1-|1+—=——~| ; x>0, s5,k>0,(1.1)
S

where F(x;€) is any continuous baseline distribution.
Taking F(x;&) as the subjectin Eq. (1.1), we have

F(x;s,k,6) = zarctam{s[l —G(x;C)]% —s}; x>0, s5,k>0,(1.2)
7

where ( is the vector of parameters for the baseline
distribution, now redesigned as G(x;&). Differentiating

Eq. (1.2) produces the associated probability density
function (PDF) given in Eq. (1.3) as;

oo =( 22| LDNGOT

” : 55 x>0, s,k>0.(1'3)
1+{s[1—G(x;§)]7 —s}

The quantile function is

-k

tan(nu)+ S
0w =G"|1-|—2L

N

; ue©,l1).

The rationale for this work is multi-faceted, founded
on the perennial problem of adequate modeling of
complex and diverse data sets in economics, finance,
and medical sciences. Most standard econometric
models and statistical distributions can seldom explain
the non-linear dynamics, heavy tails, and volatility of
economic time series, financial returns like Bitcoin, and
survival times from diseases like COVID-19 and breast
cancer. The novel Lomax Tangent (LT) generalized
transformation is specifically introduced to address this
gap because its structure is hypothesized to provide
enhanced flexibility: it leverages the Lomax generator
for superior heavy-tail modeling (allowing for greater
kurtosis control) and uses the tangent function for non-
linear domain mapping and complex PDF shape
generation. It is this need to create a uniform, robust,
and extremely versatile probability distribution
specifically the New Generalized Lomax Tangent
Transformed Exponential (NGLTGE) distribution that
can best account for these varied phenomena that this
paper attempts to focus on. The work aims to
demonstrate that this novel distribution not only

achieves a better statistical fit compared to the classic
rivals but is also a competitive parametric density
estimator in a modern machine learning framework,
thus combining classical statistics and recent data
science. The ultimate aim is to develop a robust,
interpretable, and scalable model that can be employed
to address a wide range of real-world issues for which
existing models do not work.

In the remaining sections, the NGLTGE model is
constructed in Section 2. Its structural properties are
examined in Section 3 while the parameters are
estimated in Section‘4. In Section 5, a comprehensive
simulation study is carried out to determine the
behaviour of the estimators in the presence of small
and large sample sizes. In Section 6 a group
acceptance sampling plan is designed to support the
utility of the NGLTGE in the assessment of quality
control. Numerical analysis is presented in Section 7
with the extension of the proposed NGLTGE
distribution to a broader machine learning concept
demonstrated in Section 8. The study is concluded in
Section 9, which provides ideas for future research.

2. SUBMODEL: NGLTG-EXPONENTIAL (NGLTGE)
DISTRIBUTION

The CDF and PDF of the exponential distribution
with scale parameter 6 are given as

G(x;0)=1-¢"; x>0, 6>0, (2.1)
and
g(x;0)=0e". (2.2)

Substituting Egs. (2.1) and (2.2) in Egs. (1.2) and
(1.3) accordingly, we realized the CDF and PDF of the
NGLTGE distribution, respectively given as

Ox

F(x;s,k,@):zarctan{seT—s}; x>0, s,k6>0, (2.3)
b1

and
Ox
k
fsk0)=— 29" 150, sk0>0. (24)
ox
nk[l+ sek —s} ]
The quantile function is expressed as
k 1 U
Ow)=—logil+—tan|— [; u € (0,1). (2.5)
0 s 2

Figure 1 represents plots of the PDF and hazard
function of the proposed NGLTGE distribution. In panel
1, the curves exhibit diverse shapes, including
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Figure 1: Plots of (a) pdf (b) hazard function for NGLTGE distribution.

unimodal, bimodal, and positively skewed forms,
indicating the NGLTGE distribution’s flexibility in
modeling different data patterns. The varying peaks
and tails of these curves suggest that the distribution
can adapt to a wide range of real-world phenomena. In
panel 2, the shapes are also varied, showing
decreasing, increasing, and bathtub-shaped hazard
rates. This diversity demonstrates the distribution’s
utility in reliability and survival analysis, where it can
model different failure behaviors over time.

3. STRUCTURAL PROPERTIES

In this section, we develop the structural properties
of the NGLTGE submodel.

3.1. Boundary Limits

Proposition 1.1 For all 5,k,6>0, and using the
definition (2.3)
limF (x;5,k,0)=0 and LimF (x;s,k,0)=1.

x}0 xfoo

Proof. Define g(x):=s(e”"* -1). Then (2.3) reads
F(x)=(2/m)arctan(g(x)) .

Limit at 0. Since ¢’ =1 and exp is continuous,
lim.0g(x) =0 . By continuity of arctan and arctan(0)=0,

2
limF (x) = = arctan(limg(x)) = 0.
x|0 JT x|0

For a quantitative bound, note the inequalities
arctany<y for y=0 and ¢“-1=ue" for u=0; thus, for
x>0,

0=<sF(x)=< Eg(x) =§(eﬁ‘”k = 2s Bxeé‘x/k 0.
T 7 Tk x}0

Limit at +o. Since 8/k>0, ¢** —o and hence

g(x)—>oo as x 1o .Using lim,..arctany=m/2,

2
limF(x)==-2=1.
T 2

xfoo
as desired.

Corollary 1.1 For x>0, 0<F(x)<1. Moreover,
limgoF (x)=0 and lim.F(x)=1. Thus F maps (0,%)
into (0,1), is right-continuous at 0, and approaches 1
at +oo .

Lemma1.1As x|0,

F(x):ﬁ)ﬁ(?(x), f(O*):ﬁ.
wk wk
As x1oo,
_ 2 -Ox/kN _ 2 —0x/k —-0x/k
1-F(x)=——7+0(7)=—e"" +0(e).
T se S
Proof. For x|0, use ¢ =1+u+0Ow) and

arctany=y+O(y) as u,y—=0:
F(x)= Earctan(s(ewk -1)= E(st)+ O(x).
T Tk

Differentiating (2.3) or evaluating (2.4) at x=0
yields f(0")=2£.
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For xfto, write F(x):l—garccot(g(x)) and use
1
arccoty=y' +O(y™") as y — to obtain

1-F(x)= £L+0(g(x)_l) - 3 o +(9(e—5.r/k) - ie—{h/k +0(e—6.v/k)’
mg(x) Tse " —s TS

a tail estimate that will feed moment/tail-class results
later.

3.2. Regularity
Proposition 2.1 Consider (2.3)-(2.4). Then:

1. FEC™((0,»)). In particular, for every x>0,
F'(x)=f(x).

2.Forany 0<a<b<w, F is absolutely continuous
on [a,b]; with the extension at 0, F is absolutely

continuous on every [0,b] and

F(x)= f;f(t)dt (x>0).

Proof. (i) On (0,»), both exp and arctan are C~,
and compositions of C* functions are C”, hence
F E€C”((0,)). Writing h(x):=se”* -5, the chain rule
yields

1 ok O
oxlk _ S)z '(See ! ;

_2 W)

F 7 1+h(x)’

)= f(x).

22,
7 1+(se

(iii) On any compact subinterval [a,b]C (0,), f is
continuous, hence integrable, and the Fundamental
Theorem of Calculus gives F(x):F(a)+f:f(t)dt.
Using the continuous extension F(0)=0 and the fact
that f is bounded near 0 (indeed lim.f(x)=2£), we

obtain F(x):f:f(t)dt for all x>0. Thus F is

absolutely continuous on each [0,b] and the stated
integral representation holds.

Corollary 2.1 For s5,k,0>0, one has f(x)>0 for all
x>0, hence F is strictly increasing on (0,).
Consequently, the quantile function Q(p):=F"(p)
exists for every p € (0,1) and is continuous and strictly
increasing in p.

Proof. Each factor in f(x) is positive for x>0, so
f(x)>0 and F is strictly increasing. The inverse and

its properties then follow from standard results for
continuous strictly increasing functions on (0,0) with

limits 0 and 1 at the endpoints.

Proposition 2.2 For each fixed x>0,

E(x;s,lc,49)>0, E(x;s,k,49)>0, E(x;s,k,0)<0.
ds 00 ok

Hence, F is strictly increasing in s and 6, and
strictly decreasing in &

Proof. Differentiate (2.3) with respect to each
parameter and result follows.

3.3. Survival Function

For an absolutely continuous CDF F, the survival
function is defined by S(x)=1-F(x). For the NGLTGE

model (2.3), and for each x>0 and s,k,0>0, the
closed form is derived as follows

Ox

S(x;s,k,0)=1-F(x;s,k,0)=1- zarctan(se7 - s) (3.1)
T

Lemma 3.1 (Alternative closed form) For every
x>0 and s5,k,0>0,

S(x;s,k,0)= garctan 0
7 "

se” —§

Ox

Proof. For x>0, we have se* -s>0. Using the
identity arctanu +arctan(1/u)=m/2 for u>0, we obtain

Ox Ox
S(x;s,k,0)=1 —zarctan(se ko~ sj = g-E—zarctan(se ko s)
T T 2 &

=—|—-—arctan| se* —s
AW
1
Ox
sek —s

Proposition 3.1 For all x>0 and s,k,6 >0,

=garctan[ (3.2)

J

Ox

2s0e*
Ox

wk(1+(se* —s)?)

iS(Jc;s,k,t9)=— <0.
0x

In particular, S(;s,k,0) is strictly decreasing on
(0,) and 0 < S(x;s,k,0)<1 forall x>0.

Proof. Differentiate (3.2) and result follows.
Proposition 3.2 For s,k,6 >0,

limS(x;s,k,0) =1, limS(x;s,k,0)=0.
x}0 xfoo
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Proof. Follows directly from proof of Proposition 1.1.

Lemma 3.2 As x |0,
S(x;s,k,@):l—ﬁx+(9(x2).
7wk

As x1oo,

Ox 30x

S(x;8,k,0) = 2% +Oe *).
TS
G Ox
Proof. For x| O: ek=1+7+(9(x2), hence

6x
se"—s=s97x+(9(x2) and arctany=y+@(y’), which

gives the linear term. For x 1o : use Lemma 3.1 with
1 } . Sad
y=—5— and aIctany:y—y?+(9(y5);Slnce y~—e
SQI—S s
the stated expansion follows.

Proposition 3.3 Fix x>0. Then, for s,k,0>0,
Q(x;s,k,8)<0, ﬁ()c;s,k,l9)<0, ﬁ(x;s,k,9)>0.
as 00 ok

Hence, for fixed x>0, S is strictly decreasing in s
and 6, and strictly increasing in k.

Proof. Differentiate (3.1) with respect to each

and the chain rule.

. d
parameter using —arctanu = 5
d

u 1+u
Ox
Since e* >1 for x>0, the stated signs follow.

Lemma 3.3 Forevery x>0 and s,k,0>0,

Ox
2 se

Ox

< S(x;s,k,0) < g
T 1+(se* —s) i

2

Proof. By Lemma 3.1 write

S(x;s,k,@):zarctan( 0 ] For y=0 the inequalities
4 it

sek —s
alrctanyz1 Y > and arctany <y yield the stated bounds
+y
. 1
with y= T
se7 -8

Corollary 3.1 There exists x, >0 such that, for all

X=X,

2 &
S(x;s8,k,0)<s—e *.
TS

Proof. From Lemma 3.3, S(x;s,k,@)sg 91 . For

sek —s
Ox Ox Ox

large x, sek —s=—sek , giving S(x;s,k,0) < Z ek,
2 S

3.4. Odds

For each x>0 and s,k,0 >0, we consider the CDF
(2.3). The cumulative odds function is defined by

F(x;s,k,0)

O(x;5,k,0):=
1-F(x;5,k,0)

Ox

2 ¢ 7 bx
e an(se * - s) _arctan(se © —s) (3.3)

Ox

2 pad
1-—arctan(se * —s)
T arctan

Ox

sek —s

Proposition 4.1 For s5,k,6>0, O:(0,0)—(0,) is
continuous, and

imO(x;5,k,0)=0,  HmO(x;s,k,0) =,
x}0 xfoo
Proof. Since 0<F(x;s,k,0)<1 for x>0, the

quotient in (3.3) is well-defined and strictly positive.
Continuity follows from continuity of ¥ and 1-F . The

limits use F(0")=0 and F(x)=1.
Proposition 4.2 For all x>0,

fx;8,k,0)

— (3.4)
(1-F(x;s,k,0))

d
—O(x;s,k,0)=
T ( )

In particular, O is strictly increasing on (0,).

Proof. Differentiate O=F/(1-F); since F'=f and
(1-Fy=-f,

o fA=F)+Ff __f
(I-FP  (I-F)

Proposition 4.3 For each fixed x>0,
&(x;s,k,6)>0, &(x;s,k,0)>0, &(x;s,k,0)<0
as 20 ok

Hence, for fixed x>0, O is strictly increasing in s
and 6, and strictly decreasing in k

Proof. Differentiate (2.3) with respect to each

parameter; apply the chain rule and iarctanu =
du 1+u

Insert these into 90 /9-=(F /9-)/(1-F)*.

7 -
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3.5. Log-Odds
The log-odds (logit) is defined by

F(x;s,k,0)

l(x;s,k,0):=log| ———————
( ) g(l—F(x;s,k,H)

), x>0

=log F(x;s,k,0)—log(1- F(x;s,k,0))

(3.5)

ox
=log(arctan(se * —s))—log(arctan( = ]J

sek —s

Proposition 5.1 For
continuous and

$,k,0>0, (:(00,0)—R is

hmé(x;s3k30) =—00,

lim/l(x;s,k,0) = +co.
x}0 s

Proof. From corollary 1.1 we have 0< F(x)<1 for
x>0, F0")=0, and F(x)=1. Hence logF(x)— -
and -log(1-F(x))—0 as x| 0, while logF(x)—0 and
—-log(1-F(x))—+x as x1o. Continuity follows from
continuity of F and 1-F on (0,).

Corollary 5.1 For all x>0,

! 1-F(x;s,k,0)= !
1+

eé(x:s,k.O) :

F(x;s,k,0)=
1+

e ((x;5,k,0)

Theorem 5.1 For x>0,

0(x;5,k,0) = f(x5,k,0) (3.6)
F(x;s,k,0)(1-F(x;5,k,0))
In particular, /¢(;s,k,0) is strictly increasing on
(0,%).

Proof. Differentiate (3.5) and use F'=f.
Proposition 5.2 As x{~, ((x;s5,k,0)—0/k.

From the survival
Ox

0x _0x
1-F(x)~—e * and f(x)~2—e kas x1o. Insert
TS ks

Proof. and density (tails,

these into (3.6).

Proposition 5.3 For each fixed x>0,
X skd)>0,  Linsko)>0,  Lixsk) <0,
s 00 ok

Hence, for fixed x>0, ¢ is strictly increasing in s
and 6, and strictly decreasing in &

Proof. Differentiate (3.5) with respect to each

Ox
parameter. The signs follow since e¢* >1 for x>0 and
all denominators are positive.

Remark 5.1
Yy

1+y
x>0,

Using the standard bounds

~=arctany<y for y=0 in (3.5) yields, for every

6x
(se* —s)*
ox
1+(se* —s)

Ox
log < U(x;8,k,0)<log(1+(se* —5)*). (3.7)

These are convenient for tail
numerical guarding.

bracketing and

3.6. Hazard, Cumulative Hazard, and Reversed
Hazard

In this section, we study the hazard rate, cumulative
and reversed hazard rate functions, which are
important indicators in survival analysis.

Hazard Rate Function

For each x>0 and s,k,60 >0, we consider the CDF
(2.3), the hazard rate function is given by

Ox

6x
h(x~s k 9):= f('x9s3k99) — J‘Ck(1+(se" —S)Z)
o S(x;5,k,0)
“arctan| —_
T T
sek —s
6x
k
_ sOe 58)
6x
k(1+(se* —s)*)arctan| —,
-

se” =8

Proposition 6.1 For every s,k,0>0, the hazard
h(x;s,k,0) on (0,0) is unimodal with a unique mode
x € (0,»). Moreover,

2560 0

h(0*;s,k,0)="—, imh(x;s,k,0)=—,
( ) K 1,1_{2( ) k

and the right—tail refinement is

) (x>0,

ox
h(x;s,k,9)=g+ge k+0(e
k k

Ox
Proof. Set u(x):=se* —s>0 and write

u+s

3 , u>0.
(1+u”)arctan(1/u)

h(x;s,k,0)= %d)(u(x)), D(u):=

Since u'(x)=%(u+s)>0, the sign of A'(x) is the sign
of @'(u). A direct differentiation yields
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N@)

()= :
®) (1+u?)*arctan(1/u)*

N(u):=s+u+arctan(l/u)(1-2su—u?).

The denominator is positive, so sign(A') = sign(N).
Now observe that

N'(u) = 2(u+s)( L -arctanl)<o (u>0),
1+u u

because arctant = — for all t=0 applied at t=1/u.
+t

Hence N is strictly decreasing on (0,»). Its endpoint
limits are

limN () = s+§ >0,  limN(u)=-5<0,

ul0 u'oo

so by the intermediate value theorem N has a unique
zero u >0. It follows that @'(u)>0 for u<u and

D'(u)y<0 for hence &
{x:u(x)<u’} and decreases on {x:u(x)>u"} with a

u>u, increases on

unique mode at the unique x~ solving

o
.
u(x )=se* —s=u

s

e x'= ﬁlog(l +14,
0 s

The endpoint values follow from the small-x and
tail expansions already established in Section 3.1.

Remark 6.1 The unique u
N@wuH=0,ie.

s+u’+ arctar\(é)(l —2su” - (u*)z) =
u

is characterized by

and x’ =§log(1+u—). There is no simpler closed form,
S

but the monotonicity of N makes Newton or bisection
immediate.

Proposition 6.2 For each fixed x>0 and s5,k,0>0,

%(x;s,k,9)>0, %(x;s,k,9)>0, %(x;s,k,0)<0.
as a0 ok

Hence, for fixed x>0, & is strictly increasing in s
and 6, and strictly decreasing in k

Proof. Differentiate (3.8) with respect to each
parameter and the result follows.

Cummulative Hazard Rate Function

For each x>0 and s,k,6>0, the cummulative
hazard rate function (CHRF) is given by

H (x;5,k,0) :=-log(S(x;s,k,0))

(3.9)

2
=-log| —arctan| —;
T 0

se” —=§

Reversed Hazard Rate Function

For each x>0 and s,k,60 >0, the reversed hazard
rate function (RHRF) [29] is given by

Ox

2s0e*
Ox
yy
r(6:5.k,0) = f,(“iz) ’;k(“(“ )
(x%;5,k.0) = arctan(se * —s)
T
&
sOe*
= e = (3.10)

k(1+(se* —s)*)arctan(se * —s)
Proposition 6.3 Forall x>0,

H'(x;5,k,0) = h(x;5,k.,0),  S(x;5,k,0)=e "4,

ilogF(x;s,k,B) =r(x;s,k,0).
dx

Proof. These follow from S=1-F, F'=f, and the
chain rule.

3.7. Moment

Moment of a random variable X is the mean value
of the power of the variable. It is essential in defining
the distribution of the random since its measures
include the mean, variance, etc. For the NGLTGE
model, the crude moment is

© o 2f

_2s0 wi 2 @i+ (k)"
2OSSSen| ¥ e

i=0 h=0 j=0

(3.11)
I'(h+r+1)

D4+l

; y=172’...

Pluggin 1 for r in (3.11) yields the arithmetic mean
of X ~NGLTGE (s,k,0), hence

2s9§i§( ])H,( 2 )(21+1) ( ) F(ﬁ:Z).

i=0 h=0 j=0 J

Similarly, one can obtain the 2nd crude moment by
replacing r with 2 in (3.11) and so on.

3.8. Moment Generating Function

The moment generating function

X ~ NGLTGE(s,k,0) is

(MGF) of
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M (5)=Ele*]= [e" f(x;5,k,0)dx, (3.12)

whenever the integral is finite.

Proposition 8.1 For I7l<6/k the MGF admits the
convergent power series

- N My Y .
MX(t)—ZOWt .o —fox f(x;8,k,0)dx, (3.13)
and, substituting the crude moment formula (3.11) for
r=1 (with u, =1), one obtains

M 0=1: 20 SIS 1y

r=1 i=0 h=0 j=I

(3.14)

2i \Qi+1)" (k" L(h+r+D1’
j h' 9 « htr+l r!'

The series (3.13)-(3.14) is absolutely and locally
uniformly convergent on every compact Itl<z, <6/k,

hence M, is analyticon (-0/k,0/k).

Proof. For any fixed ¢ with 171<8/k, pick ¢, so that
ltl<t, <0 /k . Using the right-tail behavior of f,

o0x
Fsk,0) - 2L e
ks

(x =),

LA
we have for large x the bound e¢“f(x)=Ce 0 \which

is integrable on (0,%). Hence ¢"f(x) is dominated by
an integrable function and

" Et"x
e’ =

|
= I

can be integrated termwise by dominated convergence
(or Tonelli/Fubini on compact ¢-intervals inside
(-0/k,0/k)), which yields (3.13). Substituting the

crude moment identity (3.11) for u,. (valid for r=1,
with u, =1) gives (3.14). The same domination shows

absolute and locally uniform convergence on
ltl=t, <0 /k, proving analyticity there. The restriction

Itl<6/k is sharp since the tail test applied to (3.12)
shows divergence at 1 =60/k .

3.9. Mean Residual Life Function

For X~ NGLTGE(s,k,0), we consider the survival

function (3.2). The mean residual life (MRL) at age
t=0 is

1

[7SCx;s,k,0)dx.  (3.15)

Ox

Let y=e¢* so that x:%logy and dx:%y'ldy,

Ot

which maps x € (t,) to y € (e* ,). Then

arctan( )

. 2k = M-
S(x)dx =— —— 2 dy.
fr (x) ﬂef@ Yy

ok

Now set u= (equivalently, y=l+i), SO
s(y-1) su
that
dy:—%du, ﬂ=— ! ,
su y u(l+su)

Ot

and the limits transform as y=ef ou=—p—=1w,,
seI—s
while y = u | 0. Therefore
fws(x)dx=% » arctan(u) (3.16)
! 700 u(l+su)
Applying (3.15) yields
. Ow, arcltan(u) du 1
m(r)= ultsw oy, o (3.17)
0  arctan(w,) "
se” —8§
Alternatively, from (3.16), integrate by parts with
u, = arctan(u), dv, = du = 1 s )du,
u(l+su) u l+su
so that
du
du, = s =lo .
N " g(1+su)
Hence,
log )
w, arctan(u) W v T ltsu
————du =[arctan(u)log(--)], - | '——2%—du.
fO u(1+su) [ ()log(esly fo l+u’

The boundary term at ¥ =0 vanishes, and at u=w,
we have
id: ) =log( 16,)=—logs—gt.
“ k
se

log(

1+ sw,
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Therefore, (3.16) implies

10g(1 + su)
— s U

1+u

>

© 2k 6 w,
f: S(x)dx = P arctan(w, )(—-log s - ;t) - fo

and dividing by S()=Zarctan(w,) gives
JT

u

1 J-w, IOg(‘*;“)du ’
arctan(w,)* % 1l+u

k o
m(t) = 9 —log(se*)-
(3.18)

which is an alternative representation of (3.17).

3.10. Stochastic Orderings

The following corollary follows from Proposition
(2.2).

Corollary 10.1 (Usual stochastic order) Fix any
two parameter triples that differ in only one coordinate.

1. If s> (with k.0
F(;s,,k,0)= F(;s,,k,0) and hence

fixed), then

X(s,,k,0)=, X(s,,k.0).

2.If 6,>06, (with s,k fixed), then
X(s,k,0,) =, X(s,k,0,).

3. If k, >k, (with 5,0 fixed), then
X(s,k.0) =, X(s5,k,.0).

The following corollary follows from Proposition
(6.2).

Corollary 10.2 (Hazard--rate order) Fix two
parameter triples that differ in only one coordinate.

1. If s> (with k.0
h(x;s,,k,0) = h(x;s,,k,0) Vx>0, hence

fixed), then

X(s,,k,0) =, X(s,,k,0).
2.If 6,>0, (with s,k fixed), then

X(s,k,0,)=, X(s.k,0,).

hr

3. If k, >k, (with 5,0 fixed), then

X(s,k,0) =, X(s.k,,0).

Corollary 10.3 In  each

X<, Y=X=<,Y.

case above,

Remark 10.1 For two parameter sets

1, =(s,,k,,0,), n, =(s,,k,,0,),

the ratio f(sn,)/f(sn,) is not monotone in x in

general, so a global likelihood—ratio order across s, &,
or 6 does not hold without further restrictions.

3.11. Order Statistics

Let X,...X, be an iid. sample from
NGLTGE(s,k,0) with CDF (2.3) and PDF (2.4). We
denote the order index by r&{1,...,n} . The CDF and
PDF of X, are

[FOV 1= F(01™,

F,,,<x>=§j( ’

}’l' r=1 n-r
m[F(X)] [(1-F)]"" f(x),

x>0,

Jra ()=

Using the definitions (2.3) and (2.4), we obtain

' 2 ox r-1
n! =
(x)=————| —arctan(se* —s
J®) (r—])!(n—r)![n ( )}
2
—arctan| —-
T sek —s
6x
2s0¢*

= s x>0.

wk(1+(se* —s)*)

Moreover, the CDF and PDF of the minimum X,
are given by

F,(0)=1-[1-F(x)]" =1~ 2arctan( )|
JT

6x
k

se” =8

1
)
sek —g

Fu (0= l1= FOOI™ £(x) = n| = arctan(
JU

ox

2s6e*

Ox

ak(1+ (se7 -5)%)
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Finally, the CDF and PDF of the maximum X, are
given by

nn

Ox "
F (x)=[FxX)]" = [g arctan(se * — s)} ,
7

fun()=nlFQO1" f(x)=n

2 Hl n-1
—arctan(se ¥ —s)
4

Ox

250e*
e
ak(1+(se* —s)*)
3.12. Rényi Entropy

Let X~ NGLTGE(s,k,0) with density (2.4). For
a>0, a=1, the Rényi entropy is

Ha(X):ﬁlog( 7 Fes k.0 dx).

Ox

With the substitutons y=e* (so dx=§y"dy,

y&€(1,0)) and then u =s(y-1), one obtains

“royar=(20) Y kdy_
Jy$e dx‘(nk) L oo re s

U q-1
a Oc(1"'7)
z_sa—lgaflklfaf Sz dl/l
x® O (I+u”)"
Hence

1 [(a-1log(*)+alog?2
l-a ’

H, (X)=—
~alog m+10g(7,(s))
with

(14
— S
T=], (1+u?) du

Remark 121 For
f:f(x)“dx is finite: near u=0 the integrand is

every a>0, the integral

bounded; as u— it behaves like u ", which is

integrable. Thus H_(X) exists forall a>0, a=1.

Collision entropy (a=2).
For a=2,

1+4

S s z, 1
7=, (1+u2)2d”_ PR

SO

fxf(x)de=Q(i+%), HZ(X)=-1og[9(i+%ﬂ,
0 k\m k\mr =&

JU

Asymptotics in s.

As s —o0,
(7 du _Nal(a-1)
Jus) f°(1+u2)“_ 2I(a)

SO

alog2-alogm +

a logix/gr(a ~3)
2T ()

1
1-

H, (X)=-logs+ o(1).

+
+(a-1)log(%)

As 5|0,

a-1
o [ U 1 ., fo a
$)~§ du=—s ——1,
Ja(8) f‘) (1+u*)" ! 2 8(2 2)

-1

and the exterior factor s*~ cancels, so ff“ converges

to a finite positive limit and H_(X) tends to a constant.
3.13. Stress—Strength Reliability

Let X ~ NGLTGE(s,,k,,0,) denote the strength and
Y ~ NGLTGE(s,,k,,0,) the stress, independent. With
CDF (2.3) and PDF (2.4), the stress—strength reliability
[30-34] is
R=Pr(X>Y)= [ :Sy @) fy()dx= [ :(I—FY (X)) f, (x)dx.(3.19)

Starting from (3.19),

R={ :(1 — F, (X)) f, (x)dx.

Using the CDF in (2.3) for Y,

o

1-F,(x)= l—zarctan(sze o s,)=
1

y=e! = dx:%%, y € (1,0).
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By the PDF in (2.4) for X,

o
Ky

Sy =— 250 .§ﬂ=§__ﬂ_7
- Y 7w 1+(s,y=s))

k| 1+(s,et =5,

For the same x, we have

Op% 9x Ok 0.k
e =) =y, a=22150.
elkZ
Therefore
2
1-F,(x)=—arctan| ———|,
7 $HY =8

and substituting into (3.19) yields the single-integral
closed form

arctan( - )
8y =5 dy %
1+(s1y—sl)2 0.k,

J

A numerically convenient equivalent form follows

under u=s,(y-1) (so y=1+i, dy:d—u, u€(0,0)):

S Sy

1

s,((1+5)" 1)

4 e s,
R——fo e du,

arctan

which has a (1+u*)”" kernel that damps the tail.

In Figure 2, the trend of panel 4 indicates the mean
of the distribution to be a monotonic surface that
decreases with increases in the parameters and thus to
signify a uniform trend. Variance, as shown in panel 5,

Al
M

(AT

(d)

Figure 2: Plots of (a) Mean, (b) Variance, (c¢) Skewness and (d) Kurtosis of NGLTGE distribution.
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has an evident peak that signifies that there is one set
of parameters to which the spread or variability of the
distribution is optimized. This exercise is fascinating in
that it picks out a region of high variability in the
parameter space. The skewness plot for panel 6 is one
of flat surface with variation, which means that the
asymmetry of the distribution does not shift markedly
across the parameter space but is fairly stable. Finally,
the kurtosis plot for panel 7 is similar to that of the
variance with a clear peak. This peak shows that the
tail heaviness of the distribution is highest for a
particular set of parameter values, implying a greater
chance of outlier values than for a normal distribution
for that particular point.

4. PARAMETER ESTIMATION

In this section, the parameters of the NGLTGE
model namely s,k and 6 are estimated using some

non-Bayesian estimation procedures; viz, Maximum
likelihood, Maximum product of spacing, Least
squares, Weighted least squares and Cramér-von
Mises methods.

4.1. Maximum Likelihood Estimation (MLE)

Consider a random sample of size n, denoted by
X,,%,,...,X, , where each observation is independently

and identically distributed (i.i.d.) following the New
Generalized Lomax Tangent Transformed Exponential
(NGLTGE) distribution with parameters s, k and 6.

The PDF of the NGLTGE distribution, substituting
the  Exponential baseline  g(x;0)=60¢"  and
G(x;0)=1-¢" into Equation (3), is
formulated as:

correctly

Ox

2560 ek
wk (43 z
1+ (se k- s)

The likelihood function, £(s,k,01x),
of the densities:

F(x;s,k,0)= (

is the product

L(s,k,01x) =ﬁf(xl-;s,k,9)

i=1

Consequently, the correct log-likelihood function,
U(s,k,0)=log[ L], is derived as:

£(s,k,0)= nlog(ﬁ) +nlog(s)-nlog(k)+ QEx[
4 k<

o, 2
—Elog 1+(sek —s) l

i=1

The Maximum Likelihood Estimators (MLEs) of the
parameters 2) =(§,I€,é) are obtained by simultaneously
solving the system of score equations, V/=0, where

al ar ol

Vi=Coaae)

Ox

eT—lJ, such that W, +s=se

Ox.

»L

Let W, =s

4.1.1. Score Equations

The partial derivatives (score equations) are:

W n o~ 2w (2
= L.lek -1]=0, 4.1
ds s ;HWI.2 ( ) @1
14 n 0 S 2W s0x; —*
=== - i i =0, 4.2
ok k kzg’ §1+Wf( K’ ] *2)
and
M _n ’

n X, =0. 4.3
0 0 kE 21+W2 ( ) *3)

4.2. Numerical Optimization Component

The system of coupled, non-linear score equations
(Egs. (4.1)-(4.3)) cannot be solved analytically for the
MLEs. Therefore, a numerical maximization technique
is required to find the parameter estimates that
maximize the log-likelihood function /¢(s,k,0).

4.2.1. Optimization Algorithm

The MLEs are typically obtained using iterative,
gradient-based optimization algorithms. The most
common choice is a Quasi-Newton method such as the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
BFGS iteratively updates the parameter vector @ by
utilizing the gradient (score equations) and
approximating the inverse of the Hessian matrix (matrix
of second partial derivatives), thus avoiding the
complex derivation of the analytical second derivatives.

4.2.2. Initial Values and Constraints

1. Initial Guess (0, ): The choice of starting values
(s,-k,,8,) is critical for the convergence and efficiency
of the optimizer. A common practice is to use simple
moment estimators for the baseline distribution (e.g.,
éo =1/x) and set s,=1 and k, =1, or use estimators
obtained via the Method of Least Squares (LSE) or

Cramer-von Mises (CVM) methods for a more robust
start.
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2. Constraints: The optimization must be
performed under the parameter space constraints:
s>0, k>0, and 6>0. The numerical solver must be
configured to respect these boundaries (constrained
optimization).

4.2.3. Asymptotic Properties

The Monte Carlo simulation confirms the good
asymptotic behavior of the estimators. This is
theoretically underpinned by the standard properties of
MLE, which state that as the sample size n—x, the

MLE vector @ is consistent, asymptotically normally
distributed, and asymptotically efficient. The asymptotic
variance-covariance matrix of the MLEs is estimated by
the inverse of the observed Fisher information matrix,
often calculated as the negative inverse of the Hessian

matrix evaluated at ©.
V(O)~-H" ()
4.3. Maximum Product of Spacing (MPS) Estimation

The MPS method, proposed by [35], is a stable
alternative to MLE, particularly useful for distributions
with heavy tails or when the likelihood function is poorly
behaved. The technique focuses on maximizing the
geometric mean of the differences (spacings) between
consecutive values of the NGLTGE Cumulative
Distribution Function (CDF), F(x), evaluated at the

ordered data points x The MPS estimators

jn *
N

(8,55 kyps0,ps) are obtained by maximizing the log-
product of spacings, N(O):

N (s,k,0) = LS ln[F(xj:n I@) —F(xH” I@)],

(4.4)
n+l =i

where F(x,,)=0 and F(x,,)=1.

n+ln

4.4. Least Squares Estimation (LSE)

The LSE method, first proposed by [36], belongs to
the family of minimum distance estimators. The LSE
principle minimizes the sum of squared differences
between the theoretical CDF, F(x,10), and the
plotting position, Ll for the ordered

n+
observations. The LSE estimators (3,,.k, .0, ) are

computed by minimizing the objective function L(O):

empirical

n

L(s,k,0)= argmeinE[F(xjm | @) _ L] )

= n+l

(4.5)

4.5. Weighted Least Squares Estimation (WLSE)

WLSE is a refined version of LSE that accounts for
the varying precision of the ordered statistics. The
method minimizes a weighted sum of squared

differences, using weights (w,) inversely proportional

to the variance of the plotting positions. This naturally
gives less influence to the extreme observations and
improves the stability of the estimates. The weights are

(n+1)2(n+2)
j(n=j+1)
(§WLSE,I€WLSE,5WLSE) minimize the objective function
W(®):

given by w,= . The WLSE estimators

2

W (s.k.0) = arg min Y, [F(xjm 19)-—- (4.6)
e o

n+l

4.6. Cramer-von Mises Estimation (CvM)

The CvM method is another robust minimum
distance estimator that aims to minimize the quadratic
distance between the empirical and theoretical CDFs
across the entire distribution. This method is known for
providing a good overall fit and stability. The CvM

estimators (5., .kq,-0p, ) are derived by minimizing
the CvM criterion function W, (©):

N 2j-17
WCVM(s,k,H):argngn{E+;{F(xmIG))— > ]}

The non-linear systems of equations resulting from
these minimization criteria require the use of numerical
optimization techniques.

5. MONTE CARLO SIMULATION STUDY

For the parameters & =(s,k,0) of the NGLTGE

distribution, a Monte Carlo simulation of 10,000
replicates was demonstrated at sample sizes
n=15,25,75 and 100 with true parameter settings (a)

§=0.05,k=0.75,6=02 (b) s=0.07,k=0.80,0 =0.35 (c)
§=0.05,k=0.70,6 =045 (d) 5=0.08,k=0.55,6=0.7.
The average bias and Root Mean Squared Error
(RMSE) were computed, where

. 1 w2 1 /2 2
blas(E)—N;(S,—EO), and RMSE(E)= ﬁ;(g-g@) .
Tables 1 and 2 contain the results of the simulation.

The simulation results in Tables 1 and 2 display
how the performances of different estimators; MLE,
MPS, LS, WLS, and CvM change for different sample
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Table 1: Simulation Results for True Value Settings (a) and (b)

True Value | Estimator | Parameter n=15 n=25 n=175 n=100
bias RMSE bias RMSE bias RMSE bias RMSE
$=005, MLE 3 0.01243 | 007021 | 0.00796 | 0.04811 | 0.00232 | 0.02355 | 0.00158 | 0.01989
g=g-;5’ i 0.01737 | 013329 | 001596 | 0.09636 | 0.01253 | 0.05760 | 0.00817 | 0.05064
o 6 0.01716 | 0.05022 | 0.01056 | 0.03875 | 0.00601 | 0.02237 | 0.00414 | 0.01775
MPS 3 0.06462 | 0.13905 | 0.03775 | 0.07860 | 0.01304 | 0.02949 | 0.00995 | 0.02352
i 0.11265 | 0.26302 | 0.06964 | 0.15738 | 0.03125 | 0.07560 | 0.02355 | 0.06324
6 0.00527 | 0.04096 | 0.00576 | 0.03134 | 0.00223 | 001773 | 0.00252 | 0.01338
LS 3 0.05619 | 0.16969 | 0.02951 | 0.07665 | 0.00807 | 0.02910 | 0.00610 | 0.02434
i 0.05517 | 0.15708 | 0.03623 | 0.11089 | 0.02145 | 0.06623 | 0.01547 | 0.05809
6 0.00405 | 0.05251 | 0.00191 | 0.04291 | 0.00280 | 0.02672 | 0.00162 | 0.02144
WLS $ 0.04684 | 0.13363 | 0.02387 | 0.06890 | 0.00567 | 0.02619 | 0.00399 | 0.02168
i 0.08409 | 0.25586 | 0.04171 | 0.14502 | 0.01741 | 0.07263 | 0.01283 | 0.06182
6 0.00311 | 0.04493 | 0.00163 | 0.03689 | 0.00338 | 0.02244 | 0.00264 | 0.01899
CvM 3 0.02158 | 0.10135 | 0.01291 | 0.05863 | 0.00354 | 0.02630 | 0.00277 | 0.02253
i 0.01580 | 0.11615 | 0.01275 | 0.08442 | 0.01269 | 0.06102 | 0.01161 | 0.06421
6 0.01212 | 005154 | 0.00781 | 0.04253 | 0.00571 | 0.02666 | 0.00464 | 0.02477
$=007, MLE 3 0.00845 | 0.07775 | 0.00852 | 0.06253 | 0.00190 | 0.03012 | 0.00093 | 0.02592
g=g-§(5” i 0.01288 | 0.14034 | 0.01745 | 011718 | 0.01035 | 0.06325 | 0.00855 | 0.05641
o 6 0.03231 | 0.08539 | 0.02068 | 0.06372 | 0.00905 | 0.03370 | 0.00779 | 0.02833
MPS 3 0.07238 | 0.15591 | 0.04710 | 0.10113 | 0.01500 | 0.03807 | 0.01088 | 0.03106
i 0.12534 | 027409 | 008517 | 0.19264 | 0.03411 | 008287 | 0.02711 | 0.07106
6 0.00656 | 0.06476 | 0.00601 | 0.05216 | 0.00194 | 0.02850 | 0.00064 | 0.02464
LS 3 0.06031 | 0.15742 | 0.03817 | 0.10758 | 0.00963 | 0.03694 | 0.00767 | 0.03211
i 0.05605 | 0.16002 | 0.04036 | 0.11998 | 0.02164 | 0.07765 | 0.01589 | 0.05883
6 0.00584 | 0.08229 | 0.00392 | 0.06438 | 0.00356 | 0.04637 | 0.00169 | 0.03337
WLS 3 0.04996 | 0.14011 | 0.02913 | 0.08796 | 0.00673 | 0.03369 | 0.00445 | 0.02868
i 0.09001 | 027213 | 0.05097 | 0.17690 | 0.01698 | 0.08072 | 0.01535 | 0.07095
6 0.00814 | 0.07807 | 0.00410 | 0.05206 | 0.00403 | 0.03266 | 0.00537 | 0.03534
CvM 3 0.01856 | 0.10072 | 0.01580 | 0.08216 | 0.00358 | 0.03350 | 0.00322 | 0.02980
i 0.00513 | 0.11891 | 0.01502 | 0.10846 | 0.01006 | 0.06482 | 0.00864 | 0.05667
6 0.02207 | 0.08504 | 0.01558 | 0.07441 | 0.00807 | 0.04024 | 0.00586 | 0.03568
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Table 2: Simulation Results for True Value Settings (c) and (d)

True Value| Estimator | Parameter n=15 n=25 n=175 n=100
bias RMSE RMSE bias RMSE bias RMSE
$=005, MLE § 0.00954 | 0.06759 | 0.00683 | 0.04747 | 0.00148 | 0.02298 | 0.00147 | 0.02005
k=0.70, p 0.00495 | 0.13435 | 0.00741 | 0.10421 | 0.00755 | 0.06274 | 0.00584 | 0.04983
om0 6 0.03331 | 0.09179 | 0.02232 | 0.06818 | 0.01081 | 0.04223 | 0.00843 | 0.03272
MPS § 0.06009 | 0.13350 | 0.03577 | 0.07661 | 0.01131 | 0.02896 | 0.00911 | 0.02424
p 0.10829 | 0.23957 | 0.06965 | 0.16231 | 0.02923 | 0.07573 | 0.02336 | 0.06129
6 0.00746 | 0.07504 | 0.00619 | 0.05446 | 0.00178 | 0.03121 | 0.00097 | 0.02744
LS § 0.04928 | 0.14618 | 0.02799 | 0.07446 | 0.00690 | 0.02848 | 0.00541 | 0.02386
p 0.05458 | 0.16479 | 0.03889 | 0.11690 | 0.01858 | 0.07143 | 0.01630 | 0.06486
6 0.00638 | 0.08640 | 0.00032 | 0.07279 | 0.00543 | 0.04677 | 0.00642 | 0.04815
WLS § 0.04115 | 0.12009 | 0.02181 | 0.06545 | 0.00460 | 0.02550 | 0.00376 | 0.02193
p 0.07240 | 0.22797 | 0.03972 | 0.15316 | 0.01441 | 0.07654 | 0.01079 | 0.06260
6 0.00619 | 0.07596 | 0.00717 | 0.06644 | 0.00679 | 0.04254 | 0.00579 | 0.03655
CwM § 0.01722 | 0.09149 | 0.01183 | 0.05726 | 0.00246 | 0.02587 | 0.00212 | 0.02215
p 0.00360 | 0.12074 | 0.00753 | 0.09730 | 0.01013 | 0.06955 | 0.00913 | 0.05973
6 0.02129 | 0.08567 | 0.01509 | 0.07090 | 0.01176 | 0.04754 | 0.01058 | 0.04448
$=008, MLE § 0.01669 | 0.11103 | 0.00603 | 0.06645 | 0.00181 | 0.03390 | 0.00038 | 0.02857
k=050, p 0.00653 | 0.13791 | 0.00466 | 0.10138 | 0.00288 | 0.05403 | 0.00239 | 0.04601
0=010 6 0.02987 | 0.08751 | 0.02680 | 0.07624 | 0.01087 | 0.03867 | 0.01351 | 0.04043
MPS § 0.09631 | 0.23061 | 0.04821 | 0.10755 | 0.01629 | 0.04259 | 0.01153 | 0.03414
p 0.12152 | 0.25084 | 0.07284 | 0.15762 | 0.02748 | 0.06818 | 0.02064 | 0.05599
6 0.00204 | 0.05653 | 0.00322 | 0.04697 | 0.00205 | 0.02928 | 0.00498 | 0.03006
LS § 0.08720 | 0.27201 | 0.03804 | 0.10783 | 0.01089 | 0.04270 | 0.00654 | 0.03349
p 0.09199 | 0.28570 | 0.04241 | 0.13396 | 0.01554 | 0.06407 | 0.00992 | 0.05349
6 0.00434 | 0.06213 | 0.00021 | 0.05076 | 0.00360 | 0.03232 | 0.00616 | 0.03500
WLS § 0.07250 | 0.22604 | 0.02811 | 0.09259 | 0.00713 | 0.03792 | 0.00405 | 0.03114
p 0.09042 | 0.27937 | 0.03878 | 0.13990 | 0.01126 | 0.06114 | 0.00760 | 0.05277
6 0.00934 | 0.05388 | 0.01261 | 0.06844 | 0.00647 | 0.03095 | 0.00970 | 0.03838
CwM § 0.03145 | 0.15990 | 0.01391 | 0.08269 | 0.00407 | 0.03879 | 0.00160 | 0.03124
p 0.01604 | 0.18152 | 0.00592 | 0.10988 | 0.00376 | 0.06001 | 0.00201 | 0.05175
6 0.01493 | 0.06509 | 0.01320 | 0.06028 | 0.00727 | 0.03370 | 0.01005 | 0.03959

sizes (n) for four different true parameter values
(s,k,0). Performance is considered on the basis of bias
and RMSE. The smaller the values of bias and RMSE,
the better and more accurate is the estimator. There is
a universal pattern in all the true value settings and
estimators that as the sample size (n) increases, both
RMSE and bias decrease. This confirms the theoretical
property that the greater the data utilized, the more

precise are the parameter estimates. For instance, in
the Table 1 with true parameters
s=0.05,k=0.75,0=0.2, MLE of s has 0.01243 of bias
and 0.07021 of RMSE for n=15 but decrease
significantly to 0.00158 and 0.01989, respectively, at
n=100. Same for all the other estimators and
parameters. The MLE generally has the smallest bias
and RMSE for each of the estimators, especially for big
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samples (n=100 and n=100). This suggests that the
MLE is the most efficient and unbiased estimator of the
parameters of this distribution among those being
considered. While other estimators like MPS and CvM
could be as good or even marginally better for
particular parameters at small sample sizes, the MLE
performs the best at higher sample sizes. For example,
at true values s=0.07,k=0.80,6 =035 and n=100, the

MLE of 6 is biased by 0.00779 and has an RMSE of
0.02833, both of which are lower than respective
values for all other estimators. The LS, WLS, and MPS
estimates have higher bias and RMSE, particularly at
small sample sizes, and hence are less efficient under
such conditions.

In Figure 3, panels 9, 10, 11 and 12 respectively
represents the plots of the bias and RMSE at sample
sizes n=15,25,75 and 100 for the respective true

parameter settings. Notice that the behavior of the plots

is consistent with conventional theory of asymptotic
convergence, as the sample size becomes large, the
RMSE decreases while the bias stays positive and
relatively small. The implication is that the NGLTGE
distribution is applicable in real life situations to model
varying datasets.

6. GASP BASED ON TRUNCATED LIFE TESTS FOR
NGLTGE MODEL

In quality control, acceptance sampling is a critical
procedure for deciding whether to accept or reject a
production lot based on a sample of items. While
traditional single-item sampling plans can be time-
consuming and costly, particularly for products with
long lifetimes, the Group Acceptance Sampling Plan
(GASP) offers an efficient alternative. GASP is a
modern sampling technique that reduces the overall
test time and cost by testing items in groups rather than

s
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Figure 3: Plots of (a) Case |, (b) II, (¢) Il and (d) IV for Non-Bayesian Simulation Results.
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individually. This approach is especially well-suited for
reliability studies and truncated life tests, where the test
is terminated at a pre-specified time (¢,) regardless of

whether all units have failed.

This section presents the design of a GASP for the
NGLTGE distribution under a truncated life test. We
define the key parameters of the plan including the
number of groups (g), the group size (r), and the
acceptance number (c¢) by considering the median
lifetime of the products. Our methodology is focused on
minimizing the average sample number (ASN) while
simultaneously  satisfying the producer's and
consumer’s risk constraints. This optimization problem
ensures that the sampling plan provides a statistically
sound and cost-effective way to make lot acceptance
decisions, thus balancing the interests of both the
producer and the consumer. Recently, different
distributions have been used to design GASP, see [37-
40], The mathematical framework, including the
derivation of the failure probability p and the
formulation of the acceptance probabilities, is detailed
as follows;

Let the median lifetime be

k 1 Tu
=—Jogsl+—tan|— |¢; O=su<l.
“To g{ s (2)}

Define

w= klog{1+ltan(ﬂ)},
s 2

so that for u=05 w =log{1+ltan(%)}. Therefore, we
N
. w
can write u = e

In a truncated life testing scenario, the duration of
the test is given as t,=qa,xu,, where a is a
predetermined constant and u, is the hypothesized
median lifetime. The ratio of the actual median lifetime

to the hypothesized median lifetime is rzzﬁ. The
Uy
failure probability, p, of a single item before time ¢, is

derived by inserting these relationships into the CDF of
the NGLTGE distribution in Equation (2.3).

2 a, X
p =—arctany sexp -s
T kr,

This expression for p plays a crucial role in

calculating the acceptance probabilities in the GASP
scheme.

The GASP design parameters, i.e., the number of
groups ( g ), the acceptance number ( ¢), the group size
(r), and the test duration (¢,), are determined such

that both consumer and producer risks are balanced.
For determining the optimal GASP design parameters,
we formulate an optimization problem. We want to
minimize the Average Sample Number (ASN), which is
c¢=rxg. This minimization is subject to the following,

which balance consumer risk () and producer risk

(a):

u C r i r=i
un‘ept(pllﬁ_ozrl)z[z( l )pl(l_pl)

i=0

8

<B, 6.1)

n §

P (P2 I%=rz>=[2( : )p;u—pz)"" (6.2)

=2l-o.
i=0

Here, r, and r, are the mean ratios relating to the
consumer and producer risks, respectively. The failure
probabilittes p, and p, are calculated in these P

accept
functions, as provided in Equations (6.1) and (6.2).

Table 3 presents an illustrative set of GASP design
parameters for the NGLTGE distribution, based on
specific parameter values (s=0.5,k=225). The table
shows the minimum required number of groups (g)

and the acceptance number (c¢) for varying consumer

risks (), mean ratios (i), and test duration
uO

constants (q, ), for fixed group sizes (r=5 and r=10).
The P__.(p) indicate the probability of

accept

accepting a lot under these conditions.

values

Tables 3 and 4 give the performance of the GASP
under the NGLTGE distribution, which aims to minimize
the values of g and ¢, which are the number of groups
and acceptance number, respectively. The tables give
the results for various values of g, the true mean u to

the specified mean p, (i), the number of groups r,
Uy

and the coefficient «,. The primary assessment
criterion is the probability of acceptance (P,.,,(p))-

The results consistently show that as the ratio £
Uy
increases, the probability of acceptance is high,

typically above 95% in most instances, demonstrating
the effectiveness of the sampling plan in terms of
accepting lots with or higher than the required mean

life. Conversely, if the ratio is low, especially at ﬂ=2,
Uy
the plan will have zero groups (g=0) and zero
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Table 3: GASP under NGLTGE at s=0.5,k=2.25 and with Minimum g and ¢

B i r=5 r=10
Ho a,=05 a, =1 a,=05 a, =1

g c P (D) g c P (D) g c P (D) g c P (D)
0.25 2 0 0 - 0 0 - 44 4 0.97582| 73 4 |0.960203
4 18 2 0982989 29 2 0972736 2 2 0983057 4 2 ]0.966401
6 4 1 0.965478 29 2 0992178 1 1 0.964301 4 2 ]0.990637
8 4 1 0.980596 7 1 0.96629 1 1 0.9801 2 1 0.960595

0.10 2 0 0 - 0 0 - 0 0 - 0 0 -
4 38 2 0964427 449 3 |0989712 5 2 |0958179 23 3 ]0.989562
6 38 2 0989763 58 2 0984417, 5 2 0.98831 7 2 ]0.983672
8 9 1 0.956869 58 2 10993538 2 1 0.960595 7 2 0.99335
0.05 2 27 4 0957196 204 5 0970826 3 5 0966688 13 6 |0.977626
4 3 2 |0971533 5 2 0953007 1 3 ]0.987301 2 3 ]0.974763
6 3 2 0991337, 5 2 10985603 1 2 0.97786 1 2 0.97786
8 2 1 0.959622] 2 1 0.959622] 1 2 0990419 1 2 ]0.990419
0.01 2 266 5 10962129 0 0 - 16 6 0972534 25 6  |0.957417
4 17 3 0986483 26 3 0979402 2 3  |0974763 3 3 ]0.962384
6 6 2 0982748 10 2 0971413 2 2 ]0.956211 2 2 ]0.956211
8 6 2 10992632 10 2 ]0.987751 2 2 ]0.980931 2 2 ]0.980931

Table 4: GASP under NGLTGE at s=1.25,k=0.25 and with Minimum ¢ and ¢
B i r=5 r=10
Ho a,=05 a, =1 a,=05 a, =1

g c P (P) g c P (D) g c P (P) g c P (P)

0.25 2 0 0 - 0 0 - 44 4 |0.951891 0 0 -
4 12 2 0976062 20 2 0960422 2 2 0968604 12 3 ]0.987154
6 3 1 0.956588 20 2 0988114 2 2 0.990491 4 2 ]0.981072
8 3 1 0.975191 5 1 0.958995 1 1 0.967642 4 2 ]0.991956

0.10 2 0 0 - 0 0 - 0 0 - 0 0 -
4 172 3 0989105 264 3 0983326 15 3 0983968 23 3 ]0.975523
6 26 2 0984576 40 2 0.97637 5 2 |0976397 7 2 [0.967112
8 26 2 0993473 40 2 0989975 5 2 |0989955 7 2 ]0.985965

0.05 2 61 5 10970205 101 5 0951151 721 6 0972205 O 0 -
4 6 3 0.98752 9 3 10981338 11 3 0977239 17 3 ]0.965043
6 3 2 0981606 4 2 ]0.975551 5 2 0969532 7 2 ]0.957607
8 1 1 0.966008 4 2 0989238 5 2 |0.986565 7 2 ]0.981242
0.01 2 8 6 0967281 41 7 0.97932| 54 7 0972853 82 7 ]0.959068
4 1 3 |0973006 3 4 10986994 4 4 10982697 5 4 |0.978418
6 1 2 0958029 1 2 0958029 2 3 |0987659 3 3 ]0.981545
8 1 2 0.98075 1 2 0.98075 2 2 10961871 2 2 ]0.961871
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Figure 4: OC Curve for s=0.5,k =2.25.

acceptance numbers (c=0), hence giving an
indeterminate or undefined acceptance probability. It is
clear at the lowest levels of g (0.10 and 0.25). A major

discovery is that the g and ¢ values simply rely on the
number of groups () and on the coefficient q,. For a

fixed B and i, increasing r from 5 to 10 will

Uy

generally give smaller g and c, and generally also a

small increase in the probability of acceptance.
Similarly, increasing «, from 0.5 to 1 will generally give

larger ¢ and ¢, with negligible impact on the
probability of acceptance. Minimum values of ¢ and ¢

will be obtained when the ratio Tl is maximum,

Uy

showing that if the actual mean life is much greater
than the assigned mean, lower number of groups and
smaller acceptance number will be required to ensure
high probability of acceptance.

Figure 4 is the Operating Characteristic (OC) curve
for s=05,k=225. In panel 14 is when r=5 and

a,=0.5, panel 15 is when r=5 and a, =1, panel 16 is
when r=10 and @, =0.5, panel 17 is when r=10 and
a, =1.

Figure 5 is the Operating Characteristic (OC) curve
for s=125,k=0.25. In panel 19 is when r=5 and

a,=0.5, panel 20 is when r=5 and q, =1, panel 21 is
when r=10 and @, =0.5, panel 22 is when r=10 and
a, =1.

7. NUMERICAL ANALYSIS

The first application is the weekly volume of traded
bitcoin-usd from 17/09/2023 to 15/9/2024 in 1,000,000,
000.

The second application focuses on the COVID-19
death rate for Angola from 14/06/2020 to 20/2/2022.

The third data set represents the survival times (in
months) for 121 breast cancer patients treated between
1929 and 1938. It was first reported by lawless [41]
statistical and presented in Table
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Table 5: Weekly Volume of Traded Bitcoin-USD

e
- 5=125
k=025
» 8, =05
-] r=5
2.
8
z 2
2
g
@
2
o
g 3+
@
2
o
o
o
o i . -
C T T T T T T
0 4 6 8 10 12
H/io
(a)
o
- 5=125
k=025
» 2 =05
Q| »r=10
o
o
<}
2 o
=t
g
8
2
Q
o+
& ©
@
2
Q
o
9
o i - -
o T T T T T
0 4 6 8 10 12
(o
(c)

‘Operating Characteristic (OC)

0.8

0.6

0.4

0.2

0.256559779 0.822519052 0.730122407 0.821837757 0.726736545 1.134023831 1.65718773
155200566 1.347674948 1.435353611 1.30439894 1.34360108 1.885036149 1.68493482
520841715 1.578071262 2.02311774 2.599718197 1.391358248 1.553146029 1.351841874
578263954 2.135600415 1.607691456 3.228956661 4.057096933 4.059577506 3.280971217
163246258 2.294272601 2.882436754 2.578895559 1.760310882 2177170118 1.616178571
91456349 2.25779718 1.709494099 1.875695007 1.759732716 1.634490154 1.710300939
131075314 1.8740702 2.221618762 2.27265185 2.510023388 3.171587346 1.937313931
.006702741 2.085891553 2.070528442 1.832794312
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Table 6: COVID-19 Death Rate for Angola

0.0588235 0.0229885 0.1034483 0.0437956 0.0196078 0.0436681 0.0604839 0.0392157
.0521173 0.0313725 0.0311751 0.0260417 0.0375000 0.0265018 0.0285344 0.0272206
.0376712 0.0189145 0.0166240 0.0095559 0.0104575 0.0182868 0.0134745 0.0133531
.0200445 0.0192000 0.0430108 0.0267686 0.0152505 0.0164234 0.0246305 0.0431894
.0168675 0.0392857 0.0599251 0.0411765 0.0282686 0.0219780 0.0298507 0.0160858
.0208955 0.0127737 0.0132979 0.0113519 0.0134228 0.0173847 0.0180505 0.0133191
.0334262 0.0206795 0.0261669 0.0308151 0.0308765 0.0335498 0.0357143 0.0267983
.0302663 0.0272109 0.0278578 0.0404908 0.0446334 0.0420561 0.0412044 0.0472779
.0368393 0.0311383 0.0397910 0.0228466 0.0166540 0.0284974 0.0334686 0.0217028
.0392857 0.0326531 0.0267857 0.0234375 0.0190476 0.0130719 0.0021231 0.0015169
.0023099 0.0058021 0.0101074 0.0121951 0.0037123 0.0068027 0.0122699 0.0097087
Table 7: Breast Cancer Patients Survival Times
0.3 0.3 4 5 5.6 6.2 6.3 6.6 6.8 7.4 7.5 8.4 8.4 10.3 11
.8 12.2 12.3 13.5 14.4 14.4 14.8 15.5 15.7 16.2 16.3 16.5 16.8 17.2 17.3
5 17.9 19.8 20.4 20.9 21 21 211 23 23.4 23.6 24 24 27.9 28.2
A 30 31 31 32 35 35 37 37 37 38 38 38 39 39
40 40 41 41 41 42 43 43 43 44 45 45 46 46
48 49 51 51 51 52 54 55 56 57 58 59 60 60
61 62 65 65 67 67 68 69 78 80 83 88 89 90
96 103 105 109 109 111 115 117 125 126 127 129 129 139
Table 8: Summary of Basic Statistics
Statistics Data | Data Il Data lll
” 53 88 121
17 0.1520842 0.016339 17.5
o, 0.217717 0.03599555 60
IQR 0.06563284 0.01965655 42.5
0.02565598, 0.3228957 125, 126, 127
Outlier 0.4057097, 0.4059578, 0.1034483 129, 129, 139
0.3280971, 0.3171587 154
Mean 0.1900383 0.0268645 46.32893
Median 0.1832794 0.02633435 40
Variance 0.005644836 0.000246428 1244.464
Standard Deviation 0.07513212 0.01569803 35.27697
Range 0.38030182 0.1019314 153.7
Skewness 0.7768817 1.477419 1.04318
Kurtosis 4.267464 8.012109 3.402139
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Table 9: Model Evaluation Measures

Data |Distribution LL AlC CAIC BIC Halc w A KS p-value
Data | NGLTGE 66.78 -125.5512 | -125.0614 | -119.6403 | -123.2781 | 0.0517 0.3558 0.0650 0.9677
NGLXTE 61.05 -118.1091 | -117.8691 | -114.1685 | -116.5937 | 0.2191 1.2936 0.1550 0.1407
APWQ 63.07 -120.1605 | -119.6707 | -114.2496 | -117.8875 | 0.1503 0.8985 0.1294 0.3101
LTW 63.03 -118.9463 | -118.1129 | -111.0651 | -115.9155 |  0.1400 0.8787 0.1315 0.2919
Lw 63.46 -120.9195 | -120.4297 | -115.0086 | -118.6464 | 0.1040 0.6590 0.0867 0.7880
Data Il NGLTGE | 251.05 | -496.1013 | -495.8156 | -488.6693 | -493.1071 | 0.0372 0.2699 0.0515 0.9738
NGLXTE 243.86 | -483.7146 | -483.5734 | -478.7599 | -481.7185 | 0.1097 0.8680 0.1055 0.2809
APWQ 249.40 | -492.9296 | -492.6439 | -485.4976 | -489.9354 | 0.0461 0.4167 0.0607 0.9015
LTW 250.31 | -492.6203 | -492.1384 | -482.7109 | -488.6281 | 0.0497 0.4220 0.0698 0.7852
Lw 24539 | -489.7755 | -484.4808 | -477.3435 | -481.7813 | 0.1757 1.1997 0.0860 0.5325
Data Il NGLTGE | -579.66 | 1165.3210| 1165.5270 | 1173.7090 | 1168.7280 | 0.0553 0.4272 0.0583 0.8059
NGLXTE | -580.25 | 1164.5000 | 1164.6020 | 1170.0920 | 1166.7710 | 0.1434 0.9557 0.0799 0.4233
APWQ -579.26 | 1164.6410 | 1164.2460 | 1172.4280 | 1167.4470| 0.0540 0.4064 0.0584 0.8036
LTW -591.40 | 1170.6950 | 1171.0400 | 1181.8780 | 11752370 | 0.1410 0.8005 0.1337 0.0264
Lw -587.60 | 1181.1990 | 1181.4040 | 1189.5870 | 1184.6060 | 0.2097 1.2578 0.0936 0.2391
Table 8 provides a statistical overview of the three Table 9 provides a comprehensive comparison of
distinct datasets, Data |, Data Il, and Data lll, reporting the fit of five statistical distributions NGLTGE,

their central tendency, dispersion, and shape. Data |
has a sample size of »=53, mean of approximately
0.190 and median 0.183, showing a moderate positive
skew. Having a variance of 0.0056 and standard
deviation of 0.075, it has a relatively small spread of
values. This is also indicated by the 0.777 skewness
and 4.267 kurtosis, suggesting a heavier-than-normal
distribution with more than one outlier. For Data I,
7=88, the mean is 0.0269 and the median 0.0263.
The 1.477 skewness and 8.012 kurtosis are both
extremely high, indicating a strong positive skew and
an extremely leptokurtic distribution with a more
extreme peak and heavier tails than a normal
distribution. The 0.00025 variance and 0.0157 standard
deviation, along with the narrow Interquartile Range
(IQR) of 0.0197, illustrate that the data values are
clustered together. The single outlier at 0.1034 is
distant from the body of data. Data Ill, which has the
largest number of data at »=121, is the most
dispersed. Its mean at 46.33 and median at 40 are
widely separated, and the large skewness of 1.043
indicates high positive skew. The variance of 1244.46
and standard deviation of 35.28 are considerably larger
than those of the other two datasets, suggesting a wide
spread of values. The kurtosis of 3.402 is close to that
of a normal distribution. A number of outliers, from 125
to 154, also explain the big range of 153.7. Overall,
each dataset exhibits a different set of features,
including Data IIl being the most spread out, Data Il the
most compact and most skewed, and Data |
intermediate in dispersion.

NGLXTE, APWQ, LTW, and LW to three data sets:
Data I, Data Il, and Data Ill. The models are compared
according to various criteria, including LL, AIC, CAIC,
Bayesian Information Criterion (BIC), and Hannan-
Quinn Information Criterion (HQIC). The analysis
suggests that smaller values of these information
criteria indicate a better-fitting model. Goodness-of-fit is
also assessed by Anderson-Darling (W, A) and
Kolmogorov-Smirnov (KS) statistics, where a large p-
value of the KS test shows that the data likely meet the
specified distribution. For Data |, the NGLTGE
distribution gives the best fit. It has the highest log-
likelihood (LL = 66.78) and the lowest values of all
information criteria (AIC = -125.5512, CAIC = -
125.0614, BIC = -119.6403, HQIC = -123.2781).
Additionally, its Kolmogorov-Smirnov (KS) statistic of
0.0650 is the lowest and its p-value of 0.9677 is the
highest, providing strong evidence that NGLTGE is the
most appropriate model for this data. For Data Il, the
NGLTGE distribution once more offers the best fit. It
has the highest log-likelihood (LL = 251.05) and the
lowest information criteria values. Its KS p-value of
0.9738 is the largest of all the models, which further
confirms its adequacy. Even though the APWQ
distribution also has a high p-value (0.9015), the
NGLTGE model is much better due to having lower
values of the information criteria. For Data lll, the
NGLTGE distribution is once again the best-fitting
model. Although the LL is negative (-579.66), it is the
highest, and the information criteria (AIC = 1165.3210,
CAIC = 1165.5270, BIC = 1173.7090, HQIC =
1168.7280) are the lowest. The KS p-value 0.8059 is
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Table 10: Parameter Estimates for the Fitted Models

Data Distribution MLEs (Standard Errors)
Data | NGLTGE § k 6
0.0232(0.0131) 0.0963(0.2047) 1.9881(4.2374)
NGLXTE a i
0.5289(0.0555) 3.1585(0.1713)
APWQ a i A
2.4949(4.4809) 2.9698(0.7018) 72.6897(41.1816)
LTW § i a b
1.7196(1.0183 0.1118(0.0010
( ) 0.1832(0.0305) ( ) 2.8109(0.0013)
LW a b i
1.0860(-) 6.4300(-) 4.0575(-)
Data Il NGLTGE § k 6
0.1484(0.0541) 0.0428(0.0543) 3.4920(4.4711)
NGLXTE a i
0.8234(0.0678) 21.2834(1.3384)
APWQ a B A
0.3171(0.6273) 1.6163(0.2867) 383.7133(233.1578)
LTW 5 i a b
0.0753(0.3791) 5.8251(5.1657) 0.2958(0.7065) 2.0415(0.2516)
LW a b i
0.3908(5.3189) 4.3174(85.9392) 6.9070(93.9956)
Data Il NGLTGE § k 6
0.5821(0.1769) 1.7354(3.8367) 0.0458(0.1009)
NGLXTE a i
1.0443(0.0805) 0.0125(0.0008)
APWQ é i A
0.8709(0.5828) 1.2865(0.0758) 0.0068(0.0028)
LTW 5 i a b
9.9149(4.6474) 0.1008(0.0103) 2.3466(0.0049) 0.8683(0.0043)
LW a b i
0.7676(0.7618) 0.0650(0.1763) 2.4179(2.4089)

the highest, indicating a good fit. For comparison, the
LTW model to Data lll has a very low KS p-value
(0.0264), indicating that it is not a good fit for this data.
Concisely, the NGLTGE distribution provides the best
fit to all three datasets on every evaluation measure
used, ranging from log-likelihood to information criteria
and goodness-of-fit tests.

Table 10 displays the Maximum Likelihood
Estimates (MLEs) and standard errors of the
parameters of five distributions that were fitted to three
data sets. Standard errors are an indication of the
estimates’ accuracy, with lower values indicating more
precise parameter estimates. For Data |, the NGLTGE
distribution  provides the parameter estimates

§=00232, k=0.0963, and 6=19881. The standard
errors of k and 6 are especially large, indicating great

variability in estimating them. The NGLXTE and LTW
models, however, have relatively small standard errors
for respective parameters, indicating better estimates.
APWQ and LW models also have parameters with

large standard errors, notably «, )t and all the
parameters of the LW model. In Data I, the NGLTGE
model is estimating parameters with varying degrees of
precision. 5§ has a fairly precise estimate (standard
error of 0.0541), while estimates of k and 6 both have
much greater standard errors, specifically 6 with a
standard error of 4.4711. The NGLXTE model again
has very precise estimates, with the standard errors for
4 and [ both small. The APWQ, LTW, and LW models
all possess great standard errors for the majority of
their parameters, indicating these parameter estimates
are less reliable. Finally, within Data Ill, the NGLTGE
model contains estimates with mixed precision. The
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Data-|

()

standard error for § is small in magnitude (0.1769),

while the standard errors for k and 6 are larger. As in
the case with the other datasets, the NGLXTE model
for Data lll is characterized by extremely accurate
parameter estimates, with standard errors of 0.0805 for
a and 0.0008 for /. The other distributions (APWQ,
LTW, LW) tend to have parameters with greater
standard errors, though the LTW model’s k and the
APWQ model's 8 are estimated more accurately.
Generally, although the NGLTGE distribution was
previously mentioned to be most information-criteria
and goodness-of-fit favorable, the NGLXTE distribution
is always providing the best parameter estimates with
all three datasets, as evident from its analysis with
smaller standard errors of the parameters. This shows
that although NGLTGE may be a better fitting for the
overall shape of the data, the parameters of the
NGLXTE model are better estimated and robust.

The plots in Figure 6 show the distributions of three
datasets. Panel 24, has a fairly symmetric distribution
with the median near the center of the box, and a few
minor density peaks. Panel 25 is highly right-skewed,
indicated by a long upper tail, a median positioned low
in the box, and a dense concentration of data at the
lower end of the range. Panel 26 also exhibits right-

(b)
Figure 6: Boxplot superimposed on Violin plot for (a) Data I, (b) Data Il, (c) Data Ill.

Data—lll

(c)

skewness, but with a much wider spread than the other
two datasets, shown by the broader violin plot and
larger box, and a median situated in the lower half of its
box.

The provided TTT (Total Time on Test) plots in
Figure 7 are used to assess the shape of the hazard
rate of a distribution. The plots show the relationship
between T(i/n), the TTT plot function, and i/n, the
empirical cumulative distribution. In panel 28, the TTT
plot for Data | is concave, indicating that the distribution
has an increasing hazard rate (IHR). This suggests that
the risk of an event occurring increases over time. For
panel 29, the TTT plot for Data Il is also concave. This
indicates an increasing hazard rate (IHR) for this
dataset as well, similar to Data I. In panel 30, the TTT
plot for Data Il is a straight line, which suggests that
the distribution has a constant hazard rate. This implies
that the risk of an event is uniform over time.

Figure 8 show how well different distributions fit
three datasets. In panel 32, for Data |, the NGLTGE
distribution, shown in red, provides the closest fit to the
histogram’s shape compared to the other distributions.
In panel 33, for Data Il, the NGLTGE distribution again
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Figure 7: TTT plots for (a) Data I, (b) Data Il, (c) Data .
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Figure 8: Density plot superimposed on Histogram for (a) Data I, (b) Data Il, (c) Data Ill.

()
Figure 9: CDF plots for (a) Data I, (b) Data Il, (c) Data III.

appears to be the best fit, closely following the high
peak and the long tail of the data. For panel 34, Data
lll, the NGLTGE and APWQ distributions both provide
a good fit to the histogram, with the NGLTGE line
tracking the overall shape of the bars quite well.

Figure 9 compare the empirical cumulative
distribution function (CDF) of the data with the
theoretical CDFs of five fitted distributions. A good fit is
indicated by the theoretical curve closely following the
step-like empirical curve. In panel 36, for Data I, the

NGLTGE distribution (red line) provides a very close fit
to the empirical CDF, aligning well with the black dots
that represent the data. In panel 37, for Data Il, the
theoretical curves for NGLTGE (red), APWQ (green),
and LTW (blue) all appear to fit the empirical CDF well,
showing that they are all suitable models for this
dataset. In panel 38, for Data Ill, the NGLTGE (red)
and LTW (blue) curves closely match the empirical
CDF of the data, indicating a better fit compared to the
other distributions.
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Figure 10: SF plots for (a) Data I, (b) Data Il, (c) Data Ill.
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Figure 10 compare the fitted survival functions
(SFs) with the empirical survival function of the data.
The survival function, S(z), represents the probability of
an item surviving beyond time ¢ . A good fit is indicated
by a theoretical curve that closely follows the empirical
step-wise curve. In panel 40, for Data |, the NGLTGE
distribution (red line) provides the best fit, closely
tracking the empirical survival function across the entire
range of data. In panel 41, for Data Il, the NGLTGE
distribution again appears to be the best fit, as its curve
aligns most closely with the empirical plot, particularly
in the initial, steep drop-off phase. In panel 42, for Data
Ill, the NGLTGE and NGLXTE distributions are the
most suitable, as their curves closely match the
empirical data points, showing a good fit for this
dataset as well. The other models do not capture the
shape of the empirical data as accurately.

Figures 11, 12, and 13 are the Probability-
Probability (P-P) plots for Data I, Il and Il respectively.
Figures 14, 15, and 16 represent the Quantile-Quantile
(Q-Q) plots for Data I, Il and Il respectively.

8. MACHINE LEARNING PERSPECTIVE

From a machine learning perspective, the proposed

NGLTGE distribution can be understood as a
i 1
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parametric density estimator that balances parsimony,
interpretability, and predictive performance. While
much of the recent literature in probabilistic modeling
has shifted toward highly flexible nonparametric or
neural network-based density estimators, such as
Gaussian mixtures [42], variational autoencoders [43],
and normalizing flows [44], there remains strong value
in developing new closed-form families with tractable
likelihoods.

8.1. PyTorch Implementation

We fit the NGLTGE parameters (s,k,0) by
maximum likelihood in PyTorch [45]. The negative log-
likelihood is differentiated using autograd and
minimized with the Adam optimizer [46], removing the
need to derive or solve score equations analytically. To
enforce positivity and improve conditioning, we
optimize unconstrained variables passed through a
softplus transform to obtain (s,k,0)>0. For numerical
stability we (i) rescale inputs by the empirical 95th
percentile, (i) clamp the argument of the exponential to
avoid overflow, and (iii) clip gradients at a fixed norm.

Training uses double precision (float64) and
reproducible seeds. Hyperparameters (learning rate,
iterations, and optional mini-batch size) are tuned by
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Figure 11: P-P plots for Data I.
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0.2 0.4 0.6 08 1.0

0.0

02 04 0.6 08 1.0

0.0

1.0

08

0.6

04

0.2

0.0

0.2 0.4 0.6 08 1.0

0.0

NGLXTE /

J7
I I I I I I
00 02 04 06 08 1.0

Theoretical Quantiles

-— |\

T T T T T T
00 02 04 06 08 10

Theoretical Quantiles

NGLXTE /

7
T T T T T T
00 02 04 06 08 1.0

Theoretical Quantiles

- |\

I I I I I T
00 02 04 06 08 10

Theoretical Quantiles

T T I I T I
00 02 04 06 08 10

Theoretical Quantiles

1.0

| = APWQ

0.6

04

0.0

T T T T T T
00 02 04 06 08 10

Theoretical Quantiles



914

International Journal of Statistics in Medical Research, 2025, Vol. 14

Elkalzah et al.

e
T | = NGLTGE
o |
w o
2
5 < |
3 o
(«]
o
o =
= o
G
1<
w oo
o
o
o
T T T T T T
00 02 04 06 08 10
Theoretical Quantiles
o
- LTw
/
o /
w (=]
= /
g8 o | /
3 (=]
= /
8 = /
A= o
(=%
I.IE.I /
o /
/
o |/
o
T T T T T T
00 02 04 06 08 10

Theoretical Quantiles

Figure 16: Q-Q plots for Data Ill.
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Table 11: NGLTGE Parameter Estimates by Dataset. Inputs were Scaled by the Empirical 95th Percentile during

Optimization; 6 is on the Original Scale

Dataset Init (s,.k,.6,) s (fit) k (fit) 0 (fit)

Bitcoin (0.3,1.0,0.6) 0.02330 0.22978 0.47400
COVID-Angola (0.3,1.0,0.6) 0.14834 0.32878 26.8387
Breast cancer (0.3,1.0,0.6) 0.58276 0.38634 0.01019

monitoring held-out predictive log-likelihood using 5-
fold cross-validation [47]. Adam can be replaced by a
hybrid schedule (e.g., Adam warm-start followed by L-
BFGS) without changing the model code. For
diagnostics, we overlay the fitted PDF on data
summaries using a Freedman—Diaconis histogram [48]
and a kernel density estimate (KDE) [49]. This
implementation integrates seamlessly with deep-
learning pipelines while retaining the interpretability of a
closed-form distribution.

8.2. Comparison with Machine Learning Density
Estimators

To evaluate performance, we benchmarked
NGLTGE against two state-of-the-art machine learning
baselines:

1. a Log-Gaussian Mixture Model (Log-GMM),
representing a flexible parametric mixture
estimator in log-space [42, 50], and

2. a one-dimensional Masked Autoregressive Flow
(MAF), a normalizing flow trained on logx with
change-of-variables back to the original domain
[44].

Predictive performance was assessed via 5-fold
cross-validation of the predictive log-likelihood [47]
(Table 12, Figure 19). Across all three real datasets-
Bitcoin trading volumes, COVID-19 mortality in Angola,
and breast cancer survival times-NGLTGE achieved
competitive or superior performance. In particular,
NGLTGE provided higher predictive log-likelihoods

than both GMM and MAF in modeling heavy-tailed
outcomes (e.g., survival times), highlighting its strength
in domains where tail fidelity is crucial.

8.3. Data-Driven Validation

Beyond predictive log-likelihood, we validated
model adequacy by generating synthetic datasets from
the flow-based baseline [44] and visually comparing
their kernel density estimates against both real data
and the fitted NGLTGE PDF (Appendix A). While MAF
reproduced the central modes of the distributions, it
systematically underestimated tail behavior. By
contrast, NGLTGE provided close alignment with
empirical densities across the entire range, with fewer
parameters and interpretable structure. Empirical
densities were computed via kernel density estimation
[49, 51-58]. This result underscores a core advantage:
NGLTGE offers both statistical interpretability and ML-
level competitiveness.

8.4. Scalability and Extensions

The computational pipeline presented here
demonstrates that new distribution families can be
directly embedded into modern ML frameworks [45].
Extensions such as Bayesian inference (e.g., with
probabilistic programming systems) or variational
inference provide posterior uncertainty quantification
for (s,k,0); in all cases, mini-batch optimization with
adaptive methods like Adam [46] makes training
practical at scale. Moreover, the gradient-based
training opens the door to integrating NGLTGE within
larger ML systems, such as survival prediction models,

Table 12: 5-Fold Predictive Log-Likelihood (Mean = std). Higher Values Indicate Better Generalization. Best Results

for each Dataset are Shown in Bold

Dataset NGLTGE Log-GMM(3) MAF
Bitcoin -1.089 =+ 0.208 -1.565 * 0.885 -1.303 £ 0.410

COVID-Angola 2.833 £ 0.218 2.745 £ 0.190 2.675 = 0.318

Breast Cancer -4.812 £ 0.113 -5.112 £ 0.538 -5.027 £ 0.241
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Figure 19: 5-fold predictive log-likelihood (mean =+ std) comparison between NGLTGE, Log-GMM(3), and MAF across the three
real datasets (Bitcoin trading volumes, COVID-19 mortality in Angola, and breast cancer survival times).

probabilistic forecasting pipelines, and deep generative
architectures.

In summary, the ML perspective highlights that
NGLTGE is not only a theoretical generalization but
also a practical, scalable, and interpretable model that
can compete with modern machine learning density
estimators. This dual positioning strengthens its value
for both the statistical and ML communities.

9. CONCLUSION AND FUTURE WORK

The study was successful in introducing a new
family of generalized distributions, and a submodel, the
new generalized Lomax tangent transformed
exponential (NGLTGE) distribution. The NGLTGE
distribution proved to be a more suitable model for
various real datasets like cryptocurrency, COVID-19,
and breast cancer data. A Monte Carlo simulation also
confirmed that the parameter estimators are well-
behaved asymptotically. In addition, the utility of the
distribution in practice was demonstrated through its
application to a group acceptance sampling plan for
quality control. From a machine learning perspective,
we showed that the NGLTGE model is not just an
abstract concept but also an effective, scalable, and
interpretable tool. By implementing it within a modern
deep-learning framework like PyTorch and making use
of automatic differentiation for parameter estimation,
the NGLTGE distribution competed favorably with
recent machine learning density estimators like Log-
Gaussian Mixture Model (Log-GMM) and Masked
Autoregressive Flow (MAF), particularly in the modeling
of heavy-tailed data details.

The increased flexibility of the NGLTGE model,
while beneficial, introduces certain practical limitations.

The model has three parameters (s,k,0), making the
parameter space larger and estimation more complex
than the two-parameter baseline Exponential or Lomax
distributions. Consequently, the Maximum Likelihood
Estimation (MLE) procedure requires careful selection
of initial values and can be computationally intensive
for very large datasets, potentially leading to
convergence issues or multiple local maxima on
complex likelihood surfaces. Furthermore, while the
NGLTGE excels with heavy-tailed, non-linear data, it
may underperform compared to simpler models (e.g.,
Weibull or Gamma) when applied to data that is strictly
symmetrical or possesses only very thin tails, as the
added complexity becomes unnecessary overhead.
Specifically, it might lack the inherent flexibility to model
bi-modal or multi-modal data without further
extensions, a domain where non-parametric models
like Log-GMM or MAF (as shown in Section 8) often
maintain an advantage.

For future work, Bayesian parameter estimation can
be used to better understand the parameter
uncertainty. The emphasis in the present work is on the
univariate NGLTGE distribution; thus, one natural
extension would be to build a multivariate counterpart
to describe dependence between two or more variables
and estimate it to describe dependence structures in
finance and econometrics, say. While we have shown
that the NGLTGE can be adapted using adaptive
optimization, exploration of regularization techniques
might prevent overfitting and improve generalization on
small datasets. The usefulness of the NGLTGE
distribution with heavy-tailed data suggests its possible
application in other contexts where such features are
common, e.g., network traffic simulation or actuarial
science. Finally, the NGLTGE distribution could be
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APPENDIX A: ML ESTIMATION & VALIDATION DETAILS
A.1. Implementation

9.0.1 Kernel Density Estimation

Given samples x,....,x,, the KDE is

A 1 o x-x
f}1(x)_E§K( h ),

with Gaussian kerel K(u)=(27)"¢™ . The bandwidth #>0 controls smoothness.

Defaults. [leftmargin=1.2em]

+ Optimizer: Adam (Ir =107 for CV, 107 -107 for final fits); steps =1500 - 2000 ; mini-batch size =32 grad clip
=10.

» KDE: scipy.stats.gaussian_kde (Scott’s rule for bandwidth).

* Log-GMM baseline: 3 lognormal components fit on logx (sklearn GaussianMixture); prediction uses change-
of-variables.

* Flow baseline (MAF): 3 affine autoregressive transforms on logx with two hidden layers (width 16), Adam Ir
=5x10"", 1500 steps; prediction includes the —logx Jacobian term.
« Cross-validation: 5-fold, shuffled with fixed seed; we report mean = std test log-likelihood.

A.2. Flow Simulation

Train the flow on y=1logx, then sample y* from the flow and set x =exp(y"). We compare f,,.(x) of the real
data (solid black) against the KDE of {x'} (blue dashed) and the fited NGLTGE PDF (red).
A.3. Reproducibility

Code is written in PyTorch/NumPy; all experiments use a fixed random seed. Figures are rendered with
Matplotlib; histograms use Freedman-Diaconis bins.

A.4. Additional Figures

covid_angola: KDE vs simulation vs NGLTGE breast_cancer: KDE vs simulation vs NGLTGE bitcoin: KDE vs simulation vs NGLTGE
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Figure 20: KDE overlays: empirical (black), flow-simulated(MAF) (blue dashed), NGLTGE PDF (red).
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A.5. Limitations and Future Work

[leftmargin=1.2em]

* Sensitivity to KDE bandwidth and mini-batch size; alternative optimizers or hybrid schedules.
* Tail-weighted losses and mixture-NGLTGE extensions for multi-modal data.

« Scalable Bayesian variants via stochastic variational inference (SVI).

+ Covariate-dependent (conditional) NGLTGE for regression/time-varying settings.
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