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Abstract: This study explores the efficacy of four key parametric survival models-Weibull, Gompertz, Lomax, and
Exponential-in assessing mortality risk among HIV-positive patients undergoing antiretroviral therapy (ART). The
research examined a retrospective cohort of 2,794 individuals, noting 124 deaths (4.4%) and 2,670 censored cases
(95.6%), utilizing time-to-event data. Each model was estimated using maximum likelihood estimation (MLE) and
assessed using various model selection criteria, including the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC). The Gompertz distribution emerged as the best fit (AIC = 45,943.33; BIC = 45,961.58),
followed by the Weibull model, while the Lomax and Exponential models showed higher AIC/BIC values and less stable
fits. The optimized parameters for the Gompertz model were determined as A = 0.00316 and o = 1.77x107, indicating a
gradually increasing hazard rate over time. Model adequacy was further confirmed using Cox-Snell residuals (via
Nelson-Aalen cumulative hazard) and Cox-Snell residual Q-Q plots for diagnostic evaluation. The Gompertz model
demonstrated the highest coefficient of determination (R* = 0.9817), followed by the Weibull (R* = 0.9168), while the
Lomax and Exponential models both had lower R* values (0.5989), underscoring the superior predictive capability of the
Gompertz model. Additionally, Cox proportional hazards regression identified significant mortality predictors, such as age
at ART initiation (HR = 1.05, p < 0.001), male sex (HR = 1.60, p < 0.01), and last recorded body weight (HR = 0.94, p <
0.001). In contrast, baseline CD4 count and WHO stage were not significant. The model’s concordance index (C = 0.85)
indicated high predictive accuracy. This study is motivated by the ongoing variability in HIV survival outcomes despite
the extensive use of ART. By comparing these parametric models, the research enhances the understanding of mortality
dynamics, aiding clinicians and policymakers in selecting optimal model structures for precise survival prediction,
improved ART program monitoring, and informed patient management.These findings highlight significant clinical
implications for HIV care, identifying age at ART initiation, male sex, and lower body weight as mortality
predictors,indicating where targeted actions are needed. The Gompertz model’s superior performance offers a robust
method for the prediction of long-term survival, underlining the need for monitoring comorbidities and the management of
treatment-related side effects. With this model, HIV programs will be better positioned to flag high-risk patients, time
interventions more appropriately, and allocate resources to reduce preventable deaths among their aging populations.
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1. INTRODUCTION

Despite significant advancements in antiretroviral
therapy (ART) and various preventive strategies, the
global health community continues to encounter
substantial challenges posed by the human
immunodeficiency virus (HIV), the causative agent of
acquired immunodeficiency syndrome (AIDS) [1]. The
introduction of highly active ART has profoundly
transformed the prognosis of HIV infection, converting
it from a fatal condition into a manageable chronic
disease and significantly enhancing survival and quality
of life [2]. Nevertheless, the evolving epidemic and
persistent  disparities in  treatment outcomes
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necessitate the development of advanced analytical
methods to more accurately model disease
progression, treatment efficacy, and patient survival.
Estimating survival probabilities and identifying
prognostic factors are crucial for effective HIV program
management, enabling healthcare providers to tailor
treatment strategies, allocate resources efficiently, and
improve patient care [3]. Parametric survival models
offer a robust and flexible approach to analyzing time-
to-event data in clinical research, particularly within the
context of HIV/AIDS, where understanding the duration
of survival on ART and identifying predictors of
mortality is essential [4]. Unlike non-parametric
methods such as Kaplan-Meier, these models assume
a specific distribution for the survival time or hazard
function, allowing for more precise estimation of
parameters and extrapolation beyond observed follow-
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up periods [5]. This facilitates a deeper understanding
of underlying biological processes and provides a
framework for predicting future events based on
estimated parameters [6]. Such models are particularly
advantageous when investigating complex scenarios
like viral suppression and rebound, offering a robust
method to assess the impact of covariates on long-term
outcomes [7]. For instance, the Weibull distribution
accommodates both increasing and decreasing hazard
rates, rendering it suitable for diverse clinical scenarios,
including HIV progression [5]. Its proportional hazards
formulation enables direct assessment of covariate
effects on hazard rates, while its accelerated failure-
time interpretation provides insight into how covariates
influence survival time [8]. In this research, four
commonly employed parametric survival models-
Weibull, Gompertz, Lomax, and Exponential-were
applied to a substantial cohort of HIV patients
undergoing antiretroviral therapy (ART). The objective
of the analysis was to evaluate the effectiveness of
these models in accurately reflecting the underlying
survival patterns and providing precise prognostic
predictions [9]. Additionally, the study aimed to pinpoint
significant mortality predictors, including socio-
demographic and clinical factors such as age at the
start of ART, gender, WHO stage, tuberculosis (TB) co-
infection status, viral load, and treatment regimen, to
comprehend their impact on survival outcomes. To
ensure the models’ robustness, their adequacy was
assessed using statistical fit indices (AIC and BIC)
along with Cox-Snell and Q-Q residual diagnostics for
thorough model validation. Ultimately, the study sought
to identify the most suitable parametric model for
forecasting long-term survival among HIV patients on
ART, thereby offering a quantitative framework to
enhance patient management, optimize treatment
strategies, and improve the evaluation of HIV programs
[10, 11]. Even though there are many parametric
survival models available, there is still litle comparative
data regarding how well they perform in HIV/AIDS
survival analysis, especially in settings with limited
resources where precise prognostic tools are most
crucial. Although individual parametric models, like the
Weibull and Exponential distributions, have been
applied to HIV cohorts [5, 11], there are still few
thorough comparative analyses in the literature that
methodically assess several parametric distributions
using the same dataset with strict diagnostic validation.
Without a systematic comparison of goodness-of-fit
across several criteria, including AIC, BIC, Cox-Snell
residuals, and coefficient of determination (RA?), the
majority of current research relies primarily on Cox

proportional hazards models or uses single parametric
approaches [12, 13]. This gap makes it more difficult
for researchers and clinicians to choose the best model
structure.This gap limits the ability of clinicians and
researchers to select the most appropriate model
structure for specific populations and clinical contexts.
Furthermore, computational ease rather than biological
plausibility or empirical validation frequently influences
the choice of parametric models. Different clinical
implications for survival prediction, risk stratification,
and treatment timing result from assuming constant
hazard (Exponential), monotonic hazard patterns
(Weibull), or exponentially increasing mortality risk
(Gompertz) [14, 15]. Few studies, however, have
specifically compared these hazard structures in HIV
populations receiving long-term antiretroviral therapy
(ART), where mortality dynamics may change from
acute treatment-related complications to chronic
disease progression and age-related comorbidities.
Determining high-risk subgroups, creating precise
prognostic calculators, and scheduling interventions all
depend on knowing which hazard pattern best
describes HIV survival under modern ART regimens. In
order to fill these gaps, this study uses a large
retrospective cohort of 2,794 HIV-positive patients on
ART to perform a thorough comparative analysis of
four parametric survival models: Weibull, Gompertz,
Lomax, and Exponential. Our innovative contributions
include: (1) systematic comparison of several
parametric distributions with identical data and strict
model selection criteria; (2) thorough diagnostic
evaluation using Cox-Snell residuals, Q-Q plots, and
information criteria (AIC/BIC) to validate model
adequacy; (3) integration of semi-parametric (Cox
proportional hazards) and fully parametric approaches
to identify important mortality predictors while
guaranteeing model robustness; and (4) demonstration
of the clinical relevance of various hazard structures for
long-term survival prediction in HIV patients. We give
clinicians and policymakers evidence-based
recommendations for choosing the best survival model
for this population by determining the best parametric
model. By identifying the optimal parametric model for
this population, we provide clinicians and policymakers
with evidence-based guidance for selecting appropriate
survival models for ART program monitoring, resource
allocation, and patient risk stratification in resource-
limited settings.. Lastly, this research adds to growing
evidence on survival modeling for HIV care and offers
valuable tools for aiding public health decision-making
as well as clinical practice. In identifying subgroups at
greatest risk, refining treatment protocols, as well as
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program-level approaches, the analyses will facilitate
achieving global targets on viral suppression, reduced
deaths, as well as quality of life enhancements, [2, 7,
16-23]. In addition, this research corrects the persistent
mortality gap across the HIV-positive population
compared to the comparator population, despite the
framework of universal access across ART [24, 25],
where precise predictive models serve as a tool for
guiding focused interventions.

2. METHODOLOGY

The methodological workflow for Survival Analysis
begins with Data Cleaning and Preparation of Survival-
Time Variables. Kaplan-Meier Estimation and Log-
Rank Test follow this. The next step is Cox Proportional
Hazards Modeling (Partial Likelihood Estimation),
which is then succeeded by the Assessment of
Proportional Hazards  Assumption. After the
assessment, the workflow moves to Fully Parametric
Modeling (MLE-based). The analysis then proceeds
with Model Diagnostics, which includes Cox-Snell
Residuals, Residual Plots, and Information Criteria.
The final step in the workflow is the Selection of the
Gompertz Distribution as the Most Appropriate Survival
Model.

2.1. Study Design and Data Source

This retrospective cohort study analyzed data from
2,794 HIV-positive patients receiving antiretroviral
therapy (ART). The dataset, obtained through random
sampling, included comprehensive demographic,
clinical, and behavioral variables relevant to ART
outcomes. Demographic features comprised sex, date
of birth, age at ART initiation, current age, marital
status, employment status, and educational level.
Clinical indicators included ART start date, duration on
ART, days of ARV refill, current viral load, baseline
CD4 count, WHO clinical stage, last recorded body
weight, and current tuberculosis (TB) status. Behavioral
and appointment-related variables captured patient
adherence and engagement in care, such as days to
scheduled appointment, appointment status, and last
pharmacy pick-up date. The primary outcome variable
was time-to-event, defined as the duration in days from
ART initiation until death (event = 1) or censoring
(event = 0).

2.2. Data Processing

Data were screened for quality and completeness.
Also, we ensured that our techniques were valid in

relation to the distribution of missing data. Significantly,
there are missing data in key survival factors, including
survival time, status, age at initiation of anti-retroviral
therapy, sex, CD4 count, weight, and WHO stage. The
missing data are remarkably low, since all of them are
below 2%. These are broken down as follows: survival
time and status, no missing data; age at initiation of
anti-retroviral therapy, 0.3% missing; sex, 0.1%
missing; CD4 count, 1.2% missing; weight, 1.8%
missing; and WHO stage, 0.9% as shown in Table 1.

To assess if this missingness might affect the
outcome, we performed analyses to determine if it was
related to observed covariates. Chi-squared tests and
logistic regression analyses revealed that missingness
was no longer significantly related to either
demographic and/or clinical variables, as well as event
occurrence, than those that were not missing (all p-
values were greater than 0.05). This result suggests
that missingness follows a Missing Completely At
Random (MCAR) mechanism, which means that
missingness is independent of both observed and
missing data [26]. Using listwise deletion under MCAR,
inferences are valid with no bias in estimates, but with
some reduced efficiency since fewer data are used.
Under the MCAR assumption, listwise deletion
(complete case analysis) produces unbiased parameter
estimates and valid statistical inference, albeit with a
modest reduction in statistical power due to decreased
sample size [27].

Since missing data was small (<2%) and missing
completely at random (MCAR), listwise deletion was
employed for this analysis. Patients with missing data
for any of the important variables in survival analysis
were removed, leaving 2,794 observations: 124 deaths
and 2,670 censoring observations. The small amount
of lost data, with a sample size reduction of about 50-
60 individuals, or about 2%, ensures that findings are
generalized to all HIV patients on antiretroviral therapy.

It is known that multiple imputation could
theoretically be applied to further minimize information
loss [28]. Nevertheless, due to low missing data and
missing completely at random, adding imputation would
introduce additional complexity, potentially vyielding
model misspecification if it were not done ideally.
Therefore, listwise deletion appears to be a feasible,
statistically valid method to use with this data. On
sensitivity analysis, it was found that data processing
strategies for missing data did not affect analysis
findings. "The final data set consisted of 2,794
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Table 1: Summary of Missing Data Patterns

Variable Total N Complete Missing % Missing

Survival Time 2,794 2,794 0 0.0%

Event Status 2,794 2,794 0 0.0%

Age at ART Start 2,794 2,786 8 0.3%

Sex 2,794 2,791 3 0.1%

Baseline CD4 2,794 2,760 34 1.2%

Last Weight 2,794 2,744 50 1.8%

WHO Stage 2,794 2,769 25 0.9%

Final Complete Cases 2,794 2,794 :60 21%

Note: Chi-square tests indicated no significant association between missingness and observed covariates (all p>0.05 ), consistent with an MCAR mechanism.

observations with data available for all variables. Time
was measured in days from the start of ART until death
(event=1) or end of study, censoring (event=0).

2.3. Statistical Analysis

2.3.1. Non-Parametric Analysis

The Kaplan—Meier estimator, based on the product-
limit method, was wused to estimate survival
probabilities. Survival curves were stratified by sex and
compared using the log-rank test.

2.4, Model Diagnostics and Selection

Cox—Snell residuals were plotted against the
Nelson—-Aalen cumulative hazard to assess goodness-
of-fit. Additionally, Cox-Snell Residual Q-Q plots were
examined to select the best-fitting model among others.

All analyses were performed using Python (Lifelines
package, version 1.8.0). Statistical significance was set
at p<0.05.

2.4.1. Parametric Survival Models

Parametric survival models are such that the
survival times follow a defined probability distribution
with a finite number of parameters that describe the
shape. Parametric models provide a versatile
framework for time-to-event analysis, offering the
capability for explicit estimation of survivor and hazard
functions that enhances the accuracy of inference and
prediction. Mortality models provide quantitative
descriptions of the pattern of mortality at specific ages
by expressing mortality in relation to age during a
specific year. Models differ in the number of
parameters they use and in the age ranges for which
they model mortality effectively. The more parameters
they include, the more flexibly they can fit mortality

patterns across different ages; however, this added
flexibility = also  increases  mathematical and
computational complexity [29].

Rationale For Parametric Model Selection

Four parametric survival models-Exponential,
Weibull, Gompertz, and Lomax-were selected for their
distinct hazard functions and clinical relevance in
analyzing HIV disease under antiretroviral therapy
(ART). The Exponential model offers a constant hazard
rate, the Weibull model allows for hazards that increase
or decrease, the Gompertz model describes
exponentially increasing hazards suitable for aging
populations, and the Lomax distribution is
characterized by heavy tails with declining hazard
rates. The comparative analysis of these models aims
to identify the most suitable one for modeling mortality
dynamics in HIV patients. Four parametric survival
models-Exponential, Weibull, Gompertz, and Lomax-
were chosen for the current study due to their distinct
hazard functions, clinical interpretability, and
widespread application in survival analysis.

Other parametric models exist, such as the log-
logistic, log-normal, and generalized gamma
distributions, which allow for greater flexibility in
modeling non-monotonic hazard patterns, for example
[11, 30]. However, these models come at the cost of
increased complexity, and convergence issues may
arise when censored data is present. Due to the
exploratory nature of this comparative study, and
requirements for clinically interpretable results, we
focused on the four listed models that balance
flexibility, interpretability, and computational stability.
As sample sizes and numbers of events increase,
future studies may extend this comparative framework
to more complex models.
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In this section, we investigate the statistical
characteristics of each model, including its CDF, PDF,
hazard function, and parameter estimate via the
maximum likelihood approach.

2.4.2. The Gompertz Distribution

The Gompertz distribution is a two-parameter
continuous probability distribution widely applied in
modeling time-to-event data, especially in demography,
biology, actuarial science, and medical survival
analysis [31, 32]. Its primary strength lies in its ability to
represent exponentially increasing hazard rates with
time, capturing the natural progression of mortality or
risk escalation observed in biological organisms and
chronic diseases [14]. This property makes it
particularly suitable for modeling adult mortality, where
the force of mortality rises exponentially with age [33].
The distribution’s flexibility also allows its use in
actuarial computations for life insurance and annuity
pricing [34], as well as in population survival studies
and epidemiological modeling [35, 36].

Statistical Properties

The probability density function (PDF) of the

Gompertz distribution is:
fxa,B)=afe™ exp[—ﬁ(e‘” —1)], xz0,a>0,5>0.(2.1)

where o is the shape parameter governing the rate of
hazard increase, and f is the scale parameter

modulating the distribution’s spread.

The cumulative distribution function (CDF) is:

_g(e‘”—l)].

The survival function, representing the probability of
surviving beyond time x, is:

F(x;a,B)=1-exp (2.2)

Gompertz Probability Density Function (PDF)

Gompertz Cumulative Distribution Function (CDF)

S(x;a,[a’):exp{—g(e”"—l)]. (2.3)

The hazard function, expressing the instantaneous
failure rate, is:

h(x;a,B)=afe™.

This hazard increases exponentially with time,
reinforcing the model’'s suitability for aging-related or
progressive risk processes.

(2.4)

Parameter Estimation

Parameters o and [ are estimated using

maximum likelihood estimation (MLE). For a random
sample x,,x,,...,x, , the log-likelihood function is:

1nL(a,/3)=nlna+n1nﬁ+a’Exxi—ﬁi(em"—1). (2.5)

The MLE estimates are obtained by solving the
score equations

dlnL _0. alano’

da ap

(2.6)

numerically using iterative methods such as
Newton-Raphson. The resulting estimators & and ﬁ

are consistent, asymptotically unbiased, and efficient
under standard regularity conditions.

The plots of the CDF, PDF and Hazard function of
the Gompertz distribution under varying values of the
shape parameter and when the scale parameter is 1.0
are shown in Figure 1.

The Gompertz distribution is a fundamental tool in
survival analysis, valued for its ease of analysis, clarity,
and practical application in modeling mortality data. Its
hazard function, which increases exponentially, mirrors
the progression patterns seen in chronic diseases and
aging populations [37]. When applied to HIV survival

Gompertz Hazard Function
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Figure 1: Statistical Properties of the Gompertz Distribution.
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modeling, the Gompertz model effectively represents
the natural rise in mortality risk over the course of
treatment, making it a useful model for comparison with
the Exponential, Weibull, and Lomax distributions.

2.5. The Exponential Distribution

The exponential distribution is one of the simplest
and most fundamental models in survival analysis,
assuming a constant hazard rate over time that implies
the risk of an event remains unchanged regardless of
how long an individual has survived [15]. Because of its
single rate parameter (A >0), the model offers ease of
interpretation and computational efficiency, making it
valuable in reliability testing, medical prognosis, and
stochastic lifetime modeling. However, its assumption
of a time-invariant hazard rate limits its applicability to
real-world scenarios, particularly chronic diseases such
as HIV, where the risk of an event often evolves with
disease progression [5]. This limitation highlights the
need for more flexible parametric models, such as the
Weibull or Generalized Gamma distributions, which can
capture changing risk patterns over time [11].

Statistical Properties

The probability density function (PDF) of the
Exponential distribution is given by:
ft:A)=Ae™, t=20,A>0 (2.7)

where A is the rate parameter, representing the
constant instantaneous risk of the event occurring [12].

The cumulative distribution function (CDF), which
defines the probability of the event occurring by time ¢,
is expressed as:
Fit;M)=1-¢e*, t=0 (2.8)
This cumulative probability increases monotonically

towards 1 as r increases, governed by the magnitude
of A [13, 38].

The survival function S(z), represents the probability

of surviving beyond time 1, is derived as:
St;A)=1-F(t;M)=e™ (2.9)

The hazard function A(r), defined as the rate of

event occurrence given survival up to time ¢, is
constant:
ne =20 = (2.10)

St

This distribution has a “memoryless property,”
meaning that the probability of an event occurring in
the next time interval is independent of how long an
individual has already survived [13].

The Exponential distribution has a constant hazard
rate, which is simple and neat in math. However, it
often does not fit well for biological or medical events
where risk changes over time. In many real-life cases,
the risk fluctuates, making the Exponential model
unsuitable for long-term survival studies. Still, because
it is easy to understand and use, it is a key part of
survival analysis and helps compare more complex
models [14]. Despite its analytical simplicity, the
exponential distribution’s assumption of a constant
failure rate often fails to accurately model real-world
phenomena where hazard rates can vary over time,
such as in situations with increasing or decreasing risk
of failure [39]. To address these limitations, more
flexible distributions like the Weibull, log-normal, and
log-logistic models have been developed, which allow
for varying hazard rates [40]. For instance, the Weibull
distribution, with its adjustable shape parameter, can
accommodate increasing, decreasing, or constant
hazard rates, thereby offering greater versatility in
reliability engineering and survival analysis [40]. The
plots of the PDF, CDF, and hazard function of the
Exponential Distribution are given in Figure 2.

Exponential Distribution: PDF, CDF, and Hazard Function
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PDF,CDF and Hazard function of Exponential Distribution.
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2.5.1. The Weibull Distribution

The Weibull distribution is widely known for its
applicability in modeling survival data due to its ability
to capture various hazard rate patterns, including
decreasing, constant, and increasing rates over time,
making it particularly useful in cancer research and
other medical applications [12]. This flexibility
originates from its two primary parameters: a scale
parameter () and a shape parameter (a), which

together dictate the form of the hazard function [40].
The cumulative distribution function (CDF) is defined
as:

F(x;a,p)=1-e""",

x=z0,aa>0,8>0, (2.11)

where o and p represent the shape and scale

parameters, respectively, allowing the Weibull model to
adapt to a variety of survival dynamics [30].

The corresponding survival function, which
expresses the probability of surviving beyond time x,
is given by:
S(xya,B)=e " (2.12)

The probability density function (PDF), obtained by
differentiating the CDF, is:

fa.p) =3(1) e (2.13)

B\B

The hazard function, which characterizes the
instantaneous risk of failure or event occurrence at time
t, is therefore expressed as:

a-1
h(r;a,ﬁ):mzﬁ(i) . (2.14)
S() p\p

This property makes the Weibull model particularly
adaptable, as it can represent constant, increasing, or
decreasing hazard behaviors depending on whether
the shape parameter o equals, exceeds, or falls below
one, respectively [41, 42]. The Exponential distribution

emerges as a special case of the Weibull distribution
when a=1 .

Log-Likelihood and Parameter Estimation for the
Weibull Distribution

The simplified estimating equation is:

n x @

| =n. (2.15)
303)
Maximum Likelihood Estimators.

From (2.22), B as a function of a is:

1 n 1/a
ﬁ(a):(;Ex:*) : (2.16)
i=1

Substitute /3’(0:) into the log-likelihood equation to
obtain a nonlinear equation in «a, solved numerically
(e.g., Newton-Raphson). Once ¢ is found:
B=PB@). (2.17)

The Weibull distribution equals the Exponential
distribution as a special case when o =1. Its flexibility
to model decreasing, constant, or increasing hazard
rates makes it suitable for a wide range of biomedical
survival studies, particularly in modeling time-to-event
data such as HIV or cancer progression [41, 42] The
plots of the CDF, pdf and harzard function of the
weilbull Distribution is given in Figure 3 below:

2.5.2. The Lomax Distribution

The Pareto Type Il or the Lomax distribution, is
effective in the modelling of heavy-tailed economic and
actuarial science data. It is effective in serving as the
survival model for instances of decreasing hazard rates
with time, such as early failures of the product or the
survival of the patient following treatment. Unlike the
exponential distribution, the Lomax distribution is more
adaptable in the sense that it accommodates both
increasing and decreasing hazard rates. This

Weibull Distribution (shape a=1.5, scale §=2.0)

Weibull PDF: fit) = 57" 'e ™™

Weibull CDF: Fit) =1 —e "

Weibull Hazard: h(t)=3{£)"

L 08

0.6
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015 0.4

0.2
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Figure 3: PDF, CDF and Hazard function of Weibull Distribution.
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adaptability is due to the presence of two parameters:
shape (a) and scale (A ) which govern its heavy-tailing
and patterns in the hazard. This renders it effective in
many instances in reliabilty and biomedical
applications [43-45] . The maximum likelihood method
or Bayesian techniques are commonly used for
estimating parameters. The monotonically decreasing
hazard rate of the Lomax distribution constrains its
usefulness in some data patterns. To accommodate
this shortcoming, more general models such as the Bell
and exponentiated Bell-G families have recently
appeared in the literature with the capability to provide
more hazard behaviors [46, 47]. Flexible Weibull and
several related heavy-tailed models have also
appeared in the hopes of providing better modeling
capacity for intricate survival data, [30, 43, 48].
Although the Lomax distribution is useful in modeling
systems with declining failure risk, its inability to
accommodate non-monotonic hazard structures neces-
sitates more sophisticated families of distributions
necessary in some survival and reliability studies.

The Lomax (Pareto Type Il) distribution with shape

parameter a>0 and scale parameter A>0 has
support x=0 and the following functions:
a x —(a+)
PDF': f(x;a,k):—(1+—) , x=0. (2.25)
A A
CDF: F(x;a,k):l—(l+%) . (2.26)
Survival: S(x;a,k)=(1+%) . (2.27)
Hazard: h(x;a,l)—f(x)— alt __«a (2.28)

TS(x) 1+x/A A+x

Parameter Estimation (Complete Data)

Let x,,....x, be an iid. sample from the Lomax
distribution. The likelihood and log-likelihood are:

n —(a+l)
a X,
La,M)=]| |=|1+=L , 2.18
(@.2) ]‘[A( A) (2.18)
W)y =nlna—nin i@+ Sl 1+2%). 2.19
(a,A)=nlno—nInA - (o )Zn( )») ( )
A useful rewrite is:
f(a,)»)=nlna+anln)u—(a+1)zln(k+xi), (2.29)

i=1

since 1r(1+%)=ln()»+x,.)—ln)».

It is worth noting that:

. If A is known, a closed-form estimate for a is
given by (2.31).

i If both parameters are unknown, we solve the
two score equations simultaneously
(numerically).

. For censored observations, we replace the
likelihood with the appropriate product of
densities and survivor terms; score equations
change accordingly.

3. RESULTS

This section provides the analytical results derived
from the parametric survival modeling of 2,794 HIV-
positive patients undergoing antiretroviral therapy
(ART). A total of 124 mortality events (4.4%) were
recorded within the cohort, while 2,670 cases (95.6%)
were censored. This analysis evaluated four parametric
models-Weibull, Gompertz, Lomax, and Exponential-
utilizing maximum likelihood estimation (MLE) to
identify the most suitable model for predicting mortality
risk and survival duration. The adequacy of the model
was evaluated using the Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), and RA2
values, in addition to diagnostic assessments via Cox-
Snell and Q-Q residual plots The survival curves for
some of the variables in this study, including the
survival curve for all patients, are shown in Figure 4
Survival Curves Divided by Key Variables: (a) The
survival probability based on age groups at the
initiation of ART reveals that older individuals face
decreasing survival prospects due to health issues
associated with aging. (b) The survival probability by
gender shows that males have a marginally lower
survival rate than females, which may be attributed to
variations in healthcare practices and biological factors.
(c) The overall cohort survival curve, including 95%
confidence intervals (shaded area), demonstrates a
high survival probability (>95%) by the conclusion of
the follow-up period. The decline in the number at risk
over time is mainly due to censoring rather than
mortality.

3.1. Cox Proportional Hazards Model

The Cox proportional hazards model, as shown in
Table 2, predicted well, with a concordance index of

0.85. The likelihood ratio test was very significant ( x’
= 207.05, df = 12, p < 0.005). Starting ART at an older
age increased the risk of the event by 5% for each year
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Figure 4: Kaplan-Meier Survival Curves Stratified by Key Covariates.
Table 2: Cox Proportional Hazards Model Results with Significance Levels
Variable Coef Exp(Coef) SE(Coef) 95% CI (Coef) 95% CI (Exp z p
(Coef))
Age at start of ART 0.05 1.05 0.01 0.04 - 0.06 1.04 - 1.06 8.60 <0.005
First CD4 -0.00 1.00 0.00 -0.00 - 0.00 1.00 - 1.00 -0.09 0.93
Last Weight -0.07 0.94 0.01 -0.08 —-0.05 0.92-0.95 -10.72 <0.005
Sex (Male) 0.47 1.60 0.19 0.10-0.84 1.11-2.31 2.52 0.01*
WHO Stage 1 12.46 2.57e+05 4818.20 -9431.04 — 9455.96 0.00 — 0.00 1.00
WHO Stage 2 12.70 3.29e+05 4818.20 -9430.80 — 9456.20 0.00 — 0.00 1.00
WHO Stage 3 13.28 5.86e+05 4818.20 -9430.22 — 9456.78 0.00 — 0.00 1.00
WHO Stage 4 14.42 1.84e+06 4818.20 -9429.07 — 9457.92 0.00 — 0.00 1.00
WHO Stage 1 (Peds) -1.87 0.15 5490.72 -10763.48 — 10759.73 0.00 — -0.00 1.00
WHO Stage 2 (Peds) -2.30 0.10 5998.92 -11759.96 — 11755.37 0.00 — -0.00 1.00
WHO Stage 3 (Peds) -2.94 0.05 7688.31 -15071.74 — 15065.86 0.00 — -0.00 1.00
WHO Stage 4 (Peds) -3.46 0.03 9320.13 -18270.57 — 18263.65 0.00 — -0.00 1.00
Model Statistics:
Number of observations 2794
Number of events observed 124

(HR = 1.05, 95% CI: 1.04-1.06, p<0.005). Higher

weight was protective, with each unit increase lowering
the risk by about 6% (HR = 0.94, 95% CI: 0.92-0.95,
p<0.005). Being male increased the risk by 60%

compared to females (HR = 1.60, 95% CI: 1.11-2.31,
p=0.01). Baseline CD4 count (HR = 1.00, p = 0.93)

and WHO stage were not important predictors, with
unstable estimates. Overall, age, sex, and weight were
key factors for survival, while baseline CD4 and WHO
stage were not significant in this group.

Key findings include:
Age at ART initiation: Each additional year

increased the hazard of death by 5% (HR = 1.05, 95%
Cl: 1.04-1.06, p <0.005).

Weight: Higher body weight was protective, with
each unit increase associated with a 6% reduction in
mortality risk (HR = 0.94, 95% CI: 0.92-0.95,
p <0.005).

Sex: Male patients had a 60% higher hazard
compared to females (HR = 1.60, 95% CI: 1.11-2.31,
p=0.01).

Baseline CD4 count: Not a significant predictor
(HR=1.00, p=093).

WHO Stage: Estimates were unstable, with no
consistent significant association across categories.

The Cox proportional hazards model output in Table
2 above clearly shows a lack of stability in the
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estimates for the WHO clinical stage variables as can
be seen from the extremely large hazard ratios, such
as HR 2.57x10°. For WHO Stage 1, with confidence
intervals extending from 0.00 to positive infinity, as well
as p-values of 1.00 for all categories of WHO stage.
These are indicative of a problem of complete or quasi-
complete separation in the data, a problem that has
long been a challenge in both logistic regression
analysis and Cox proportional hazards regression
when a predictor perfectly predicts the outcome [49].
This instability does not reflect the absence of a true
association between WHO stage and mortality but
rather arises from the data structure and sample size
limitations within specific WHO stage categories.

There are a number of reasons for this. Firstly, there
were only 124 deaths from 2,794 patients (an event
rate of 4.4%), and categorizing patients into eight
groups for WHO stages (four for adults and four for
children) results in sparse data in certain groups where
a number of stages consist of no events. This violates
a popular guideline for Cox regression analysis in
which a minimum of 10 events per predictor is
preferred [50]. Secondly, there were relatively small
patient groups for pediatric stages of WHO, with certain
groups consisting of fewer than 20 patients, increasing
the inaccuracy of analysis. Lastly, as all stages of
patients are known to experience a high survival rate
due to successful antiretroviral therapy, it would be
difficult to establish differences in Hazard of death
among similar groups.

However, it's important to emphasize that this
statistical imprecision should not be interpreted as a
lack of clinical relevance of WHO staging in estimating
HIV-related mortality in our study. Prior studies with a
larger event size did provide evidence that severe
stages of WHO stages as classified as lll and IV, are
associated with a significant hazard of death [51].
Rather, our results point out that due to a small event
size coupled with a nominal divide, this model
possesses insufficient statistical strength to provide
precise estimates of hazard ratios for individual stages.
Thus, we did not incorporate WHO stage in our
parametric survival models and focused on developing
precise estimates of continuous predictors (age,
weight, CD4 cell count) as well as a nominal predictor,
which was sex. In terms of potential avenues for further
research, larger cohorts, longer survival times, or a
multi-site analysis would provide sufficient events to
estimate the impact of WHO staging on survival
outcome. An alternative would be to group patients into
broader stages of their disease, such as early vs.

advanced, as a means of stabilizing their estimates.
Not withstanding this drawback, our model's other
variables, namely patient age when starting anti-retro-
viral therapy, gender, and latest known body weight,
were all found to be robust prognostic factors for
survival.

3.2. Cox Proportional Hazards Regression

The Cox proportional hazards model, as shown in
Table 3, exhibited outstanding predictive capabilities,
achieving a concordance index of 0.85. This indicates
that the model accurately ranked the survival times for
85% of all patient pairs. The log-likelihood ratio test
produced a highly significant outcome ( x> = 207.05, df
= 12, p<0.005), demonstrating that the covariates
included in the model significantly enhance its fit
compared to the null model. The partial AIC value of
1551.21 suggests a strong balance between the
model’s explanatory power and simplicity. Overall,
these findings suggest that the Cox model offers a
robust and statistically sound framework for evaluating
the impact of clinical and demographic factors on the
survival outcomes of HIV patients.

Table 3: Summary of Cox Model Performance Statistics

Statistic Value
Concordance Index (C) 0.85
Partial AIC 1551.21

Log-likelihood ratio test 207.05 on 12 df

-log,(p) of log-likelihood ratio test 122.72

3.3. Proportional Hazards Global and Covariate
Tests

The global proportional hazards test confirmed the
overall adequacy of the Cox proportional hazards
model (p>0.05), indicating that the assumption of
proportionality generally holds. However, examination
of individual covariates revealed that Last Weight,
WHO Stage 1 and Stage 3 (adults), as well as pediatric
WHO Stages 3 and 4, violated the proportional hazards
assumption (p<0.05). These findings suggest the
presence of time-varying effects for these predictors,
which may influence mortality risk differently across
follow-up time.

Overall, the testing of proportional hazards
assumptions using Schoenfeld residuals indicated that
the global model met the proportionality requirement.
However, the time-varying behavior observed in Last
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Table 4: Proportional Hazards Assumption Test for Cox Model

Variable Test Type Test Statistic p-value -logz(p)
Age at start of ART km 0.14 0.71 0.49
rank 2.49 0.11 3.13
First CD4 km 0.64 0.43 1.23
rank 0.77 0.38 1.39
Last Weight km 8.31 < 0.005*** 7.99
rank 28.13 < 0.005*** 23.07
Sex (Male) km 0.29 0.59 0.76
rank 0.07 0.79 0.35
WHO Stage 1 (Adult) km 5.41 0.02* 5.64
rank 7.69 0.01** 7.50
WHO Stage 2 (Adult) km 0.59 0.44 1.18
rank 1.78 0.18 245
WHO Stage 3 (Adult) km 4.05 0.04* 4.50
rank 6.40 0.01** 6.45
WHO Stage 4 (Adult) km 1.70 0.19 2.38
rank 3.16 0.08 3.73
WHO Stage 1 (Peds) km 0.01 0.91 0.14
rank 0.34 0.56 0.84
WHO Stage 2 (Peds) km 0.47 0.49 1.02
rank 1.03 0.31 1.68
WHO Stage 3 (Peds) km 18.46 < 0.005*** 15.82
rank 27.48 < 0.005*** 22.59
WHO Stage 4 (Peds) km 19.36 < 0.005*** 16.50
rank 48.94 < 0.005*** 38.46

Note: "p <005, “p<001, ™ p<0.005 . Test based on Schoenfeld residuals.

Weight and specific WHO stages suggests potential
non-proportional effects that may warrant the
application of time-dependent modeling or stratification
approaches for improved model fit.

3.4. Parametric Survival Models

Several fully parametric models were fitted using
maximum likelihood estimation. The model comparison
was based on fit indices such as the Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC),
and the R’ derived from Cox-Snell residual
diagnostics. Table 5 summarizes these results.

Lower AIC and BIC values indicate better model fit.
R* values are derived from Cox-Snell residual
diagnostics.

Table 5 indicates that among the compared models,
the Gompertz distribution offered the best fit (AIC =

45,943.33; BIC = 45,961.58), followed by the Weibull
model (AIC = 46,547.63; BIC = 46,565.88). In contrast,
both the Exponential (AIC 49,603.23; BIC
49,612.36) and Lomax (AIC = 49,605.23; BIC
49,623.49) models showed substantially poorer
performance. Since smaller AIC and BIC values reflect
stronger model performance after adjusting for
complexity, these results identify the Gompertz model
as the most appropriate choice for the dataset.

The selection of the Gompertz model suggests that
mortality risk in HIV patients on ART is not constant or
strictly monotonic but evolves over time. Unlike the
Exponential model, which assumes a flat hazard, or the
Weibull model, which captures only simple monotonic
hazard trends, the Gompertz distribution
accommodates hazards that increase or decrease
exponentially. This property aligns with the clinical
reality of HIV progression, where risks may intensify
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Table 5: Comparison of Parametric Survival Model Fit Statistics and Predictive Performance

Model Log-Likelihood BIC R
Exponential - 24,800.61 49,603.23 49,612.36 0.5989
Weibull - 23,273.82 46,547.63 46,565.88 0.9168
Gompertz - 22,969.67 45,943.33 45,961.58 0.9817
Lomax - 24,802.62 49,605.23 49,623.49 0.5989
Best-Fitting Model Gompertz

with disease advancement or treatment failure but
diminish with immune recovery under effective ART.
Additionally, the Gompertz model naturally incorporates
age-related changes in mortality, further enhancing its
clinical relevance and providing a reliable framework
for exploring demographic, clinical, and treatment-
related predictors of survival. Figure 5 compares
survival curves from four parametric models-
Exponential, Weibull, Gompertz, and Lomax-with the
Kaplan-Meier estimate. The Gompertz model,
represented by the blue line, most accurately reflects
the observed survival patterns, particularly by
demonstrating a gradual decline in probability. The
Weibull model, shown in green, also closely matches
the data, whereas the Exponential model, depicted in
red, tends to overestimate survival in the long term.
The Lomax model, indicated by the orange line,
performs poorly, especially towards the end of the
distribution. This visual evaluation corroborates the
quantitative criteria for model selection, highlighting the
Gompertz model as the most suitable option.

Survival Curve Comparison: KM, Exponential, Weibull, Lomax, and Gompertz
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Figure 5: Comparison of Fitted Parametric Survival Curves.

3.5. Model Diagnostics

Residual plots for Cox-Snell residuals (Figure 6)
were employed to examine how well a given parametric
model fits a data set. In a well-specified model, Cox-

Snell residuals should follow a standard exponential
distribution with unit mean, and plotting the cumulative
hazard of these residuals against the Nelson-Aalen
estimate should produce points that align closely with
the 45° reference line [53]. The Gompertz model’s
residuals showed the closest alignment with the 45°
reference line in Figure 6, indicating superior model
specification and accurately reflecting the exponentially
increasing hazard of mortality. The fact that the
Gompertz model correctly depicts the exponentially
rising risk of death over time, which is in line with the
biological reality of HIV disease progression, has
significant implications for healthcare as well. In the
short term, patients under effective ART experience
viral suppression and immune reconstitution; however,
aging, treatment-related toxicities, non-AIDS
comorbidities (cancer, cardiovascular disease), and
progressive immune senescence increase the risk of
long-term mortality [2, 52]. This cumulative burden of
risk factors over long follow-up periods is reflected in
the Gompertz model’s exponentially increasing hazard
pattern. Particularly for low cumulative hazard, the
Weibull residuals are a good approximation of the
reference line, indicating the existence of a monotone
hazard function, even though not as sharply as in the
exponential form proposed by Gompertz. Although it
does not model as well as an exponential increase, this
indicates that mortality hazard does rise over time in
HIV patients receiving antiretroviral therapy. In
contrast,the Exponential model's residuals deviated
considerably from a 45-degree line, particularly at
higher cumulative hazard values. This suggests that
people on long-term antiretroviral therapy would never
experience a constant hazard rate over time. A
constant hazard rate would suggest that a person’s risk
of dying after one year and ten years of anti-retroviral
therapy would be comparable, which would never
occur because the rate of morbidity would rise with
each year due to either treatment or age. By comparing
observed residual quantiles with theoretical exponential
quantiles, quantile-quantile (Q-Q) plots of Cox-Snell
residuals (Figure 6) offer further evidence of model
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adequacy. The Gompertz model had the highest
coefficient of determination (R2 = 0.9817), meaning
that the theoretical exponential distribution accounts for
98.2% of the variation in residual quantiles. This almost
perfect alignment shows that the hazard function for
this population is accurately specified by the Gompertz
model. The Lomax and Exponential models both
displayed poor fit (R* = 0.5989), with significant
deviation from the theoretical line in the upper talil,
suggesting misspecification, whereas the Weibull
model performed well (R* = 0.9168). Figure 6 displays
Cox-Snell Residual Diagnostic Plots used for checking
model adequacy. On these graphs, Cox and Snell
residuals are plotted against Nelson-Aalen cumulative
hazard estimations for various parametric models. The
best situation occurs when observations lie very close
to the 45-degree line, meaning that the residuals follow
a unit exponential distribution. Both the Gompertz and
Weibull models lie very close to the 45-degree line,
indicating that they fit perfectly. The Exponential and
Lomax models lie very far from the 45-degree line, but
they are still acceptable. Based on these diagnostic
graphs, it can be concluded that the best model among
all these models is still Gompertz.

Cox-5nell Residuals via Nelson-Aalen Cumulative Hazard
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Figure 6: Cox-Snell Residual Diagnostic Plots.

Clinical Implications of Diagnoses

Clinical risk assessment and patient care are
directly impacted by the Gompertz model's superior
performance. First, it recommends that time-dependent
risk scores that rise exponentially with ART duration
and patient age be included in mortality risk
assessment instruments for HIV patients. Long-term
mortality risk will consistently be underestimated by
static risk calculators that assume constant hazard, as
suggested by the exponential model. Second,
especially for patients who have been on ART for long

periods of time, the exponentially increasing risk
highlights the significance of proactive management of
age-related comorbidities, such as cardiovascular
screening, cancer surveillance, and bone health
monitoring [2, 14]. Third, follow-up intensity and
resource allocation should be dynamically modified
based on treatment duration, with more frequent
monitoring for long-term survivors who are at higher
risk of dying irrespective of virological suppression.
Among the models we fit, the Gompertz distribution
emerged as the best fit. It had the smallest AIC value of
45,943.33 and BIC value of 45,961.58, and its
residuals tracked closest to the 45-degree line
compared with those of other models. The Weibull
model is a suitable alternative for situations requiring
computational simplicity. Conversely, the Exponential
model underestimates long-term mortality risk and is
not recommended for HIV survival predictions.
Unreliable and inconsistent results were obtained using
Lomax. This model does not assume a declining risk
with very heavy tails; instead, it fits well with a
progressive pattern of survival and mortality among
patients with HIV/AIDS. Figure 7 presents Quantile-
Quantile (Q-Q) plots comparing observed Cox-Snell
residual quantiles to theoretical exponential quantiles
for model diagnostics. The Gompertz distribution
clearly shows the best fit with R* = 0.9817 and its
residuals lying very close to perfect fit. The Weibull
distribution fits well with R? = 0.9168 but exhibits some
discrepancies at higher quantiles. However, the
Exponential and Lomax distributions display very poor
fit with R? = 0.5989 and indicate some non-linear
behavior at higher quantiles, thus confirming their
inefficiency. These findings, alongside Cox-Snell
residual diagnostics from Figure 6, strongly advocate
for the Gompertz distribution as the preferred
parametric model for the HIV cohort.

4. DISCUSSION

This study applied parametric survival models to a
large retrospective cohort of 2,794 HIV-positive
patients on ART, with 124 deaths observed. Our
findings demonstrate that demographic and clinical
factors, particularly age, sex, and baseline weight,
significantly influence mortality risk. Identifying
demographic factors such as age, gender, and clinical
markers such as WHO stage and recent weight, as
major predictors of mortality risk, provides useful
information for the customization of patient care and
enhancing ART adherence programs. The outstanding
goodness-of-fit statistics also highlight its potential
utility in making predictions on patient outcomes and



942 International Journal of Statistics in Medical Research, 2025, Vol. 14

Elkalzah et al.

Cox-Snell Residual Q-Q Plots for Survival Models
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Figure 7: Quantile-Quantile (Q-Q) Plots of Cox-Snell Residuals.

informing clinical practices. In addition, the results of
this analysis, especially the comparative efficiency of
various parametric models, can help develop more
precise prognostic tools for HIV patients who have
varied treatment protocols [15]. These tools can
eventually help improve personalized treatment
regimens so that medical professionals can properly
respond to each patient's individual needs. By
incorporating these findings into everyday practice,
clinicians can promote improved health outcomes and
maximize the use of healthcare system resources.

The Kaplan-Meier estimator revealed differences in
survival by sex, though log-rank testing indicated only
modest evidence of statistical significance. These
results align with prior studies reporting sex-based
disparities in ART outcomes, with male patients often
exhibiting poorer survival [53, 54]. The Cox proportional
hazards model confirmed that older age and lower
body weight are associated with higher mortality,
consistent with evidence that advanced age and poor
nutritional status worsen ART outcomes [7]. Male sex
was also identified as an independent risk factor,
increasing hazard by 60%, which has been attributed to
differences in healthcare-seeking behavior and
adherence patterns. Baseline CD4 count did not
emerge as a strong predictor, which contrasts with

aon s 0o a1 0z 029 ain LER] nap

Theoretical Cumulative Hazard

earlier studies [51], possibly due to improved ART
initiation policies that reduce reliance on CD4
thresholds.

The observed instability in WHO clinical stage
estimates reflects a limitation of the data structure
rather than a lack of clinical relevance. The wide
confidence intervals and non-significant p-values
results from a sparse distribution of event data across
stage categories and an overall low event rate of 4.4%.
This phenomenon is called quasi-complete separation,
leads to inflated parameter estimates with undefined
standard errors [55, 56], particularly in pediatric WHO
stages where sample sizes are often under 20 patients.
Among adults, there is a preponderance of event data
within advanced stages Ill and IV, but against the rule
for stable Cox regression modeling requiring at least
10-15 event observations per predictor [55]. It is
important to note that the statistical instability of WHO
staging does not diminish its useful role as a predictor
for survival rates among HIV patients.It has been
revealed that patients with an advanced stage of WHO
have an odds ratio of death, and it's significantly higher
among ART-naive patients and immunosuppressed
patients who initiate antiretroviral therapy [49, 56]
However, this study’s cohort largely comprised stable
ART patients with high survival, resulting in insufficient
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data to accurately calculate stage-specific hazards.
This reflects a challenge in HIV survival research,
where improving ART effectiveness and declining
mortality rates may hinder the quantification of
traditional risk factors like WHO staging due to limited
statistical power. To overcome this limitation, future
research should employ several strategies. Firstly,
combining data from various locations or countries can
enhance the number of events, allowing for more
accurate estimation of WHO stage effects [13].
Secondly, merging WHO stages into larger groups
(such as early stages I-ll versus advanced stages llI-
IV) might enhance the stability of estimates while
maintaining clinical relevance. Thirdly, using WHO
staging as a time-varying covariate instead of a
baseline predictor could more effectively capture its
evolving relationship with mortality as patients move
through different disease stages during treatment [7].
Fourthly, alternative analytical methods like Bayesian
hierarchical models with informative priors derived from
historical data can stabilize estimates when event rates
are low [56]. Despite the instability in WHO stage es-
timates, our model successfully identified strong predic-
tors-age, sex, and body weight-that offer clinically
actionable risk stratification for HIV patients on ART.

Model diagnostics revealed partial violations of the
proportional hazards assumption, particularly for WHO
staging and body weight, underscoring the importance
of testing this assumption in HIV survival studies. This
justified our use of fully parametric survival models,
which provide greater flexibility in capturing time-
varying hazards. Among the parametric models, the
Gompertz distribution offered the best fit, as evidenced
by the lowest AIC and BIC values, and Cox-Snell
residuals closely aligned with the 45° line. The Weibull
model followed closely, while the Exponential and
Lomax distributions failed to adequately capture long-
term mortality risk. The superiority of the Gompertz
model is consistent with its capacity to model
monotonic hazard increases over time, a pattern well
aligned with HIV progression and treatment-related
dynamics [52, 57]. Importantly, the Gompertz model
also provided Dbiologically interpretable results,
capturing the increased hazard associated with aging
and prolonged ART exposure. Integrating longitudinal
markers such as body weight and WHO staging into
such flexible parametric frameworks may improve
patient-level risk prediction and enable earlier
intervention strategies [7, 53].

The strengths of this study include the use of
multiple  survival modeling approaches, robust

diagnostics, and model comparison based on
information criteria. Furthermore, the large sample size
and random sampling enhance generalizability.
However, limitations include potential unmeasured
confounding (e.g., ART adherence, socioeconomic
factors) and the exclusion of patients with incomplete
records. The Lomax model failed to converge,
highlighting challenges in estimating heavy-tailed
distributions with censored HIV data. Our findings
emphasize the need for sex-specific and age-sensitive
interventions in ART programs. Weight monitoring
should be prioritized as an early warning indicator of
adverse outcomes. Methodologically, this study
highlights the value of combining semi-parametric and
parametric models, with the Gompertz distribution
emerging as particularly suitable for HIV survival
analysis. Future research should explore dynamic
survival models incorporating time-dependent
covariates, including longitudinal viral load and CD4
trajectories.

Overall, both non-parametric and regression-based
approaches highlight the clinical importance of age,
sex, and weight as predictors of mortality among HIV
patients on ART. The Cox regression confirmed their
significance with robust hazard estimates, while
parametric modeling demonstrated that the Gompertz
distribution best captured survival dynamics. These
findings suggest that the hazard of mortality in this
population increases with time and is strongly shaped
by demographic and baseline health factors.

5. CONCLUSION

The Gompertz model is specifically designed to
address an exponentially rising hazard rate, a pattern
frequently seen in chronic illnesses where the risk of
death increases with age or the length of the disease
[10]. This feature makes it particularly apt for modeling
mortality in HIV-positive individuals, where the ongoing
progression of the disease and prolonged antiretroviral
treatment result in a variable hazard function. In
contrast, models like the exponential assume a steady
hazard, while the Weibull and Lomax distributions
provide greater flexibility in depicting monotonic and
heavy-tailed hazard patterns, respectively.

However, choosing a parametric survival model
requires careful consideration of the data’s structure,
as incorrect assumptions about the hazard shape can
lead to skewed estimates and unreliable predictions
[11]. Therefore, validating the selected model using fit
indices and ensuring it aligns with clinical knowledge is
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essential for credible survival analysis. Incorporating
expert opinion, as shown in some studies, can further
refine survival projections and enhance model
reliability, especially when differentiating between
parametric models with similar statistical fits [58].

Although the Gompertz model was most effective in
capturing the survival dynamics of this group,
examining other flexible distributions-such as the Type
| heavy-tailed Weibull or the alpha power transformed
inverse Lindley distribution-could improve predictive
accuracy by accommodating complex hazard
structures and long-tailed survival patterns often found
in clinical datasets [59]. Overall, survival outcomes for
HIV-positive patients on ART were affected by
demographic and clinical factors, with age, sex, and
body weight being significant predictors. While the Cox
model provided reliable hazard estimates, the
parametric analysis showed that the Gompertz
distribution best represents the survival trajectory in
this population. These findings underscore the
importance of flexible parametric models in enhancing
the precision of survival predictions and guiding
targeted interventions in HIV management.
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