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Abstract: This study explores the efficacy of four key parametric survival models-Weibull, Gompertz, Lomax, and 
Exponential-in assessing mortality risk among HIV-positive patients undergoing antiretroviral therapy (ART). The 
research examined a retrospective cohort of 2,794 individuals, noting 124 deaths (4.4%) and 2,670 censored cases 
(95.6%), utilizing time-to-event data. Each model was estimated using maximum likelihood estimation (MLE) and 
assessed using various model selection criteria, including the Akaike Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC). The Gompertz distribution emerged as the best fit (AIC = 45,943.33; BIC = 45,961.58), 
followed by the Weibull model, while the Lomax and Exponential models showed higher AIC/BIC values and less stable 
fits. The optimized parameters for the Gompertz model were determined as λ = 0.00316 and α = 1.77x10-6, indicating a 
gradually increasing hazard rate over time. Model adequacy was further confirmed using Cox-Snell residuals (via 
Nelson-Aalen cumulative hazard) and Cox-Snell residual Q-Q plots for diagnostic evaluation. The Gompertz model 
demonstrated the highest coefficient of determination (R2 = 0.9817), followed by the Weibull (R2 = 0.9168), while the 
Lomax and Exponential models both had lower R2 values (0.5989), underscoring the superior predictive capability of the 
Gompertz model. Additionally, Cox proportional hazards regression identified significant mortality predictors, such as age 
at ART initiation (HR = 1.05, p < 0.001), male sex (HR = 1.60, p < 0.01), and last recorded body weight (HR = 0.94, p < 
0.001). In contrast, baseline CD4 count and WHO stage were not significant. The model’s concordance index (C = 0.85) 
indicated high predictive accuracy. This study is motivated by the ongoing variability in HIV survival outcomes despite 
the extensive use of ART. By comparing these parametric models, the research enhances the understanding of mortality 
dynamics, aiding clinicians and policymakers in selecting optimal model structures for precise survival prediction, 
improved ART program monitoring, and informed patient management.These findings highlight significant clinical 
implications for HIV care, identifying age at ART initiation, male sex, and lower body weight as mortality 
predictors,indicating where targeted actions are needed. The Gompertz model’s superior performance offers a robust 
method for the prediction of long-term survival, underlining the need for monitoring comorbidities and the management of 
treatment-related side effects. With this model, HIV programs will be better positioned to flag high-risk patients, time 
interventions more appropriately, and allocate resources to reduce preventable deaths among their aging populations.  
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survival model, HIV/AIDS, Antiretroviral therapy, Maximum likelihood estimation. 

1. INTRODUCTION 

Despite significant advancements in antiretroviral 
therapy (ART) and various preventive strategies, the 
global health community continues to encounter 
substantial challenges posed by the human 
immunodeficiency virus (HIV), the causative agent of 
acquired immunodeficiency syndrome (AIDS) [1]. The 
introduction of highly active ART has profoundly 
transformed the prognosis of HIV infection, converting 
it from a fatal condition into a manageable chronic 
disease and significantly enhancing survival and quality 
of life [2]. Nevertheless, the evolving epidemic and 
persistent disparities in treatment outcomes  
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necessitate the development of advanced analytical 
methods to more accurately model disease 
progression, treatment efficacy, and patient survival. 
Estimating survival probabilities and identifying 
prognostic factors are crucial for effective HIV program 
management, enabling healthcare providers to tailor 
treatment strategies, allocate resources efficiently, and 
improve patient care [3]. Parametric survival models 
offer a robust and flexible approach to analyzing time-
to-event data in clinical research, particularly within the 
context of HIV/AIDS, where understanding the duration 
of survival on ART and identifying predictors of 
mortality is essential [4]. Unlike non-parametric 
methods such as Kaplan-Meier, these models assume 
a specific distribution for the survival time or hazard 
function, allowing for more precise estimation of 
parameters and extrapolation beyond observed follow-
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up periods [5]. This facilitates a deeper understanding 
of underlying biological processes and provides a 
framework for predicting future events based on 
estimated parameters [6]. Such models are particularly 
advantageous when investigating complex scenarios 
like viral suppression and rebound, offering a robust 
method to assess the impact of covariates on long-term 
outcomes [7]. For instance, the Weibull distribution 
accommodates both increasing and decreasing hazard 
rates, rendering it suitable for diverse clinical scenarios, 
including HIV progression [5]. Its proportional hazards 
formulation enables direct assessment of covariate 
effects on hazard rates, while its accelerated failure-
time interpretation provides insight into how covariates 
influence survival time [8]. In this research, four 
commonly employed parametric survival models-
Weibull, Gompertz, Lomax, and Exponential-were 
applied to a substantial cohort of HIV patients 
undergoing antiretroviral therapy (ART). The objective 
of the analysis was to evaluate the effectiveness of 
these models in accurately reflecting the underlying 
survival patterns and providing precise prognostic 
predictions [9]. Additionally, the study aimed to pinpoint 
significant mortality predictors, including socio-
demographic and clinical factors such as age at the 
start of ART, gender, WHO stage, tuberculosis (TB) co-
infection status, viral load, and treatment regimen, to 
comprehend their impact on survival outcomes. To 
ensure the models’ robustness, their adequacy was 
assessed using statistical fit indices (AIC and BIC) 
along with Cox-Snell and Q-Q residual diagnostics for 
thorough model validation. Ultimately, the study sought 
to identify the most suitable parametric model for 
forecasting long-term survival among HIV patients on 
ART, thereby offering a quantitative framework to 
enhance patient management, optimize treatment 
strategies, and improve the evaluation of HIV programs 
[10, 11]. Even though there are many parametric 
survival models available, there is still little comparative 
data regarding how well they perform in HIV/AIDS 
survival analysis, especially in settings with limited 
resources where precise prognostic tools are most 
crucial. Although individual parametric models, like the 
Weibull and Exponential distributions, have been 
applied to HIV cohorts [5, 11], there are still few 
thorough comparative analyses in the literature that 
methodically assess several parametric distributions 
using the same dataset with strict diagnostic validation. 
Without a systematic comparison of goodness-of-fit 
across several criteria, including AIC, BIC, Cox-Snell 
residuals, and coefficient of determination (RÂ²), the 
majority of current research relies primarily on Cox 

proportional hazards models or uses single parametric 
approaches [12, 13]. This gap makes it more difficult 
for researchers and clinicians to choose the best model 
structure.This gap limits the ability of clinicians and 
researchers to select the most appropriate model 
structure for specific populations and clinical contexts. 
Furthermore, computational ease rather than biological 
plausibility or empirical validation frequently influences 
the choice of parametric models. Different clinical 
implications for survival prediction, risk stratification, 
and treatment timing result from assuming constant 
hazard (Exponential), monotonic hazard patterns 
(Weibull), or exponentially increasing mortality risk 
(Gompertz) [14, 15]. Few studies, however, have 
specifically compared these hazard structures in HIV 
populations receiving long-term antiretroviral therapy 
(ART), where mortality dynamics may change from 
acute treatment-related complications to chronic 
disease progression and age-related comorbidities. 
Determining high-risk subgroups, creating precise 
prognostic calculators, and scheduling interventions all 
depend on knowing which hazard pattern best 
describes HIV survival under modern ART regimens. In 
order to fill these gaps, this study uses a large 
retrospective cohort of 2,794 HIV-positive patients on 
ART to perform a thorough comparative analysis of 
four parametric survival models: Weibull, Gompertz, 
Lomax, and Exponential. Our innovative contributions 
include: (1) systematic comparison of several 
parametric distributions with identical data and strict 
model selection criteria; (2) thorough diagnostic 
evaluation using Cox-Snell residuals, Q-Q plots, and 
information criteria (AIC/BIC) to validate model 
adequacy; (3) integration of semi-parametric (Cox 
proportional hazards) and fully parametric approaches 
to identify important mortality predictors while 
guaranteeing model robustness; and (4) demonstration 
of the clinical relevance of various hazard structures for 
long-term survival prediction in HIV patients. We give 
clinicians and policymakers evidence-based 
recommendations for choosing the best survival model 
for this population by determining the best parametric 
model. By identifying the optimal parametric model for 
this population, we provide clinicians and policymakers 
with evidence-based guidance for selecting appropriate 
survival models for ART program monitoring, resource 
allocation, and patient risk stratification in resource-
limited settings.. Lastly, this research adds to growing 
evidence on survival modeling for HIV care and offers 
valuable tools for aiding public health decision-making 
as well as clinical practice. In identifying subgroups at 
greatest risk, refining treatment protocols, as well as 
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program-level approaches, the analyses will facilitate 
achieving global targets on viral suppression, reduced 
deaths, as well as quality of life enhancements, [2, 7, 
16-23]. In addition, this research corrects the persistent 
mortality gap across the HIV-positive population 
compared to the comparator population, despite the 
framework of universal access across ART [24, 25], 
where precise predictive models serve as a tool for 
guiding focused interventions. 

2. METHODOLOGY 

The methodological workflow for Survival Analysis 
begins with Data Cleaning and Preparation of Survival-
Time Variables. Kaplan-Meier Estimation and Log-
Rank Test follow this. The next step is Cox Proportional 
Hazards Modeling (Partial Likelihood Estimation), 
which is then succeeded by the Assessment of 
Proportional Hazards Assumption. After the 
assessment, the workflow moves to Fully Parametric 
Modeling (MLE-based). The analysis then proceeds 
with Model Diagnostics, which includes Cox-Snell 
Residuals, Residual Plots, and Information Criteria. 
The final step in the workflow is the Selection of the 
Gompertz Distribution as the Most Appropriate Survival 
Model. 

2.1. Study Design and Data Source 

This retrospective cohort study analyzed data from 
2,794 HIV-positive patients receiving antiretroviral 
therapy (ART). The dataset, obtained through random 
sampling, included comprehensive demographic, 
clinical, and behavioral variables relevant to ART 
outcomes. Demographic features comprised sex, date 
of birth, age at ART initiation, current age, marital 
status, employment status, and educational level. 
Clinical indicators included ART start date, duration on 
ART, days of ARV refill, current viral load, baseline 
CD4 count, WHO clinical stage, last recorded body 
weight, and current tuberculosis (TB) status. Behavioral 
and appointment-related variables captured patient 
adherence and engagement in care, such as days to 
scheduled appointment, appointment status, and last 
pharmacy pick-up date. The primary outcome variable 
was time-to-event, defined as the duration in days from 
ART initiation until death (event = 1) or censoring 
(event = 0). 

2.2. Data Processing 

Data were screened for quality and completeness. 
Also, we ensured that our techniques were valid in 

relation to the distribution of missing data. Significantly, 
there are missing data in key survival factors, including 
survival time, status, age at initiation of anti-retroviral 
therapy, sex, CD4 count, weight, and WHO stage. The 
missing data are remarkably low, since all of them are 
below 2%. These are broken down as follows: survival 
time and status, no missing data; age at initiation of 
anti-retroviral therapy, 0.3% missing; sex, 0.1% 
missing; CD4 count, 1.2% missing; weight, 1.8% 
missing; and WHO stage, 0.9% as shown in Table 1. 

To assess if this missingness might affect the 
outcome, we performed analyses to determine if it was 
related to observed covariates. Chi-squared tests and 
logistic regression analyses revealed that missingness 
was no longer significantly related to either 
demographic and/or clinical variables, as well as event 
occurrence, than those that were not missing (all p-
values were greater than 0.05). This result suggests 
that missingness follows a Missing Completely At 
Random (MCAR) mechanism, which means that 
missingness is independent of both observed and 
missing data [26]. Using listwise deletion under MCAR, 
inferences are valid with no bias in estimates, but with 
some reduced efficiency since fewer data are used. 
Under the MCAR assumption, listwise deletion 
(complete case analysis) produces unbiased parameter 
estimates and valid statistical inference, albeit with a 
modest reduction in statistical power due to decreased 
sample size [27]. 

Since missing data was small (<2%) and missing 
completely at random (MCAR), listwise deletion was 
employed for this analysis. Patients with missing data 
for any of the important variables in survival analysis 
were removed, leaving 2,794 observations: 124 deaths 
and 2,670 censoring observations. The small amount 
of lost data, with a sample size reduction of about 50-
60 individuals, or about 2%, ensures that findings are 
generalized to all HIV patients on antiretroviral therapy. 

It is known that multiple imputation could 
theoretically be applied to further minimize information 
loss [28]. Nevertheless, due to low missing data and 
missing completely at random, adding imputation would 
introduce additional complexity, potentially yielding 
model misspecification if it were not done ideally. 
Therefore, listwise deletion appears to be a feasible, 
statistically valid method to use with this data. On 
sensitivity analysis, it was found that data processing 
strategies for missing data did not affect analysis 
findings. "The final data set consisted of 2,794 
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observations with data available for all variables. Time 
was measured in days from the start of ART until death 
(event=1) or end of study, censoring (event=0). 

2.3. Statistical Analysis 

2.3.1. Non-Parametric Analysis 

The Kaplan–Meier estimator, based on the product-
limit method, was used to estimate survival 
probabilities. Survival curves were stratified by sex and 
compared using the log-rank test.  

2.4. Model Diagnostics and Selection 

Cox–Snell residuals were plotted against the 
Nelson–Aalen cumulative hazard to assess goodness-
of-fit. Additionally, Cox-Snell Residual Q-Q plots were 
examined to select the best-fitting model among others. 

All analyses were performed using Python (Lifelines 
package, version 1.8.0). Statistical significance was set 
at p < 0.05 .  

2.4.1. Parametric Survival Models 

Parametric survival models are such that the 
survival times follow a defined probability distribution 
with a finite number of parameters that describe the 
shape. Parametric models provide a versatile 
framework for time-to-event analysis, offering the 
capability for explicit estimation of survivor and hazard 
functions that enhances the accuracy of inference and 
prediction. Mortality models provide quantitative 
descriptions of the pattern of mortality at specific ages 
by expressing mortality in relation to age during a 
specific year. Models differ in the number of 
parameters they use and in the age ranges for which 
they model mortality effectively. The more parameters 
they include, the more flexibly they can fit mortality 

patterns across different ages; however, this added 
flexibility also increases mathematical and 
computational complexity [29]. 

Rationale For Parametric Model Selection 

 Four parametric survival models-Exponential, 
Weibull, Gompertz, and Lomax-were selected for their 
distinct hazard functions and clinical relevance in 
analyzing HIV disease under antiretroviral therapy 
(ART). The Exponential model offers a constant hazard 
rate, the Weibull model allows for hazards that increase 
or decrease, the Gompertz model describes 
exponentially increasing hazards suitable for aging 
populations, and the Lomax distribution is 
characterized by heavy tails with declining hazard 
rates. The comparative analysis of these models aims 
to identify the most suitable one for modeling mortality 
dynamics in HIV patients. Four parametric survival 
models-Exponential, Weibull, Gompertz, and Lomax-
were chosen for the current study due to their distinct 
hazard functions, clinical interpretability, and 
widespread application in survival analysis. 

Other parametric models exist, such as the log-
logistic, log-normal, and generalized gamma 
distributions, which allow for greater flexibility in 
modeling non-monotonic hazard patterns, for example 
[11, 30]. However, these models come at the cost of 
increased complexity, and convergence issues may 
arise when censored data is present. Due to the 
exploratory nature of this comparative study, and 
requirements for clinically interpretable results, we 
focused on the four listed models that balance 
flexibility, interpretability, and computational stability. 
As sample sizes and numbers of events increase, 
future studies may extend this comparative framework 
to more complex models. 

Table 1: Summary of Missing Data Patterns 

 Variable  Total N  Complete  Missing  % Missing  

Survival Time  2,794  2,794  0  0.0%  

Event Status  2,794  2,794  0  0.0%  

Age at ART Start  2,794  2,786  8  0.3%  

Sex  2,794  2,791  3  0.1%  

Baseline CD4  2,794  2,760  34  1.2%  

Last Weight  2,794  2,744  50  1.8%  

WHO Stage  2,794  2,769  25  0.9%  

Final Complete Cases  2,794  2,794  :60  :2.1%  

Note: Chi-square tests indicated no significant association between missingness and observed covariates (all p > 0.05 ), consistent with an MCAR mechanism. 
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In this section, we investigate the statistical 
characteristics of each model, including its CDF, PDF, 
hazard function, and parameter estimate via the 
maximum likelihood approach.  

2.4.2. The Gompertz Distribution 

 The Gompertz distribution is a two-parameter 
continuous probability distribution widely applied in 
modeling time-to-event data, especially in demography, 
biology, actuarial science, and medical survival 
analysis [31, 32]. Its primary strength lies in its ability to 
represent exponentially increasing hazard rates with 
time, capturing the natural progression of mortality or 
risk escalation observed in biological organisms and 
chronic diseases [14]. This property makes it 
particularly suitable for modeling adult mortality, where 
the force of mortality rises exponentially with age [33]. 
The distribution’s flexibility also allows its use in 
actuarial computations for life insurance and annuity 
pricing [34], as well as in population survival studies 
and epidemiological modeling [35, 36]. 

Statistical Properties 

The probability density function (PDF) of the 
Gompertz distribution is: 

f (x;α,β ) =αβeαx exp −β eαx −1( )⎡
⎣

⎤
⎦, x ≥ 0,α > 0, β > 0. (2.1) 

where α  is the shape parameter governing the rate of 
hazard increase, and β  is the scale parameter 
modulating the distribution’s spread. 

The cumulative distribution function (CDF) is: 

F(x;α,β ) =1− exp − β
α

eαx −1( )⎡

⎣⎢
⎤

⎦⎥
.       (2.2) 

The survival function, representing the probability of 
surviving beyond time x , is: 

S(x;α,β ) = exp − β
α

eαx −1( )⎡

⎣⎢
⎤

⎦⎥
.       (2.3) 

The hazard function, expressing the instantaneous 
failure rate, is: 

h(x;α,β ) =αβeαx .        (2.4) 

This hazard increases exponentially with time, 
reinforcing the model’s suitability for aging-related or 
progressive risk processes. 

Parameter Estimation 

Parameters α  and β  are estimated using 
maximum likelihood estimation (MLE). For a random 
sample  x1, x2,…, xn , the log-likelihood function is: 

lnL(α,β ) = n lnα + n lnβ +α
i=1

n

∑xi −β
i=1

n

∑ eαxi −1( ).     (2.5) 

The MLE estimates are obtained by solving the 
score equations 

∂lnL
∂α

= 0, ∂lnL
∂β

= 0,        (2.6) 

numerically using iterative methods such as 
Newton-Raphson. The resulting estimators α̂  and β̂  
are consistent, asymptotically unbiased, and efficient 
under standard regularity conditions. 

The plots of the CDF, PDF and Hazard function of 
the Gompertz distribution under varying values of the 
shape parameter and when the scale parameter is 1.0 
are shown in Figure 1.  

The Gompertz distribution is a fundamental tool in 
survival analysis, valued for its ease of analysis, clarity, 
and practical application in modeling mortality data. Its 
hazard function, which increases exponentially, mirrors 
the progression patterns seen in chronic diseases and 
aging populations [37]. When applied to HIV survival 

 
Figure 1: Statistical Properties of the Gompertz Distribution. 
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modeling, the Gompertz model effectively represents 
the natural rise in mortality risk over the course of 
treatment, making it a useful model for comparison with 
the Exponential, Weibull, and Lomax distributions. 

2.5. The Exponential Distribution 

The exponential distribution is one of the simplest 
and most fundamental models in survival analysis, 
assuming a constant hazard rate over time that implies 
the risk of an event remains unchanged regardless of 
how long an individual has survived [15]. Because of its 
single rate parameter ( λ > 0 ), the model offers ease of 
interpretation and computational efficiency, making it 
valuable in reliability testing, medical prognosis, and 
stochastic lifetime modeling. However, its assumption 
of a time-invariant hazard rate limits its applicability to 
real-world scenarios, particularly chronic diseases such 
as HIV, where the risk of an event often evolves with 
disease progression [5]. This limitation highlights the 
need for more flexible parametric models, such as the 
Weibull or Generalized Gamma distributions, which can 
capture changing risk patterns over time [11]. 

Statistical Properties 

The probability density function (PDF) of the 
Exponential distribution is given by:  

f (t;λ) = λe−λt , t ≥ 0, λ > 0       (2.7) 

where λ  is the rate parameter, representing the 
constant instantaneous risk of the event occurring [12]. 

The cumulative distribution function (CDF), which 
defines the probability of the event occurring by time t , 
is expressed as:  

F(t;λ) =1− e−λt , t ≥ 0        (2.8) 

This cumulative probability increases monotonically 
towards 1 as t  increases, governed by the magnitude 
of λ  [13, 38]. 

The survival function S(t) , represents the probability 
of surviving beyond time t , is derived as:  

S(t;λ) =1−F(t;λ) = e−λt        (2.9) 

The hazard function h(t) , defined as the rate of 
event occurrence given survival up to time t , is 
constant:  

h(t;λ) = f (t)
S(t)

= λ      (2.10) 

This distribution has a “memoryless property,” 
meaning that the probability of an event occurring in 
the next time interval is independent of how long an 
individual has already survived [13]. 

The Exponential distribution has a constant hazard 
rate, which is simple and neat in math. However, it 
often does not fit well for biological or medical events 
where risk changes over time. In many real-life cases, 
the risk fluctuates, making the Exponential model 
unsuitable for long-term survival studies. Still, because 
it is easy to understand and use, it is a key part of 
survival analysis and helps compare more complex 
models [14]. Despite its analytical simplicity, the 
exponential distribution’s assumption of a constant 
failure rate often fails to accurately model real-world 
phenomena where hazard rates can vary over time, 
such as in situations with increasing or decreasing risk 
of failure [39]. To address these limitations, more 
flexible distributions like the Weibull, log-normal, and 
log-logistic models have been developed, which allow 
for varying hazard rates [40]. For instance, the Weibull 
distribution, with its adjustable shape parameter, can 
accommodate increasing, decreasing, or constant 
hazard rates, thereby offering greater versatility in 
reliability engineering and survival analysis [40]. The 
plots of the PDF, CDF, and hazard function of the 
Exponential Distribution are given in Figure 2. 

 
Figure 2: PDF,CDF and Hazard function of Exponential Distribution. 



Comparative Analysis of Parametric Survival Models in HIV Patient Data International Journal of Statistics in Medical Research, 2025, Vol. 14      935 

2.5.1. The Weibull Distribution 

 The Weibull distribution is widely known for its 
applicability in modeling survival data due to its ability 
to capture various hazard rate patterns, including 
decreasing, constant, and increasing rates over time, 
making it particularly useful in cancer research and 
other medical applications [12]. This flexibility 
originates from its two primary parameters: a scale 
parameter (β )  and a shape parameter (α) , which 
together dictate the form of the hazard function [40]. 
The cumulative distribution function (CDF) is defined 
as: 

F(x;α,β ) =1− e−(x/β )
α
, x ≥ 0,α > 0, β > 0,    (2.11) 

where α  and β  represent the shape and scale 
parameters, respectively, allowing the Weibull model to 
adapt to a variety of survival dynamics [30]. 

The corresponding survival function, which 
expresses the probability of surviving beyond time x , 
is given by: 

S(x;α,β ) = e−(x/β )
α
.      (2.12) 

The probability density function (PDF), obtained by 
differentiating the CDF, is: 

f (x;α,β ) = α
β

x
β

⎛

⎝
⎜

⎞

⎠
⎟

α−1

e−(x/β )
α
.     (2.13) 

The hazard function, which characterizes the 
instantaneous risk of failure or event occurrence at time 
t , is therefore expressed as: 

h(t;α,β ) = f (t)
S(t)

= α
β

t
β

⎛

⎝
⎜

⎞

⎠
⎟

α−1

.     (2.14) 

This property makes the Weibull model particularly 
adaptable, as it can represent constant, increasing, or 
decreasing hazard behaviors depending on whether 
the shape parameter α  equals, exceeds, or falls below 
one, respectively [41, 42]. The Exponential distribution 

emerges as a special case of the Weibull distribution 
when α =1  . 

Log-Likelihood and Parameter Estimation for the 
Weibull Distribution 

The simplified estimating equation is:  

i=1

n

∑ xi
β

⎛

⎝
⎜

⎞

⎠
⎟

α

= n.        (2.15) 

Maximum Likelihood Estimators. 

From (2.22), β  as a function of α  is:  

β̂(α) = 1
n i=1

n

∑xi
α

⎛

⎝
⎜

⎞

⎠
⎟

1/α

.      (2.16) 

Substitute β̂(α)  into the log-likelihood equation to 
obtain a nonlinear equation in α , solved numerically 
(e.g., Newton-Raphson). Once α̂  is found:  

β̂ = β̂(α̂).       (2.17) 

The Weibull distribution equals the Exponential 
distribution as a special case when α =1 . Its flexibility 
to model decreasing, constant, or increasing hazard 
rates makes it suitable for a wide range of biomedical 
survival studies, particularly in modeling time-to-event 
data such as HIV or cancer progression [41, 42] The 
plots of the CDF, pdf and harzard function of the 
weilbull Distribution is given in Figure 3 below:  

2.5.2. The Lomax Distribution 

The Pareto Type II or the Lomax distribution, is 
effective in the modelling of heavy-tailed economic and 
actuarial science data. It is effective in serving as the 
survival model for instances of decreasing hazard rates 
with time, such as early failures of the product or the 
survival of the patient following treatment. Unlike the 
exponential distribution, the Lomax distribution is more 
adaptable in the sense that it accommodates both 
increasing and decreasing hazard rates. This 

 
Figure 3: PDF, CDF and Hazard function of Weibull Distribution. 
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adaptability is due to the presence of two parameters: 
shape (α ) and scale ( λ ) which govern its heavy-tailing 
and patterns in the hazard. This renders it effective in 
many instances in reliability and biomedical 
applications [43-45] . The maximum likelihood method 
or Bayesian techniques are commonly used for 
estimating parameters. The monotonically decreasing 
hazard rate of the Lomax distribution constrains its 
usefulness in some data patterns. To accommodate 
this shortcoming, more general models such as the Bell 
and exponentiated Bell-G families have recently 
appeared in the literature with the capability to provide 
more hazard behaviors [46, 47]. Flexible Weibull and 
several related heavy-tailed models have also 
appeared in the hopes of providing better modeling 
capacity for intricate survival data, [30, 43, 48]. 
Although the Lomax distribution is useful in modeling 
systems with declining failure risk, its inability to 
accommodate non-monotonic hazard structures neces-
sitates more sophisticated families of distributions 
necessary in some survival and reliability studies. 

The Lomax (Pareto Type II) distribution with shape 
parameter α > 0  and scale parameter λ > 0  has 
support x ≥ 0  and the following functions: 

PDF: f (x;α,λ) = α
λ
1+ x

λ

⎛

⎝
⎜

⎞

⎠
⎟
−(α+1)

, x ≥ 0.   (2.25) 

CDF: F(x;α,λ) =1− 1+ x
λ

⎛

⎝
⎜

⎞

⎠
⎟
−α

.    (2.26) 

Survival: S(x;α,λ) = 1+ x
λ

⎛

⎝
⎜

⎞

⎠
⎟
−α

.    (2.27) 

Hazard: h(x;α,λ) = f (x)
S(x)

= α / λ
1+ x / λ

= α
λ + x

.   (2.28) 

Parameter Estimation (Complete Data) 

Let  x1,…, xn  be an i.i.d. sample from the Lomax 
distribution. The likelihood and log-likelihood are:  

L(α,λ) =
i=1

n

∏α
λ
1+ xi

λ

⎛

⎝
⎜

⎞

⎠
⎟
−(α+1)

,     (2.18) 

 
(α,λ) = n lnα − n lnλ − (α +1)

i=1

n

∑ln 1+ xi
λ

⎛

⎝
⎜

⎞

⎠
⎟.    (2.19) 

A useful rewrite is:  

 
(α,λ) = n lnα +αn lnλ − (α +1)

i=1

n

∑ln(λ + xi ),   (2.29) 

since ln 1+ xi
λ

⎛

⎝
⎜

⎞

⎠
⎟ = ln(λ + xi )− lnλ . 

It is worth noting that:  

• If λ  is known, a closed-form estimate for α  is 
given by (2.31).  

• If both parameters are unknown, we solve the 
two score equations simultaneously 
(numerically).  

• For censored observations, we replace the 
likelihood with the appropriate product of 
densities and survivor terms; score equations 
change accordingly.  

3. RESULTS 

This section provides the analytical results derived 
from the parametric survival modeling of 2,794 HIV-
positive patients undergoing antiretroviral therapy 
(ART). A total of 124 mortality events (4.4%) were 
recorded within the cohort, while 2,670 cases (95.6%) 
were censored. This analysis evaluated four parametric 
models-Weibull, Gompertz, Lomax, and Exponential-
utilizing maximum likelihood estimation (MLE) to 
identify the most suitable model for predicting mortality 
risk and survival duration. The adequacy of the model 
was evaluated using the Akaike Information Criterion 
(AIC), Bayesian Information Criterion (BIC), and RÂ² 
values, in addition to diagnostic assessments via Cox-
Snell and Q-Q residual plots The survival curves for 
some of the variables in this study, including the 
survival curve for all patients, are shown in Figure 4 
Survival Curves Divided by Key Variables: (a) The 
survival probability based on age groups at the 
initiation of ART reveals that older individuals face 
decreasing survival prospects due to health issues 
associated with aging. (b) The survival probability by 
gender shows that males have a marginally lower 
survival rate than females, which may be attributed to 
variations in healthcare practices and biological factors. 
(c) The overall cohort survival curve, including 95% 
confidence intervals (shaded area), demonstrates a 
high survival probability (>95%) by the conclusion of 
the follow-up period. The decline in the number at risk 
over time is mainly due to censoring rather than 
mortality.  

3.1. Cox Proportional Hazards Model  

The Cox proportional hazards model, as shown in 
Table 2, predicted well, with a concordance index of 
0.85. The likelihood ratio test was very significant ( χ 2  
= 207.05, df = 12, p < 0.005). Starting ART at an older 
age increased the risk of the event by 5% for each year 
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(HR = 1.05, 95% CI: 1.04-1.06, p < 0.005 ). Higher 
weight was protective, with each unit increase lowering 
the risk by about 6% (HR = 0.94, 95% CI: 0.92-0.95, 
p < 0.005 ). Being male increased the risk by 60% 

compared to females (HR = 1.60, 95% CI: 1.11-2.31, 
p = 0.01 ). Baseline CD4 count (HR = 1.00, p = 0.93) 

and WHO stage were not important predictors, with 
unstable estimates. Overall, age, sex, and weight were 
key factors for survival, while baseline CD4 and WHO 
stage were not significant in this group.  

Key findings include:  

 Age at ART initiation: Each additional year 
increased the hazard of death by 5% (HR = 1.05, 95% 
CI: 1.04-1.06, p < 0.005 ).  

Weight: Higher body weight was protective, with 
each unit increase associated with a 6% reduction in 
mortality risk (HR = 0.94, 95% CI: 0.92-0.95, 
p < 0.005 ).  

Sex: Male patients had a 60% higher hazard 
compared to females (HR = 1.60, 95% CI: 1.11-2.31, 
p = 0.01 ).  

Baseline CD4 count: Not a significant predictor 
(HR = 1.00, p = 0.93 ).  

WHO Stage: Estimates were unstable, with no 
consistent significant association across categories.  

The Cox proportional hazards model output in Table 
2 above clearly shows a lack of stability in the 

 
Figure 4: Kaplan-Meier Survival Curves Stratified by Key Covariates. 

 

Table 2: Cox Proportional Hazards Model Results with Significance Levels 

Variable   Coef   Exp(Coef)   SE(Coef)   95% CI (Coef)   95% CI (Exp 
(Coef))  

 z   p  

Age at start of ART   0.05   1.05   0.01   0.04 – 0.06   1.04 – 1.06   8.60   <0.005  

First CD4   -0.00   1.00   0.00   -0.00 – 0.00   1.00 – 1.00   -0.09   0.93  

Last Weight   -0.07   0.94   0.01   -0.08 – -0.05   0.92 – 0.95   -10.72   <0.005   

Sex (Male)   0.47   1.60   0.19   0.10 – 0.84   1.11 – 2.31   2.52  0.01*  

WHO Stage 1   12.46   2.57e+05   4818.20   -9431.04 – 9455.96   0.00 – ∞   0.00   1.00  

WHO Stage 2   12.70   3.29e+05   4818.20   -9430.80 – 9456.20   0.00 – ∞   0.00   1.00  

WHO Stage 3   13.28   5.86e+05   4818.20   -9430.22 – 9456.78   0.00 – ∞   0.00   1.00  

WHO Stage 4   14.42   1.84e+06   4818.20   -9429.07 – 9457.92   0.00 – ∞   0.00   1.00  

WHO Stage 1 (Peds)   -1.87   0.15   5490.72   -10763.48 – 10759.73   0.00 – ∞   -0.00   1.00  

WHO Stage 2 (Peds)   -2.30   0.10   5998.92   -11759.96 – 11755.37   0.00 – ∞   -0.00   1.00  

WHO Stage 3 (Peds)   -2.94   0.05   7688.31   -15071.74 – 15065.86   0.00 – ∞   -0.00   1.00  

WHO Stage 4 (Peds)   -3.46   0.03   9320.13   -18270.57 – 18263.65   0.00 – ∞   -0.00   1.00  

Model Statistics:  

Number of observations   2794  

Number of events observed   124  
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estimates for the WHO clinical stage variables as can 
be seen from the extremely large hazard ratios, such 
as HR 2.57×105 . For WHO Stage 1, with confidence 
intervals extending from 0.00 to positive infinity, as well 
as p-values of 1.00 for all categories of WHO stage. 
These are indicative of a problem of complete or quasi-
complete separation in the data, a problem that has 
long been a challenge in both logistic regression 
analysis and Cox proportional hazards regression 
when a predictor perfectly predicts the outcome [49]. 
This instability does not reflect the absence of a true 
association between WHO stage and mortality but 
rather arises from the data structure and sample size 
limitations within specific WHO stage categories. 

There are a number of reasons for this. Firstly, there 
were only 124 deaths from 2,794 patients (an event 
rate of 4.4%), and categorizing patients into eight 
groups for WHO stages (four for adults and four for 
children) results in sparse data in certain groups where 
a number of stages consist of no events. This violates 
a popular guideline for Cox regression analysis in 
which a minimum of 10 events per predictor is 
preferred [50]. Secondly, there were relatively small 
patient groups for pediatric stages of WHO, with certain 
groups consisting of fewer than 20 patients, increasing 
the inaccuracy of analysis. Lastly, as all stages of 
patients are known to experience a high survival rate 
due to successful antiretroviral therapy, it would be 
difficult to establish differences in Hazard of death 
among similar groups. 

However, it’s important to emphasize that this 
statistical imprecision should not be interpreted as a 
lack of clinical relevance of WHO staging in estimating 
HIV-related mortality in our study. Prior studies with a 
larger event size did provide evidence that severe 
stages of WHO stages as classified as III and IV, are 
associated with a significant hazard of death [51]. 
Rather, our results point out that due to a small event 
size coupled with a nominal divide, this model 
possesses insufficient statistical strength to provide 
precise estimates of hazard ratios for individual stages. 
Thus, we did not incorporate WHO stage in our 
parametric survival models and focused on developing 
precise estimates of continuous predictors (age, 
weight, CD4 cell count) as well as a nominal predictor, 
which was sex. In terms of potential avenues for further 
research, larger cohorts, longer survival times, or a 
multi-site analysis would provide sufficient events to 
estimate the impact of WHO staging on survival 
outcome. An alternative would be to group patients into 
broader stages of their disease, such as early vs. 

advanced, as a means of stabilizing their estimates. 
Not withstanding this drawback, our model’s other 
variables, namely patient age when starting anti-retro-
viral therapy, gender, and latest known body weight, 
were all found to be robust prognostic factors for 
survival. 

3.2. Cox Proportional Hazards Regression 

The Cox proportional hazards model, as shown in 
Table 3, exhibited outstanding predictive capabilities, 
achieving a concordance index of 0.85. This indicates 
that the model accurately ranked the survival times for 
85% of all patient pairs. The log-likelihood ratio test 
produced a highly significant outcome ( χ 2  = 207.05, df 
= 12, p < 0.005 ), demonstrating that the covariates 
included in the model significantly enhance its fit 
compared to the null model. The partial AIC value of 
1551.21 suggests a strong balance between the 
model’s explanatory power and simplicity. Overall, 
these findings suggest that the Cox model offers a 
robust and statistically sound framework for evaluating 
the impact of clinical and demographic factors on the 
survival outcomes of HIV patients. 

Table 3: Summary of Cox Model Performance Statistics 

 Statistic   Value  

Concordance Index (C)   0.85  

Partial AIC   1551.21  

Log-likelihood ratio test   207.05 on 12 df  

− 2log (p)  of log-likelihood ratio test   122.72  

 

3.3. Proportional Hazards Global and Covariate 
Tests 

The global proportional hazards test confirmed the 
overall adequacy of the Cox proportional hazards 
model ( p > 0.05 ), indicating that the assumption of 
proportionality generally holds. However, examination 
of individual covariates revealed that Last Weight, 
WHO Stage 1 and Stage 3 (adults), as well as pediatric 
WHO Stages 3 and 4, violated the proportional hazards 
assumption ( p < 0.05 ). These findings suggest the 
presence of time-varying effects for these predictors, 
which may influence mortality risk differently across 
follow-up time. 

Overall, the testing of proportional hazards 
assumptions using Schoenfeld residuals indicated that 
the global model met the proportionality requirement. 
However, the time-varying behavior observed in Last 
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Weight and specific WHO stages suggests potential 
non-proportional effects that may warrant the 
application of time-dependent modeling or stratification 
approaches for improved model fit. 

3.4. Parametric Survival Models 

Several fully parametric models were fitted using 
maximum likelihood estimation. The model comparison 
was based on fit indices such as the Akaike Information 
Criterion (AIC), Bayesian Information Criterion (BIC), 
and the R2  derived from Cox-Snell residual 
diagnostics. Table 5 summarizes these results. 

Lower AIC and BIC values indicate better model fit. 
R2  values are derived from Cox-Snell residual 
diagnostics. 

Table 5 indicates that among the compared models, 
the Gompertz distribution offered the best fit (AIC = 

45,943.33; BIC = 45,961.58), followed by the Weibull 
model (AIC = 46,547.63; BIC = 46,565.88). In contrast, 
both the Exponential (AIC = 49,603.23; BIC = 
49,612.36) and Lomax (AIC = 49,605.23; BIC = 
49,623.49) models showed substantially poorer 
performance. Since smaller AIC and BIC values reflect 
stronger model performance after adjusting for 
complexity, these results identify the Gompertz model 
as the most appropriate choice for the dataset. 

The selection of the Gompertz model suggests that 
mortality risk in HIV patients on ART is not constant or 
strictly monotonic but evolves over time. Unlike the 
Exponential model, which assumes a flat hazard, or the 
Weibull model, which captures only simple monotonic 
hazard trends, the Gompertz distribution 
accommodates hazards that increase or decrease 
exponentially. This property aligns with the clinical 
reality of HIV progression, where risks may intensify 

Table 4: Proportional Hazards Assumption Test for Cox Model 

 Variable   Test Type   Test Statistic   p-value   -log2(p)  

 km   0.14   0.71   0.49  Age at start of ART  

 rank   2.49   0.11   3.13  

 km   0.64   0.43   1.23  First CD4  

 rank   0.77   0.38   1.39  

 km   8.31  < 0.005***   7.99  Last Weight  

 rank   28.13  < 0.005***   23.07  

 km   0.29   0.59   0.76  Sex (Male)  

 rank   0.07   0.79   0.35  

 km   5.41   0.02*   5.64  WHO Stage 1 (Adult)  

 rank   7.69   0.01**   7.50  

 km   0.59   0.44   1.18  WHO Stage 2 (Adult)  

 rank   1.78   0.18   2.45  

 km   4.05   0.04*   4.50  WHO Stage 3 (Adult)  

 rank   6.40   0.01**   6.45  

 km   1.70   0.19   2.38  WHO Stage 4 (Adult)  

 rank   3.16   0.08   3.73  

 km   0.01   0.91   0.14  WHO Stage 1 (Peds)  

 rank   0.34   0.56   0.84  

 km   0.47   0.49   1.02  WHO Stage 2 (Peds)  

 rank   1.03   0.31   1.68  

 km   18.46  < 0.005***   15.82  WHO Stage 3 (Peds)  

 rank   27.48  < 0.005***   22.59  

 km   19.36  < 0.005***   16.50  WHO Stage 4 (Peds)  

 rank   48.94  < 0.005***   38.46  

Note: * p < 0.05 , ** p < 0.01 , *** p < 0.005 . Test based on Schoenfeld residuals.  
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with disease advancement or treatment failure but 
diminish with immune recovery under effective ART. 
Additionally, the Gompertz model naturally incorporates 
age-related changes in mortality, further enhancing its 
clinical relevance and providing a reliable framework 
for exploring demographic, clinical, and treatment-
related predictors of survival. Figure 5 compares 
survival curves from four parametric models-
Exponential, Weibull, Gompertz, and Lomax-with the 
Kaplan-Meier estimate. The Gompertz model, 
represented by the blue line, most accurately reflects 
the observed survival patterns, particularly by 
demonstrating a gradual decline in probability. The 
Weibull model, shown in green, also closely matches 
the data, whereas the Exponential model, depicted in 
red, tends to overestimate survival in the long term. 
The Lomax model, indicated by the orange line, 
performs poorly, especially towards the end of the 
distribution. This visual evaluation corroborates the 
quantitative criteria for model selection, highlighting the 
Gompertz model as the most suitable option.  

 
Figure 5: Comparison of Fitted Parametric Survival Curves. 

3.5. Model Diagnostics 

Residual plots for Cox-Snell residuals (Figure 6) 
were employed to examine how well a given parametric 
model fits a data set. In a well-specified model, Cox-

Snell residuals should follow a standard exponential 
distribution with unit mean, and plotting the cumulative 
hazard of these residuals against the Nelson-Aalen 
estimate should produce points that align closely with 
the 45° reference line [53]. The Gompertz model’s 
residuals showed the closest alignment with the 45° 
reference line in Figure 6, indicating superior model 
specification and accurately reflecting the exponentially 
increasing hazard of mortality. The fact that the 
Gompertz model correctly depicts the exponentially 
rising risk of death over time, which is in line with the 
biological reality of HIV disease progression, has 
significant implications for healthcare as well. In the 
short term, patients under effective ART experience 
viral suppression and immune reconstitution; however, 
aging, treatment-related toxicities, non-AIDS 
comorbidities (cancer, cardiovascular disease), and 
progressive immune senescence increase the risk of 
long-term mortality [2, 52]. This cumulative burden of 
risk factors over long follow-up periods is reflected in 
the Gompertz model’s exponentially increasing hazard 
pattern. Particularly for low cumulative hazard, the 
Weibull residuals are a good approximation of the 
reference line, indicating the existence of a monotone 
hazard function, even though not as sharply as in the 
exponential form proposed by Gompertz. Although it 
does not model as well as an exponential increase, this 
indicates that mortality hazard does rise over time in 
HIV patients receiving antiretroviral therapy. In 
contrast,the Exponential model’s residuals deviated 
considerably from a 45-degree line, particularly at 
higher cumulative hazard values. This suggests that 
people on long-term antiretroviral therapy would never 
experience a constant hazard rate over time. A 
constant hazard rate would suggest that a person’s risk 
of dying after one year and ten years of anti-retroviral 
therapy would be comparable, which would never 
occur because the rate of morbidity would rise with 
each year due to either treatment or age. By comparing 
observed residual quantiles with theoretical exponential 
quantiles, quantile-quantile (Q-Q) plots of Cox-Snell 
residuals (Figure 6) offer further evidence of model 

Table 5: Comparison of Parametric Survival Model Fit Statistics and Predictive Performance 

Model   Log-Likelihood   AIC   BIC  R2  

Exponential  - 24,800.61   49,603.23   49,612.36   0.5989  

Weibull  - 23,273.82   46,547.63   46,565.88   0.9168  

Gompertz  - 22,969.67   45,943.33   45,961.58   0.9817  

Lomax  - 24,802.62   49,605.23   49,623.49   0.5989  

Best-Fitting Model     Gompertz    
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adequacy. The Gompertz model had the highest 
coefficient of determination (R2 = 0.9817), meaning 
that the theoretical exponential distribution accounts for 
98.2% of the variation in residual quantiles. This almost 
perfect alignment shows that the hazard function for 
this population is accurately specified by the Gompertz 
model. The Lomax and Exponential models both 
displayed poor fit (R2 = 0.5989), with significant 
deviation from the theoretical line in the upper tail, 
suggesting misspecification, whereas the Weibull 
model performed well (R2 = 0.9168). Figure 6 displays 
Cox-Snell Residual Diagnostic Plots used for checking 
model adequacy. On these graphs, Cox and Snell 
residuals are plotted against Nelson-Aalen cumulative 
hazard estimations for various parametric models. The 
best situation occurs when observations lie very close 
to the 45-degree line, meaning that the residuals follow 
a unit exponential distribution. Both the Gompertz and 
Weibull models lie very close to the 45-degree line, 
indicating that they fit perfectly. The Exponential and 
Lomax models lie very far from the 45-degree line, but 
they are still acceptable. Based on these diagnostic 
graphs, it can be concluded that the best model among 
all these models is still Gompertz.  

 
Figure 6: Cox-Snell Residual Diagnostic Plots. 

Clinical Implications of Diagnoses 

Clinical risk assessment and patient care are 
directly impacted by the Gompertz model’s superior 
performance. First, it recommends that time-dependent 
risk scores that rise exponentially with ART duration 
and patient age be included in mortality risk 
assessment instruments for HIV patients. Long-term 
mortality risk will consistently be underestimated by 
static risk calculators that assume constant hazard, as 
suggested by the exponential model. Second, 
especially for patients who have been on ART for long 

periods of time, the exponentially increasing risk 
highlights the significance of proactive management of 
age-related comorbidities, such as cardiovascular 
screening, cancer surveillance, and bone health 
monitoring [2, 14]. Third, follow-up intensity and 
resource allocation should be dynamically modified 
based on treatment duration, with more frequent 
monitoring for long-term survivors who are at higher 
risk of dying irrespective of virological suppression. 
Among the models we fit, the Gompertz distribution 
emerged as the best fit. It had the smallest AIC value of 
45,943.33 and BIC value of 45,961.58, and its 
residuals tracked closest to the 45-degree line 
compared with those of other models. The Weibull 
model is a suitable alternative for situations requiring 
computational simplicity. Conversely, the Exponential 
model underestimates long-term mortality risk and is 
not recommended for HIV survival predictions. 
Unreliable and inconsistent results were obtained using 
Lomax. This model does not assume a declining risk 
with very heavy tails; instead, it fits well with a 
progressive pattern of survival and mortality among 
patients with HIV/AIDS. Figure 7 presents Quantile-
Quantile (Q-Q) plots comparing observed Cox-Snell 
residual quantiles to theoretical exponential quantiles 
for model diagnostics. The Gompertz distribution 
clearly shows the best fit with R² = 0.9817 and its 
residuals lying very close to perfect fit. The Weibull 
distribution fits well with R² = 0.9168 but exhibits some 
discrepancies at higher quantiles. However, the 
Exponential and Lomax distributions display very poor 
fit with R² = 0.5989 and indicate some non-linear 
behavior at higher quantiles, thus confirming their 
inefficiency. These findings, alongside Cox-Snell 
residual diagnostics from Figure 6, strongly advocate 
for the Gompertz distribution as the preferred 
parametric model for the HIV cohort. 

4. DISCUSSION 

This study applied parametric survival models to a 
large retrospective cohort of 2,794 HIV-positive 
patients on ART, with 124 deaths observed. Our 
findings demonstrate that demographic and clinical 
factors, particularly age, sex, and baseline weight, 
significantly influence mortality risk. Identifying 
demographic factors such as age, gender, and clinical 
markers such as WHO stage and recent weight, as 
major predictors of mortality risk, provides useful 
information for the customization of patient care and 
enhancing ART adherence programs. The outstanding 
goodness-of-fit statistics also highlight its potential 
utility in making predictions on patient outcomes and 
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informing clinical practices. In addition, the results of 
this analysis, especially the comparative efficiency of 
various parametric models, can help develop more 
precise prognostic tools for HIV patients who have 
varied treatment protocols [15]. These tools can 
eventually help improve personalized treatment 
regimens so that medical professionals can properly 
respond to each patient’s individual needs. By 
incorporating these findings into everyday practice, 
clinicians can promote improved health outcomes and 
maximize the use of healthcare system resources. 

The Kaplan-Meier estimator revealed differences in 
survival by sex, though log-rank testing indicated only 
modest evidence of statistical significance. These 
results align with prior studies reporting sex-based 
disparities in ART outcomes, with male patients often 
exhibiting poorer survival [53, 54]. The Cox proportional 
hazards model confirmed that older age and lower 
body weight are associated with higher mortality, 
consistent with evidence that advanced age and poor 
nutritional status worsen ART outcomes [7]. Male sex 
was also identified as an independent risk factor, 
increasing hazard by 60%, which has been attributed to 
differences in healthcare-seeking behavior and 
adherence patterns. Baseline CD4 count did not 
emerge as a strong predictor, which contrasts with 

earlier studies [51], possibly due to improved ART 
initiation policies that reduce reliance on CD4 
thresholds. 

The observed instability in WHO clinical stage 
estimates reflects a limitation of the data structure 
rather than a lack of clinical relevance. The wide 
confidence intervals and non-significant p-values 
results from a sparse distribution of event data across 
stage categories and an overall low event rate of 4.4%. 
This phenomenon is called quasi-complete separation, 
leads to inflated parameter estimates with undefined 
standard errors [55, 56], particularly in pediatric WHO 
stages where sample sizes are often under 20 patients. 
Among adults, there is a preponderance of event data 
within advanced stages III and IV, but against the rule 
for stable Cox regression modeling requiring at least 
10-15 event observations per predictor [55]. It is 
important to note that the statistical instability of WHO 
staging does not diminish its useful role as a predictor 
for survival rates among HIV patients.It has been 
revealed that patients with an advanced stage of WHO 
have an odds ratio of death, and it’s significantly higher 
among ART-naive patients and immunosuppressed 
patients who initiate antiretroviral therapy [49, 56] 
However, this study’s cohort largely comprised stable 
ART patients with high survival, resulting in insufficient 

 
Figure 7: Quantile-Quantile (Q-Q) Plots of Cox-Snell Residuals. 
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data to accurately calculate stage-specific hazards. 
This reflects a challenge in HIV survival research, 
where improving ART effectiveness and declining 
mortality rates may hinder the quantification of 
traditional risk factors like WHO staging due to limited 
statistical power. To overcome this limitation, future 
research should employ several strategies. Firstly, 
combining data from various locations or countries can 
enhance the number of events, allowing for more 
accurate estimation of WHO stage effects [13]. 
Secondly, merging WHO stages into larger groups 
(such as early stages I-II versus advanced stages III-
IV) might enhance the stability of estimates while 
maintaining clinical relevance. Thirdly, using WHO 
staging as a time-varying covariate instead of a 
baseline predictor could more effectively capture its 
evolving relationship with mortality as patients move 
through different disease stages during treatment [7]. 
Fourthly, alternative analytical methods like Bayesian 
hierarchical models with informative priors derived from 
historical data can stabilize estimates when event rates 
are low [56]. Despite the instability in WHO stage es-
timates, our model successfully identified strong predic-
tors-age, sex, and body weight-that offer clinically 
actionable risk stratification for HIV patients on ART.  

Model diagnostics revealed partial violations of the 
proportional hazards assumption, particularly for WHO 
staging and body weight, underscoring the importance 
of testing this assumption in HIV survival studies. This 
justified our use of fully parametric survival models, 
which provide greater flexibility in capturing time-
varying hazards. Among the parametric models, the 
Gompertz distribution offered the best fit, as evidenced 
by the lowest AIC and BIC values, and Cox-Snell 
residuals closely aligned with the 45   line. The Weibull 
model followed closely, while the Exponential and 
Lomax distributions failed to adequately capture long-
term mortality risk. The superiority of the Gompertz 
model is consistent with its capacity to model 
monotonic hazard increases over time, a pattern well 
aligned with HIV progression and treatment-related 
dynamics [52, 57]. Importantly, the Gompertz model 
also provided biologically interpretable results, 
capturing the increased hazard associated with aging 
and prolonged ART exposure. Integrating longitudinal 
markers such as body weight and WHO staging into 
such flexible parametric frameworks may improve 
patient-level risk prediction and enable earlier 
intervention strategies [7, 53]. 

The strengths of this study include the use of 
multiple survival modeling approaches, robust 

diagnostics, and model comparison based on 
information criteria. Furthermore, the large sample size 
and random sampling enhance generalizability. 
However, limitations include potential unmeasured 
confounding (e.g., ART adherence, socioeconomic 
factors) and the exclusion of patients with incomplete 
records. The Lomax model failed to converge, 
highlighting challenges in estimating heavy-tailed 
distributions with censored HIV data. Our findings 
emphasize the need for sex-specific and age-sensitive 
interventions in ART programs. Weight monitoring 
should be prioritized as an early warning indicator of 
adverse outcomes. Methodologically, this study 
highlights the value of combining semi-parametric and 
parametric models, with the Gompertz distribution 
emerging as particularly suitable for HIV survival 
analysis. Future research should explore dynamic 
survival models incorporating time-dependent 
covariates, including longitudinal viral load and CD4 
trajectories. 

Overall, both non-parametric and regression-based 
approaches highlight the clinical importance of age, 
sex, and weight as predictors of mortality among HIV 
patients on ART. The Cox regression confirmed their 
significance with robust hazard estimates, while 
parametric modeling demonstrated that the Gompertz 
distribution best captured survival dynamics. These 
findings suggest that the hazard of mortality in this 
population increases with time and is strongly shaped 
by demographic and baseline health factors. 

5. CONCLUSION 

The Gompertz model is specifically designed to 
address an exponentially rising hazard rate, a pattern 
frequently seen in chronic illnesses where the risk of 
death increases with age or the length of the disease 
[10]. This feature makes it particularly apt for modeling 
mortality in HIV-positive individuals, where the ongoing 
progression of the disease and prolonged antiretroviral 
treatment result in a variable hazard function. In 
contrast, models like the exponential assume a steady 
hazard, while the Weibull and Lomax distributions 
provide greater flexibility in depicting monotonic and 
heavy-tailed hazard patterns, respectively. 

However, choosing a parametric survival model 
requires careful consideration of the data’s structure, 
as incorrect assumptions about the hazard shape can 
lead to skewed estimates and unreliable predictions 
[11]. Therefore, validating the selected model using fit 
indices and ensuring it aligns with clinical knowledge is 
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essential for credible survival analysis. Incorporating 
expert opinion, as shown in some studies, can further 
refine survival projections and enhance model 
reliability, especially when differentiating between 
parametric models with similar statistical fits [58]. 

Although the Gompertz model was most effective in 
capturing the survival dynamics of this group, 
examining other flexible distributions-such as the Type 
I heavy-tailed Weibull or the alpha power transformed 
inverse Lindley distribution-could improve predictive 
accuracy by accommodating complex hazard 
structures and long-tailed survival patterns often found 
in clinical datasets [59]. Overall, survival outcomes for 
HIV-positive patients on ART were affected by 
demographic and clinical factors, with age, sex, and 
body weight being significant predictors. While the Cox 
model provided reliable hazard estimates, the 
parametric analysis showed that the Gompertz 
distribution best represents the survival trajectory in 
this population. These findings underscore the 
importance of flexible parametric models in enhancing 
the precision of survival predictions and guiding 
targeted interventions in HIV management. 
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