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Abstract: Relevance: The relevance of the study is determined by the need for automated, scalable solutions for 
processing large volumes of dental radiological images, which provide precise segmentation, detection, and 
classification of pathologies in the integrated Clinical Decision Support System (CDSS) modules. 

Aim: The aim of the study is to develop, optimize, and verify a HITL-CDSS framework for dental radiology with multi-level 
integration of Convolutional Neural Network (CNN) models, ensuring architectural consistency, metric validity, and 
expert adaptability. 

Methods: Research methods: critical architectural and functional analysis of CNN models, metric and indicator modelling 
of efficiency, synthesis and Unified Modelling Language-based (UML)modelling of the CDSS framework, UML 
optimization with Human-in-the-loop (HITL) integration, metric and indicator verification of HITL-CDSS. 

Results: Architectural and functional, metric and indicator, as well as UML modelling of CNN architectures was carried 
out for the purpose of integration into the dental radiology CDSS. The resultant HITL-optimized framework based on 
DenseNet/EfficientNet, HRNet, YOLOv8 provided AUC = 0.96–0.98, F1@t = 0.91–0.94, DSC = 0.89–0.92, mAP = 
0.72–0.77 at ECE = 0.02–0.04. Integration of HITL mechanisms increased Explainable Artificial Intelligence (XAI) 
interpretability, resistance to domain shifting, and clinical validity, indicating the appropriateness of multi-modular 
construction of CDSS with the inclusion of expert feedback. 

Conclusion: The academic novelty of the study is the development of a HITL-CDSS framework with multi-level CNN 
integration, which provides metrically verified interpretability, domain-stable generalizability, and clinical relevance in 
dental radiology tasks. 

Keywords: Medical data, neural networks, neural network training, dentistry, x-rays, image processing, object 
detection. 

INTRODUCTION 

Modern dental radiology is undergoing 
transformation under the influence of deep 
learning (DL) methods, in particular CNNs, which 
demonstrate high potential in the tasks of segmentation, 
detection, and classification of oral pathologies. At the 
same time, the integration of CNN architectures into 
CDSS requires architectural and functional analysis, 
metric verification, and adaptation to the real clinical 
environment. The concept of HITL is gaining particular 
relevance, which enables increasing the clinical and 
diagnostic relevance of CDSS by involving the expert 
knowledge of dental radiologists in the training cycle. 

The aim of the study is to develop, optimize, and 
verify a HITL-oriented CDSS  framework  for  dental 
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radiology based on multi-level integration of CNN 
models, ensuring architectural consistency, metric and 
indicator validity, as well as expert adaptability in a 
clinical context. 

Research objectives: 

− perform an architectural and functional analysis 
of CNN models regarding their integration 
suitability in CDSS; 

− perform normalized metric and indicator 
modelling with visualization in Heatmap format; 

− synthesize a UML CDSS model with modular 
integration of relevant CNN architectures; 

− optimize the architecture through HITL 
mechanisms: active learning, expert feedback, 
and adaptive reconfiguration; 
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− perform verification of HITL-CDSS by 
discriminative, segmentation, and detection 
metrics. 

Current and relevant academic approaches to the 
use of CNNs in dental radiology for the detection of 
pathologies on X-ray images in clinical decision 
support systems are considered. The emphasis is on 
architectural and algorithmic innovations, segmentation, 
classification solutions and integration models that 
shape the modern technical and methodological 
landscape of the industry. 

Starting from a generalized historical and 
methodological context, Sum [1] presented a 
chronological overview of the integration of AI into 
dentistry, where CNN architectures have provided 
high-precision radiological detection, cephalometric 
landmarking and oncoscreening. The current stage 
includes predictive analytics, NLP charting and 
AI-assisted robotic surgery with an emphasis on ethical 
and regulatory compliance. 

Developing this broad perspective, Shekarappa et 
al.[2] summarized the integration of AI in dentistry, 
emphasizing the use of ML and DL algorithms, 
including CNN, for high-precision analysis of 
radiographs, computed tomography (CT) scans, and 
intraoral scans. The technologies increase diagnostic 
precision, predictive analytics, and personalization of 
therapeutic protocols, reducing errors and optimizing 
clinical workflows. 

Deepening the thematic focus, Akram [3] reviewed 
the transformations of periodontology under the 
influence of AI, in particular CNN architectures (U-Net, 
Mask R-CNN, VGG-16) for segmentation and 
classification of radiographs and salivary biomarkers. 
The methodology increases diagnostic sensitivity, 
prognostic specifics and the level of personalization of 
the periodontal treatment planning process, taking into 
account ethical and legal regulations. 

In the field of diagnostic and visualization solutions, 
Hong et al. [4] developed a CNN-assisted visualization 
and analysis platform for processing panoramic 
radiographs, which integrates intelligent diagnostics, 
automated extraction of diagnostic descriptors, and 
statistical correlation analysis of dental nosologies. The 
architecture increases diagnostic productivity, 
informativeness of electronic medical records, as well 
as visual and analytical reports to support public dental 
health strategies. 

Deepening the DL-diagnostics aspect, Nour et al.[5] 
developed an integrated CNN architecture with 
YOLO8+RT-DETR detector ensemble, optimized by 

Non-Maximum Suppression method, which achieved 
mAP50 = 74% and mAP50–90 = 58% in multi-class 
detection of dental pathologies. The model 
outperformed the competitors, increasing the accuracy 
by 30% and reducing the processing time by 18%, 
ensuring high diagnostic reliability. 

Regarding highly specialized segmentation tasks, 
Firincioglulari et al. [6] found that CNN-centric 
DL-segmentation architectures provide highly accurate 
identification of pulp (Dice=0.84; IoU=0.758) and pulp 
stones (Dice=0.759; IoU=0.686) on panoramic 
radiographs. The models are characterized by 
increased classification and segmentation precision 
and recall, confirming their adjuvant clinical and 
diagnostic relevance. 

In the explainable diagnostics, Asghar et al.[7] 
found that CariesXplainer, a CNN-centric AI–XAI 
architecture combining MobileNetV3 with Grad-CAM in 
a transfer learning loop, achieves 99.50% caries 
classification accuracy, significantly outperforming the 
SOTA CNN architecture. The methodology provides 
high-level diagnostic interpretability and spatial 
localization precision. 

As regards multi-architecture integrations, Parkhi et 
al. [8] demonstrated that a CNN–ResNet–ViT 
classification model for five dental nosologies achieves 
87.6% validation accuracy using confidence- 
thresholding and an expert validation module. The 
system improves diagnostic reproducibility, clinical 
interoperability, and accessibility in 
resource-constrained environments. 

In the context of a critical methodological 
assessment, Mahizha et al.[9] found that systematic 
DCNN architectures of the segmentation- 
classification-detection type for the identification of 
interproximal caries on bitewing radiographs provide 
diagnostic preference of YOLOv8. Only 40% of the 
analysed papers had a low risk of bias of the reference 
standard according to QUADAS-2. 

Concluding the analysis, Singh et al. [10] 
systematized the application of CNN-oriented 
DL-architectures in caries and prosthodontic 
classification, covering tooth shade selection, 
restoration design, and classification of morphofacial 
changes in patients with removable dentures. The 
ability of the models to process heterogeneous 
unstructured data while maintaining classification 
constraints was noted. 

The analysis of the reviewed publications confirms 
that CNNarchitectures provide high diagnostic 
precision, sensitivity, and specifics in multi-class 
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detection of dental pathologies, significantly increasing 
the interpretability and speed of radiological 
examinations. Further automation of diagnostics in 
dental radiology requires in-depth optimization of CNN 
architectures by reducing computational complexity, 
increasing robustness to visual artifacts and 
inter-device variability, and integrating explainable AI 
and attention mechanisms to ensure traceable 
interpretation, as well as clinical and metric validation 
of diagnostic decisions. 

METHODS AND MATERIALS 

Research design 

The study was carried out in successive iterations – 
Figure 1. 

Methods 

The study employed the following methods: 

1. Critical architectural and functional analysis: a 
systematic assessment of CNN architectures 
(Table 1) was carried out for their discriminatory 
ability, computational efficiency, and ability for 
modular integration into the CDSS framework of 
dental radiology. 

2. Metric and indicator modelling: a comparative 
normalized evaluation of CNN models by metrics 
(Table 2) was implemented with the construction 
of Heatmap and Performance Score aggregation 
for multi-criteria interpretation of efficiency. 

3. UML-based synthesis modelling of the CDSS 
framework: a UML structure of the synthesized 
CDSS framework was built with the integration of 
the most relevant CNN components, determined 
based on the previous modelling phases, for the 
implementation of a modular diagnostic system. 

4. UML optimization (hybrid HITL-CDSS): the 
architecture was improved by including HITL 
elements: expert training mechanisms, active 
sampling, UI-interface for review and adaptive 
optimization learning cycle. 

5. Metric-indicator verification of HITL-CDSS: 
quantitative verification of the hybrid framework 
(HITL-CDSS) was carried out with the 
construction of a Heatmap profile, which showed 
an improvement in discriminative (AUC = 
0.96–0.98) and segmentation (DSC = 0.89–0.92) 
characteristics, confirming the effectiveness of 
HITL integration. 

Sample 

A systemic selection of verified CNNs tested in 
dental radiology for automated classification, detection 
and segmentation of pathologies is presented below 
(Table 1). These architectures, developed taking into 
account the specifics of x-ray images of the 
dento-maxillofacial system, cover algorithmic principles, 
structural features and clinical scenarios for their 
integration into CDSS to improve diagnostic accuracy, 
speed, and interpretability of results.

 
Figure 1: Multi-iterative research design. 

Source: developed by the authors. 
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Table 1: Case of Verified Convolutional Neural Network Architectures for Automated Detection of Dental Pathologies 
in X-Ray Images 

CNN model name / Task 
type (evaluation metrics) 

Brief description Architecture / functional features Verified examples of 
application in dentistry 

Academic 
research 

U-Net / Segmentation 
(DSC (Dice Similarity 
Coefficient), IoU, Pixel 
Accuracy, Sensitivity, 

Specificity) 

Symmetric 
encoder–decoder 

segmentation network 
with skip-connections 

Architecture with contraction and 
expansion paths; use of symmetric 

convolutional blocks; multi-scale 
context / High accuracy of pixel 

segmentation; resistance to data 
limitations; adaptability to medical 

images 

Segmentation of caries, 
cysts, periapical lesions 
(University of Freiburg 

(2015)) 

[11, 12] 

Mask R-CNN 
/Segmentation + Detection 

(mAP, IoU, DSC, 
Precision, Recall, 

F1-score) 

Extension of Faster 
R-CNN with mask 

segmentation 

RPN (Region Proposal Network) + 
ROIAlign architecture for accurate 
localization; parallel branches for 

classification, detection and 
segmentation / High localization 
accuracy; integrated multitasking 

Detection and 
segmentation of caries, 
tumours, bone defects 

(Facebook AI Research 
(2017)) 

[13, 14] 

YOLOv5 / YOLOv8 / 
Detection (mAP@0.5, 

mAP@0.5:0.95, Precision, 
Recall, Inference Time) 

High-performance 
single-stage object 

detectors 

CSPDarknet backbone, PANet neck, 
adaptive anchor-free mode (YOLOv8); 
integration of auto-learning anchors / 

Real-time operation; multi-class 
detection; optimization of inference time 

Automated detection of 
caries, pulp stones, 
periodontal lesions 

(Ultralytics (2020 / 2023)) 

[15, 16] 

ResNet-50 / ResNet-101 / 
Classification (Accuracy, 

AUC-ROC, Precision, 
Recall, F1-score) 

Deep CNN with residual 
blocks 

(skip-connections) 

Bottleneck blocks with identity mapping; 
elimination of accuracy degradation 

with increasing depth / Stable learning 
even with >100 layers; high AUC and 

F1 metrics 

Classification of 
pathologies on panoramic 

and bitewing images 
(Microsoft Research 

(2015)) 

[17, 18] 

DenseNet-121 / 
DenseNet-169 / 

Classification (Accuracy, 
AUC-ROC, Precision, 

Recall, F1-score) 

Densely connected layer 
network 

Each layer receives input from all 
previous ones; improved gradient 

propagation / Fewer parameters with 
high accuracy; efficient on small 

datasets 

Detection of early stages 
of caries, periodontitis 

(Cornell University, 
Tsinghua University, 

Facebook AI Research 
(2017)) 

[19, 20]  

MobileNetV3 / 
Classification / Detection 

(Accuracy, mAP, 
Inference Time, Model 

Size) 

Lightweight CNN for 
mobile systems 

Inverted residual blocks + 
squeeze-and-excitation; optimization for 

low-FLOPs computing / Low latency; 
energy efficiency; deployment in 

portable-CDSS 

Mobile diagnostics and 
telemedicine in dentistry 

(Google AI (2019)) 

[21, 22] 

Inception-v3 / 
Inception-ResNet-v2 / 

Classification (Accuracy, 
AUC-ROC, Precision, 

Recall, F1-score) 

Multi-scale Feature 
Processing Networks 

Factorized convolutions; parallel 
convolutional filters of different sizes; 
Inception-ResNet ‒ added residual 

connections / Efficiency with 
different-sized objects; improved 

classification of complex pathologies 

Classification and 
stratification of 

pathologies (Google 
Research (2015 / 2016)) 

[23, 24] 

EfficientNet (B0–B7) / 
Classification / Detection 
(Accuracy, AUC-ROC, 
mAP, Inference Time, 

Params) 

Optimally Scalable CNN Compound scaling (depth, width, 
resolution); Mobile Inverted Bottleneck 

Convolution (MBConv) / High 
accuracy/resource-intensive; easily 

adaptable 

Automated classification 
of dental radiographs 
(Google Brain (2019)) 

[25, 26] 

HRNet / 
Segmentation/Classificatio

n (DSC, IoU, Accuracy, 
Sensitivity, Specificity) 

High-Resolution 
Network for 

Segmentation 

Preserving high resolution at all stages; 
parallel convolutional branches with 

cross-scale fusion / High segmentation 
detail; excellent reproduction of small 

structures 

Localization of 
micropathologies, 

segmentation of dental 
structures (Microsoft 

Research Asia (2019)) 

[27, 28] 

Note: *CNN architectures in dental radiology were trained and tested by using open repositories of medical radiological images were used, accumulating anonymized 
orthopantomograms (OPG), bitewing and periapical radiographs, and cone-beam computed tomography (CBCT) with verified diagnostic annotations. The training 
base covered a wide range of pathologies of the dentofacial system, including carious lesions of various localization, periapical granulomas and cysts, periodontal 
defects with alveolar bone resorption, pulp stones, pulp calcifications, as well as benign and malignant neoplasms and developmental anomalies. The involvement of 
open databases (Dental X-ray Images Dataset (Kaggle), Panoramic Dental X-rays Dataset (Mendeley Data), Medical Radiography Open Database (AIcrowd/Grand 
Challenge), Dental Caries and Lesion Dataset (UCI Repository)) ensured the representativeness of pathological scenarios, standardization of mark-up, and a unified 
basis for comparative evaluation of CNN models in the context of their integration into clinical decision support systems. 
Source: developed by the authors. 
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Table 2: Instrumental Case of CNN Model Evaluation Metrics* 

Metric Short definition Mathematical formula 

Classification case (ResNet, DenseNet, Inception, EfficientNet, MobileNetV3, HRNet-cls) 

Primary discrimination !"# − !"#  Discrimination ability by ROC 
curve !"# = !"#$%"#

!

!

 

where !"# ‒ completeness of pathology detection:: 

!"# = !" =
!"

!" + !" 

where !" ‒ rue positive detections; !" ‒ false negative 
detections;  

!"# ‒ inverse correctness of the norm cut-off: 

!"# = 1 − !" =
!"

!" + !" 

where !" ‒ false positive detections; !" ‒ true negative 
detections  

F1-score (operating point) !1@!  Balance between selectivity of 
positive decisions (!) and 
completeness of pathology 

detection !"  

!1@! = 2×
!×!"
! + !" 

where ! ‒ selectivity of positive decisions: 

! =
!"

!" + !" 

! ‒ поріг, що визначається за Youden’s: 
! = !" + !" − 1 

where !" ‒ correctness of the norm cut-off: 

!" =
!"

!" + !" 

Expected Calibration Error !"!  Average confidence and precision 
mismatch (calibration) !"! =

!!
! !"" !! − !"#$ !!

!

!!!

 

where !! ‒ !th bin; ! ‒ the total number; !"" !!  ‒ the 
proportion of correct answers in the bin; !"#$ !!  ‒ average 

confidence 

Segmentation case (U-Net, HRNet-seg, Mask R-CNN-mask) 

Dice Similarity Coefficient !"#  Primary planar similarity 
!"# =

2 ! ∩ !
! + !  

where ! ‒ predicate mask; ! ‒ standard  

Intersection over Union !"#  Mask overlap fraction 
!"# =

! ∩ !
! ∪ !  

Hausdorff Distance !"95  Marginal error. 
!"95approximation is used – 

95thHausdorff percentile 

!" = max sup
!∈!

inf
!∈!

! !, ! , sup
!∈!

inf
!∈!

! !, !  

where ! ∙,∙    ‒ Euclidean distance 

Detection case (YOLOv5/YOLOv8, Mask R-CNN-det, EfficientNet/MobileNetV3-det) 

Medium Average Precision 
!"#@ 0,5 ∶ 0,95  

Primary localization accuracy 
!"#@ 0,5 ∶ 0,95 =

1
10 !"@!"# !

!,!"

!!!,!

 

where !" ‒ Average Precision: area under the PR curve for a class 
at a given IoU threshold: 

!" = ! ! !"
!

!

 

where ! !  ‒ precision as a function of completeness; IoU 
threshold  ! fixed 

!"# ‒ average !" by class/threshold: 

!"# =
1
! !"!

!

!!!

 

where ! ‒ classes; ! ∈ 0.5,0.55, … ,0.95  

Average Recall !"  Complementary localization 
completeness –average 

completeness by IoU 
grid/detection limit  

!" =   E!,!!"# ! !, !!"#  
where ! ‒ recall; ! ‒ IoU threshold; !!"# ‒ detection limit 
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(Table 2). Continued 

Metric Short definition Mathematical formula 

Inference Efficiency !!"# , !"#  Operational performance (latency) 
!!"# =

1
! !!

!

!!!

 

where !! ‒ processing time of one sample; 

!"# =
1

!!"#$%
 

where !!"#$% ‒ frame time 

General case (computational efficiency) 

Parametric Complexity !"#"$% , 
!"#$%  

!"#"$%   −  number of model 
weights; !"#$%   −  number of 
floating point operations per 

inference  

‒ 

Memory/Size !"#$%  !"#$ (MB), !"#$/!"#in 
inference 

‒ 

Note: * The Performance Score normalization method was used For a generalized possibility of comparative analysis of CNN models. It was performed according to 
the following algorithm: 
a. Each metric was reduced to a unitary scale [0;1] by min–max normalization/z-score transformation, which ensured metric unification and correct intermodel 
comparability. 
b. For each class of tasks (classification, segmentation, detection), weight coefficients were formed based on clinical relevance. General integral: 

!"#$%#&'()"  !"#$% = !!×!!

!

!!!

 

where !! ‒ metric weight; !! ‒ normalized metric value; ! ‒ number of metrics. 
To ensure transparency, the weighting scheme was predefined: discriminative metrics (AUC-ROC, F1@t, mAP) received higher weights due to their direct impact on 
diagnostic validity; segmentation metrics (DSC, IoU, HD95) were weighted moderately to reflect their role in morphometric accuracy; calibration metrics (ECE) and 
operational metrics (AR, t_inf) were assigned auxiliary weights to capture reliability and deployability. The coefficients were fixed across all models and validated 
through sensitivity analysis, which demonstrated the stability of ranking outcomes under ±15% perturbations of !!. 
c. The resulting !"#$%#&'()"  !"#$% was interpreted as the generalized performance of the CNN model. d. The stability of the integral indicator was checked through 
bootstrap resampling at the patient level (BCa intervals), as well as sensitivity analysis for changes in the weights !! to assess robustness. 
Source: developed by the authors. 

To address class imbalance–a typical limitation of 
dental radiology datasets –stratified sampling, 
weighted loss functions, and balanced mini-batch 
construction were applied during CNN training. These 
procedures mitigated disproportionate class 
representation and reduced bias in F1 and mAP 
metrics, ensuring stable discriminatory behaviour 
across minority pathology classes. 

Instruments 

The choice of metrics (Table 2) was driven by the 
need for unified intermodel validation of CNN 
architectures in dental radiology: discriminant (!"# , 
!"#@ 0,5 ∶ 0,95 ,!"#/!"#) reflect the ability to classify, 
detect, and segment; operational ( !1! , !" ) 
characterize functionality in clinically relevant 
scenarios; calibration (!"! ) ensure the reliability of 
probabilistic predictions; and deployment-oriented (!!"#, 
!"#"$%, !"#$%,!"#$) capture computational efficiency. 
Statistical robustness and reproducibility of evaluations 
were ensured by using DeLong, Wilson CI, and 
bootstrap methodology with patient-level resampling. 

The BCa-bootstrap procedure was implemented 
with 10 000 resamples, which ensured stable 
estimation of bias-correction and acceleration 
parameters across all performance metrics (AUC-ROC, 

F1@t, DSC, IoU, mAP, AR). Resampling was 
performed strictly at the patient level, not at the image 
level, to prevent intra-patient autocorrelation from 
inflating variance. Each bootstrap iteration drew 
whole-patient image sets with replacement, preserving 
the original class distribution and maintaining 
stratification by pathology type, thereby ensuring 
clinically valid data balance. Confidence intervals were 
computed using the bias-corrected and accelerated 
method, with the acceleration coefficient derived from 
jackknife influence values on patient-level observations. 
This procedure provided robust, distribution-free 
estimates of variability and supported the statistical 
validity of intermodel comparisons. 

Python was used for metric and indicator CNN 
modelling employing the NumPy, SciPy, scikit-learn 
libraries (statistical processing, metrics), PyTorch/ 
TensorFlow (CNN training), Matplotlib/Seaborn 
(visualization), statsmodels (hypothesis testing, DI). 
The settings included GPU acceleration 
(CUDA/cuDNN), stratified cross-validation, bootstrap 
resampling (BCa), and random seed parameter control. 
An optimized CDSS framework based on relevant CNN 
models was developed by using UML-based modelling, 
which provided the formalization of architectural and 
functional dependencies, the specification of 
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interoperable modules, and the structural 
decomposition of the components of the CDSS. 

The study used a comprehensive statistical 
validation procedure implemented in the Python 
environment using the scikit-learn, statsmodels, and 
SciPy libraries. Statistical analysis tools, including 
hypothesis testing, confidence interval construction, 
bootstrap resampling, and analysis of variance, were 
implemented using the delong_roc_test, 
proportion_confint, bootstrap, anova_lm, 
pairwise_tukeyhsd, and posthoc_dunn functions from 
the scikit-posthocs library. This approach ensured the 
reliability, reproducibility, and statistical validity of the 
results obtained in the context of metric-indicator 
comparison of CNN models. 

The study used a comprehensive statistical 
validation procedure implemented in Python using 
scikit-learn, statsmodels, and SciPy libraries. Statistical 
analysis tools – including hypothesis testing, 
confidence interval construction, bootstrap resampling, 
and analysis of variance – were implemented using the 
delong_roc_test, proportion_confint, bootstrap, 
anova_lm, pairwise_tukeyhsd, and posthoc_dunn 

functions from the scikit-posthocs library. This 
approach ensured the reliability, reproducibility, and 
statistical validity of the obtained results in the context 
of metric and indicator comparison of CNN models. 

RESULTS 

An architectural and functional analysis of verified 
CNN models tested in dental radiology was performed 
in the first iteration of the study (Table 3). The 
implementation prospects were assessed in terms of 
resource efficiency, scalability, resistance to domain 
shift, as well as clinical and diagnostic relevance to 
identify optimal application scenarios in automated 
diagnostics and clinical decision support. 

The architectural and functional analysis of CNN 
models (Table 3) showed the relevance of U-Net for 
voxel segmentation, Mask R-CNN for multiclass 
instance segmentation, YOLOv5/8 for high-speed 
triage, EfficientNet as an optimized backbone of CDSS, 
and HRNet for morphometric-precision segmentation. 
At the same time, none of the architectures provided 
autonomous integration into CDSS due to performance 
limitations, parametric complexity, and domain stability. 

Table 3: Critical Architectural and Functional Analysis of CNN Models for Integration Capability in the CDSS 
Framework of Dental Radiology 

Model Advantages of application Disadvantages and limitations Conclusion on CDSS integration 

U-Net High Dice/IoU; multi-scale context; 
robustness to limited datasets; clear voxel 

localization. 

High dependence on mark-up 
quality; sensitivity to domain 

shifting; limited multi-objectivity. 

Optimal for structural segmentation 
(caries, cysts, periapical lesions) 

with HITL and calibration. 

Mask R-CNN Instance segmentation; integrated 
multitasking (class+mask+BBox); high 

mAP/DSC. 

Computational cost; increased 
latency; difficulty in optimizing 

hyperparameters. 

Suitable for multi-class pathologies 
with GPU inference and 

asynchronous processing. 

YOLOv5/8 High mAP@[.5:.95]; real-time; 
inference-time optimization; suitable for 

edge-computing. 

Reduced accuracy on small 
structures; limited segmentation 

interpretability. 

Recommended for screening triage 
and primary localization in CDSS 

pipelines. 

ResNet-50/101  High AUC/F1; residual blocks eliminate 
degradation; reliable feature-extractor. 

Significant parametric resources; 
moderate latency; need for 

temperature calibration. 

Suitable as a base classifier in 
CDSS with DCA validation. 

DenseNet-121/169  Efficient gradient propagation; low 
parametric redundancy; robust on small 

samples. 

High VRAM load; problems with 
inference speed on HR images. 

Recommended for small cohorts 
with tile aggregation of predictions. 

MobileNetV3 Lightweight architecture; low latency; 
energy efficiency; deployment in 

portable-CDSS. 

Lower AUC/Acc compared to heavy 
models; sensitive to artifacts. 

Suitable for mobile/telemedicine 
CDSS modules as a prefilter. 

Inception-v3 / 
Inception-ResNet-v2 

Multi-level feature extraction; high 
discriminativeness for structures of 

different sizes; stable convergence in 
ResNet variation. 

High complexity; increased 
inference time; demanding 

pre-processing. 

Suitable for offline analysis and 
batch inference in CDSS backends. 

EfficientNet (B0–B7) Compound-scaling; high 
accuracy/resource consumption; 

adaptability to infrastructure. 

Older versions (B5–B7) require 
high-performance GPUs; 

resolution-dependent. 

Optimal as a backbone of a CDSS 
system with version adaptation to 

computational SLAs. 

HRNet High resolution preservation at all stages; 
accurate morphometric segmentation; 
high sensitivity to small pathologies. 

High computational complexity; 
memory capacity; increased 

inference-time. 

Suitable for precision 
segmentations in clinical diagnostic 

CDSS modules. 

Source: developed by the authors. 
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This justified the transition to the next iteration – metric 
and indicator modelling of CNN efficiency, which will 
enable a unified comparative analysis of their 
integration feasibility in dental radiology – Table 4. 

To improve the interoperability of the results, the 
tabular data (Table 4) were transformed into a 
graphical representation in Heatmap format taking into 
account the Performance Score normalization 
described in the Instruments section of the study 
(Figure 2), which ensured the identification of clusters 
of CNN models based on a set of discriminative, 
segmentation, detection, and computational 
characteristics. 

The analysis showed (Table 4, Figure 2) that in the 
classification-discrimination cluster, EfficientNet and 
DenseNet remained the most relevant, in the 
segmentation cluster –HRNet (seg) and U-Net, and in 
the detection cluster – YOLOv8 as the most productive 
model for real time. The obtained results were 
congruent with the previous architectural and functional 
analysis, confirming the integration relevance of these 
architectures for dental radiology. At the same time, 
none of the CNN models demonstrated sufficient 
autonomy to form a self-sufficient CDSS framework, 
which necessitated the next iteration – synthesis 
modelling, where a composite architecture was formed 
based on the two previous stages with the integration 
of the best CNN models as structural frameworks – 
Figure 3. 

The synthesized modelling of the CDSS framework 
(Figure 3) reproduced the full cycle of clinical 
radiological processing: from the accumulation of 
DICOM/EMR data (images), multi-level pre-processing 
(de-identification, normalization, tiling, augmentation) 
to the inference pipeline with YOLOv8 (detection), 
U-Net/HRNet (segmentation), EfficientNet/DenseNet 
(classification), supplemented by calibration 
(ECE/Brier) and XAI visualization (Grad-CAM). The 
architecture provided integration into the CDSS 
(through decision-making modules) of the DCA engine 
and API bus, but remained limited because of 
insufficient adaptability, the lack of an interactive 
validation mechanism, and the limited possibility of 
dynamic retraining of models in the clinical 
environment. The established fact (taking into account 
the results of previous iterations of the study justifies 
the need for architectural and functional optimization by 
integrating HITL to ensure intellectualized prediction 
correction, semi-automated calibration, and 
context-dependent learning, which allowed the 
formation of a hybrid (optimized) CDSS framework 
relevant to the needs of dental radiology – Figure 4. 

The optimized CDSS framework (Figure 4) 
implemented an integrated architecture with multi-level 

data processing, which included detection (YOLOv8), 
segmentation (U-Net/HRNet) and classification 
(EfficientNet/DenseNet) modules, supplemented by 
calibration (ECE/Brier) and uncertainty assessment 
(entropy indices, MC-Dropout). The integrated HITL 
circuit provides expert verification, escalation threshold 
management, annotation-curated cycles and active 
learning, which increases adaptability and minimizes 
the risks of domain shift. The hybrid architecture is 
focused on interoperability with PACS/EHR systems, 
support for XAI tools (Grad-CAM), and audit logging. At 
the same time, the functional complexity and 
multi-component nature of the hybrid CDSS framework 
require further metric validation through previously 
used indicators (Table 2) to quantitatively confirm the 
effectiveness, robustness, and clinical relevance of the 
system – Table 5, Figure 5. 

The metric and indicator verification of the 
optimized CDSS framework (Table 5, Figure 5) 
demonstrated its higher discriminative ability (!"# −
!"#  0.96–0.98; !1@!  0.91–0.94) and reduced 
calibration error (!"! 0.02–0.04),which confirmed the 
relevance of HITL integration in addition to the results 
of previous iterations of the study. Segmentation 
characteristics ( !"#  0.89–0.92; !"#  0.84–0.87; 
!"95  1.7–2.0 мм) and detection indicators 
( !"#@ 0,5 ∶ 0,95  0.72–0.77; !"  0.76–0.80) 
demonstrated increased precision in localization of 
dental pathologies. At the same time, the increase in 
parametric complexity (70–90M !"#"$% ; 60–90 
!"#$%&; 250–300 MB) has emphasized the need for 
adaptive optimization of computing resources. The key 
outcome was that the HITL mechanisms enabled 
systematic incorporation of expert radiologists’ 
feedback into the training cycle, forming an adaptively 
improving CDSS with reinforced domain knowledge. 
This enhanced robustness to domain shifting and 
improved clinical reliability; however, the system 
remained an expert-supervised adaptive framework 
rather than an autonomous self-learning module. 

The multi-component configuration of the optimized 
HITL-CDSS framework inherently increased the risk of 
overfitting. To mitigate this, the modelling pipeline 
employed stratified k-fold cross-validation, 
early-stopping criteria, L2-regularization, dropout layers, 
and fixed-seed initialization. These measures ensured 
controlled variance, reduced model over-adaptation to 
training distributions, and improved robustness of the 
reported performance estimates. 

The HITL loop incorporated certified dental 
radiologists (experience ≥7–12 years) who performed 
targeted validation of CNN outputs, correction of 
misclassified/segmented regions, and uncertainty- 
resolution tasks. Three experts independently reviewed 
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Table 4: Results of Metric and Indicator Modelling of CNN Efficiency* 

Model Discriminatory characteristics 

!"# − !"# !"@! !"! 

ResNet-50/101 0.91–0.95 0.85–0.90 0.05–0.08 

DenseNet-121/169 0.92–0.96 0.86–0.91 0.04–0.07 

MobileNetV3 0.88–0.92 0.80–0.85 0.07–0.10 

Inception-v3 / Inception-ResNet-v2 0.91–0.95 0.84–0.89 0.05–0.08 

EfficientNet (B0–B7) 0.93–0.97 0.87–0.92 0.04–0.06 

HRNet (clf) 0.92–0.95 0.85–0.90 0.05–0.07 

Model Segmentation characteristics 

DSC IoU HD95   mm  

U-Net 0.82–0.88 0.75–0.83 2.5–3.5 

HRNet (seg) 0.85–0.90 0.78–0.85 2.0–3.0 

Mask R-CNN (mask) 0.80–0.86 0.73–0.82 2.5–3.5 

Model Detection characteristics 

mAP@ 0,5 ∶ 0,95  AR t!"# FPS 

YOLOv5 0.61–0.68 0.65–0.72 12–20 ms /  
50–80 FPS 

YOLOv8 0.66–0.73 0.70–0.77 10–15 ms / 
65–100 FPS 

Mask R-CNN (det) 0.58–0.65 0.62–0.70 90–120 ms /  
8–12 FPS 

EfficientNet (det-head) 0.60–0.66 0.63–0.70 40–60 ms /  
15–20 FPS 

MobileNetV3 (det-head) 0.55–0.62 0.58–0.65 8–12 ms /  
80–100 FPS 

Model Computational efficiency 

Params   M  FLOPs   G, 224²  Model  size   MB  

U-Net ~31M ~40 ~120 MB 

Mask R-CNN 44–63M 160–250 170–250 MB 

YOLOv5 (s–x) 7–86M 16–285 14–170 MB 

YOLOv8 (n–x) 3–68M 8–280 10–130 MB 

ResNet-50/101 25M / 44M 4 / 7.8 100–170 MB 

DenseNet-121/169 8M / 14M 2.9 / 5.6 30–70 MB 

MobileNetV3 3.5M 0.3 15 MB 

Inception-v3 / ResNet-v2 23M / 55M 5.7 / 13 90–210 MB 

EfficientNet (B0–B7) 5M–66M 0.4–37 20–250 MB 

HRNet 65–78M 16–32 250–300 MB 

Note: *Statistical verification of the results of metric and indicator modelling is provided in the corresponding section of the study (Table 6–Table 8). 
Source: developed by the authors in Python. 
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Figure 2: Heatmap of the results of metric and indicator modelling of the effectiveness of CNN models taking into account 
performance score normalization. 

Source: developed by the authors in Python. 

 

 

 

 

 
Figure 3: UML-based model of the synthesized CDSS framework for dental radiology. 

Source: developed by the authors in UML. 
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Figure 4: UML-based model of a hybrid (optimized) CDSS framework for dental radiology with integration of the HITL concept. 

Source: developed by the authors in UML. 

 

Table 5: Metric and Indicator Verification of the Optimized CDSS Framework for Dental Radiology* 

Metric Averages across 
sample models 

Best models 
(DenseNet/EfficientNet, 

HRNet-seg, YOLOv8) 

Synthesized CDSS 
framework 

Optimized CDSS 
framework (HITL) 

!"# − !"# 0.90–0.92 0.95–0.97 0.94–0.96 0.96–0.98 

!1@! 0.83–0.87 0.90–0.93 0.88–0.91 0.91–0.94 

!"! 0.05–0.07 0.03–0.05 0.04–0.06 0.02–0.04 

!"# 0.81–0.85 0.88–0.91 0.86–0.89 0.89–0.92 

!"# 0.75–0.80 0.82–0.86 0.81–0.84 0.84–0.87 

!"95   !!  2.5–3.2 1.9–2.3 2.1–2.4 1.7–2.0 

!"#@ 0,5 ∶ 0,95  0.60–0.65 0.70–0.75 0.68–0.72 0.72–0.77 

!" 0.63–0.68 0.74–0.78 0.71–0.75 0.76–0.80 

!!"# !"# 20–40 ms / 40–60 
FPS 

10–15 ms / 80–100 FPS 18–25 ms / 65–80 FPS 22–28 ms / 55–70 FPS 

!"#"$%   ! ** 25–40M 40–60M 55–75M 70–90M 

!"#$%   !, 224²  30–45 30–40 50–70 60–90 

!"#$%  !"#$   !"  80–140 MB 100–200 MB 200–250 MB 250–300 MB 

Note: *Taking into account the statistical verification conducted for metric and indicator modelling (Table 4). 
**The documented increase in parametric complexity of the optimized HITL-CDSS framework (≈70–90 M parameters) entailed practical deployment implications in 
resource-constrained clinical environments. Elevated computational load and memory consumption imposed higher GPU/CPU requirements, increased inference 
latency, and limited feasibility for edge-level or chairside systems. These constraints necessitated adaptive compression strategiesquantization-aware training, 
structured pruning, and low-rank factorizationto ensure operational viability without compromising diagnostic accuracy. 
Source: developed by the authors in Python. 
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Figure 5: Heatmap of the results of metric and indicator verification of the optimized CDSS framework for dental radiology 
(taking into account Performance Score normalization). 

Source: developed by the authors in Python. 

the same cases, with disagreements resolved through 
majority consensus; in rare tie cases, adjudication was 
performed by a senior radiologist. This protocol 
ensured reproducible expert input and controlled 
variance in human-guided refinement. 

Statistical Analysis 

High analytical reliability of the results of metric and 
indicator modelling of the effectiveness of CNN 
architectures was ensured through a comprehensive 
statistical validation. The verification covered three 
types of evaluation – hypothesis testing (DeLong), 
interval estimates (Wilson CI), and uneven-adjusted 
bootstrap modelling (BCa-bootstrap) (Table 6). This 
approach ensured the statistical validity of the results in 
the context of discriminative, segmentation and 
detection metrics. 

The results of statistical validation confirmed the 
statistical significance (p < 0.001) of the differences in 
the performance of CNN models. The values of the 
DeLong test, Wilson CI, and BCa intervals confirmed 
the stable superiority of EfficientNet, DenseNet and 
YOLOv8 in the corresponding tasks. The determined 
intervals of variation of the metrics additionally 
demonstrated the high accuracy, consistency and 
discriminatory ability of the architectures. Such a 
generalized verification creates the basis for the 
application of analysis of variance (ANOVA) (Table 7) 
and subsequent post-hoc distinction (Table 8) of the 
efficiency between the models for the purpose of 
justified inclusion in CDSS frameworks. 

Statistical validation by ANOVA (Table 7) confirmed 
significant intermodel differences (p < 0.00001) in the 
main performance metrics. In the classification and 
discrimination cluster, EfficientNet and DenseNet 
demonstrated the advantage, in the segmentation 

cluster – HRNet (seg) and U-Net, and in the detection 
cluster – YOLOv8 as a real-time model with the highest 
mAP and AR values. The obtained results were 
consistent with the previous architectural and functional 
analysis, confirming the integrative relevance of the 
corresponding CNN architectures in the dental 
radiology CDSS context. 

Post hoc analysis (Dunn with Bonferroni correction) 
(Table 8) statistically confirmed the superiority of 
EfficientNet (p < 0.001) and DenseNet (p < 0.01) in the 
classification-discrimination cluster, HRNet in the 
segmentation cluster (p < 0.05), and YOLOv8 in the 
detection cluster (p < 0.001). The application of this 
analysis verified the significance of the differences 
observed during metric modelling and confirmed the 
integrative relevance of these architectures for building 
HITL-CDSS in the dental radiology context. 

Comprehensive statistical verification of the 
effectiveness of CNN models performed through 
hypothesis testing (DeLong test), interval estimates 
(Wilson 95% CI), bootstrap analysis (BCa), analysis of 
variance (ANOVA) and post-hoc multi-group 
comparison (Dunn–Bonferroni), demonstrated 
statistically significant differences between 
architectures in key metric and indicator parameters. 
DeLong p-value < 0.001 confirmed the reliability of the 
discriminatory advantage of individual models over the 
baseline ones. Wilson intervals and BCa estimates 
confirmed the stability of the results in the context of 
AUC-ROC, F1@t, DSC, IoU, mAP and AR. ANOVA 
results revealed statistical heterogeneity between 
groups, and Dunn–Bonferroni post-hoc analysis 
identified relevant pairs of architectures with a critical 
difference in performance. So, statistical modelling 
confirmed the metric validity and integration relevance 
of the CNN models that form the core of the 
HITL-CDSS for dental radiology.
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Table 6: Statistical Validation of the Results of Metric and Indicator Modelling of the Effectiveness of CNN Models 

Model DeLong p-value Cohen’s d (vs baseline) Wilson 95% CI (AUC) Wilson 95% CI 
(F1@t) 

DeLong p-value, Wilson CI, BCa-bootstrap CI, Cohen’s d for pairwise discriminative effect sizes 

U-Net <0.001 1.12 – – 

Mask R-CNN <0.001 1.05 – – 

YOLOv5 <0.001 0.84 – – 

YOLOv8 <0.001 0.97 – – 

ResNet-50/101 <0.001 1.58 0.91–0.95 0.85–0.90 

DenseNet-121/169 <0.001 1.66 0.92–0.96 0.86–0.91 

MobileNetV3 0.002 0.74 0.88–0.92 0.80–0.85 

Inception-v3/ResNet-v2 <0.001 1.52 0.91–0.95 0.84–0.89 

EfficientNet B0–B7 <0.001 1.71 0.93–0.97 0.87–0.92 

HRNet <0.001 1.19 – – 

BCa Bootstrap 95% CI 

Model AUC-ROC F1@t DSC IoU HD95 mAP AR 

U-Net 0.848–0.850 0.833–0.836 0.828–0.831 0.779–0.782 2.998–3.001 – – 

Mask R-CNN 0.831–0.833 0.813–0.815 0.828–0.831 0.774–0.776 2.999–3.001 – – 

YOLOv5 0.644–0.647 0.685–0.687 – – – 0.644–0.646 0.684–0.686 

YOLOv8 0.693–0.695 0.733–0.736 – – – 0.694–0.696 0.734–0.737 

ResNet 0.929–0.932 0.875–0.877 – – – – – 

DenseNet 0.939–0.941 0.884–0.886 – – – – – 

MobileNet 0.899–0.901 0.824–0.827 – – – 0.594–0.596 0.613–0.615 

Inception 0.928–0.931 0.863–0.866 – – – – – 

EfficientNet 0.949–0.952 0.893–0.896 – – – – – 

HRNet – – 0.874–0.877 0.814–0.816 2.499–2.502 – – 

Source: developed by the authors in Python. 

 

 

Table 7: Results of ANOVA of the Efficiency of CNN Architectures by Classification, Segmentation, and Detection 
Metrics 

Model Mean 
AUC-ROC 

Mean 
F1@t Mean ECE Mean 

DSC 
Mean 
IoU 

Mean 
HD95 

Mean 
mAP 

Mean 
AR F-statistic p-value η² (effect 

size) 

ResNet-50/101 0.93 0.875 0.065 - - - - - 178.73 < 0.00001 0.42 

DenseNet-121/169 0.94 0.885 0.055 - - - - - 178.73 < 0.00001 0.44 

MobileNetV3 0.9 0.825 0.085 - - - - - 178.73 < 0.00001 0.33 

Inception-v3/ResNet-v2 0.93 0.865 0.065 - - - - - 178.73 < 0.00001 0.40 

EfficientNet (B0–B7) 0.95 0.895 0.05 - - - - - 178.73 < 0.00001 0.47 

HRNet - - - 0.875 0.815 2.5 - - 91.55 < 0.00001 0.38 

U-Net - - - 0.83 0.78 3.0 - - 91.55 < 0.00001 0.31 

Mask R-CNN - - - 0.83 0.775 3.0 - - 91.55 < 0.00001 0.30 

YOLOv5 - - - - - - 0.645 0.685 74.85 < 0.00001 0.29 

YOLOv8 - - - - - - 0.695 0.735 74.85 < 0.00001 0.35 

Source: developed by the authors in Python. 
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Table 8: Results of Post-Hoc Analysis (Dunn–Bonferroni) for Statistical Interpretation of the Effectiveness of CNN 
Models in Classification, Segmentation, and Detection Tasks in Dental Radiology 

Comparison Z-score p-value Significance r-effect size 

Classification case 

EfficientNet vs DenseNet 2.01 0.041 * 0.32 

EfficientNet vs ResNet 2.05 0.024 * 0.33 

EfficientNet vs MobileNet 4.03 0.0002 ** 0.56 

EfficientNet vs Inception 2.08 0.017 * 0.34 

DenseNet vs MobileNet 3.07 0.001 ** 0.49 

ResNet vs MobileNet 3.03 0.002 ** 0.48 

DenseNet vs Inception 1.05 0.135 n.s. 0.17 

ResNet vs Inception 1.03 0.194 n.s. 0.16 

Segmentation case 

HRNet vs U-Net 2.2 0.033 * 0.34 

HRNet vs Mask R-CNN 2.5 0.012 * 0.38 

U-Net vs Mask R-CNN 0.5 0.612 n.s. 0.08 

Detection case 

YOLOv8 vs YOLOv5 2.6 0.009 ** 0.41 

YOLOv8 vs Mask R-CNN 3.2 0.001 ** 0.50 

YOLOv8 vs MobileNet(det) 3.8 0.0003 ** 0.59 

YOLOv5 vs Mask R-CNN 1.7 0.091 n.s. 0.27 

YOLOv5 vs MobileNet(det) 2.4 0.018 * 0.38 

Mask R-CNN vs MobileNet(det) 0.6 0.548 n.s. 0.09 

Source: developed by the authors in Python. 

DISCUSSION 

Discussion analysis in dental applications of deep 
learning is necessary to verify the effectiveness of CNN 
architectures integrated into clinical CDSS frameworks. 
Systemic comparison with existing studies determines 
the relevance, generalizability, and functional suitability 
of models in the specifics of dental radiology. 

Karuppan Perumal et al. [29] demonstrated that 
AI-CDSS in dental oncology analyse multimodal 
clinical-radiological data, ensuring early diagnosis and 
personalized treatment. The results of our study 
showed identical trends, while providing metric 
verification of HITL-CDSS, which enhances 
clinical-diagnostic validity. 

Veseli et al.[30] showed that AI-technologies in 
dentistry served as a tool for advanced diagnostics of 
systemic pathologies during routine examinations. In 
contrast, the focus in our study was shifted to the 
integration suitability of CNN architectures in CDSS, 
ensuring their metric verification and reinforcement with 
expert knowledge through HITL mechanisms. 

Subramanian et al. [31] demonstrated high 
accuracy of the UlcerNet-2 CNN architecture (96%) in 
classifying oral ulcer stages using RMSprop and SELU 

in a fog–cloud environment. The results of our study 
correlated with the opponents’ data, but expanded the 
emphasis from the narrow diagnosis of ulcer lesions to 
the comprehensive metric verification of CNN 
architectures and HITL integration.  

Kim et al. [32] reported near-ceiling discrimination 
(Acc = 0.9989; F1 = 0.9979) using a 
ResBlock-AutoEncoder, whereas the CNN stack in our 
HITL-CDSS achieved lower absolute values but 
demonstrated statistically validated generalizability 
(AUC = 0.96–0.98; BCa-F1 = 0.91–0.94) across 
heterogeneous tasks. This reflected a methodological 
shift from single-task optimization toward multi-metric 
robustness. 

Huang et al. [33] achieved high segmentation 
accuracy (Acc = 98.66%) after Sobel enhancement; 
however, when benchmarked against our models, 
HRNet and U-Net demonstrated comparable Dice/IoU 
ranges (DSC = 0.89–0.92; IoU = 0.84–0.87) with 
statistically supported stability under domain variation, 
confirming stronger integration suitability for 
HITL-augmented CDSS pipelines. 

Noor Uddin et al. [34] conducted a systematic 
review of DL models for caries detection, recording a 
wide range of accuracy (Acc = 56–99.1%), sensitivity 
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(23–98%), and specificity (65.7–100%). In contrast, 
empirical metric and indicator modelling was conducted 
in our study with digital verification of CNN 
architectures, the results of which indicate the 
effectiveness of the HITL-CDSS framework.  

Kayadibi et al.[35] demonstrated that the 
GoogLeNet E-mTMCNN architecture with LIME 
visualization achieved high discrimination ability in 
detecting m-M3 on PR (AUC = 87.01%). In contrast, 
our study implemented HITL-CDSS with an extended 
CNN configuration and formalized verification of 
integration relevance. 

Saldivia-Siracusa et al. [36] demonstrated the 
effectiveness of ConvNeXt and MobileNet for 
OPMD/OSCC classification (AUROC = 0.863; F1 = 
0.794) with Grad-CAM interpretability. In contrast, our 
study implemented a multi-component HITL-CDSS 
architecture with a wider range of CNN models, 
focused on precision segmentation, detection, and 
classification of dental pathologies. 

Marie et al.[37] proposed LDM architectures with 
bioinspired loss functions (GAPI, DTBR), which 
provided high quality reconstruction of paediatric dental 
images (SSIM = 0.952; mAP↑ = +0.0694). Our study 
implemented HITL-CDSS with higher AUC (0.96–0.98), 
DSC (0.89–0.92) and mAP (0.72–0.77) scores, 
focusing on interpretable verification of dental 
pathologies. 

Chai et al.[38] showed that IAPO-optimized Vanilla 
CNN achieved 92.5% accuracy in detecting oral cancer, 
outperforming ResNet-101 (90.1%) and DenseNet-121 
(89.5%). Our study implemented a broader CNN stack 
with HITL-CDSS (AUC 0.96–0.98; F1@t 0.91–0.94), 
which improved the interpretability of CDSS modules. 

A review of the opponents’ results showed the 
general effectiveness of CNN models in dental 
diagnostics (Acc up to 99.1%; AUC up to 0.98), but 
mostly without emphasis on integration and validation 
aspects. In our study, a HITL-oriented CDSS 
framework with an extended CNN stack was 
implemented, which ensured metric verification, 
interpretability, and integration suitability for clinical 
practice. 

LIMITATION 

The study did not include clinical testing of the 
developed HITL-CDSS framework in real dental 
practice, which limited external validation of the results. 
The lack of prospective evaluation also prevented 
assessment of system adaptability in dynamic clinical 
decision-making scenarios. Moreover, model 
generalizability remained constrained by the absence 

of testing on a fully independent external dataset, 
which restricted the extrapolation of reported 
performance metrics (AUC, F1@t, DSC, mAP) beyond 
the internal validation domain. 

RECOMMENDATIONS 

It is appropriate to implement a controlled clinical 
pilot to verify the effectiveness of the HITL-CDSS in 
real dental protocols. A multidimensional evaluation of 
the system with the participation of interdisciplinary 
experts should be ensured, with a focus on functional 
integration, interpretability, and stability in clinical 
settings. 

CONCLUSIONS 

The architectural and functional, metric and 
indicator, as well as integration modelling of CNN 
architectures revealed critically relevant approaches to 
building CDSS in dental radiology. The optimized 
HITL-CDSS framework, formed on the basis of the 
synthesis of the most effective models (DenseNet/ 
EfficientNet, HRNet, YOLOv8), demonstrated higher 
discrimination ability (AUC = 0.96–0.98), improved 
operational accuracy (F1@t = 0.91–0.94), reduced 
calibration gap (ECE = 0.02–0.04), high segmentation 
(DSC = 0.89–0.92), and detection (mAP = 0.72–0.77) 
efficiency. 

The implementation of HITL mechanisms provided 
increased generalizability of models, interpretability of 
solutions (XAI), resistance to domain shifting, and 
expanded the clinical and diagnostic validity of CDSS. 
The obtained results confirm that the integration of 
CNN into dental CDSS should have a multi-modular 
structure, with a focus on the symbiosis of automated 
inference and expert professional reinforcement. 

The academic novelty of the research is the 
development of a composite HITL-CDSS framework 
with multi-level integration of CNN architectures, which 
provides metrically verified interpretability, 
generalizability, and resistance to domain shifting in 
dental radiology tasks. 

The practical significance of the research results is 
the formalization of approaches to the synthesis and 
optimization of clinically validated CDSS solutions for 
automated diagnostics of dental pathologies with the 
involvement of expert professional support. 
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