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Abstract: Relevance: The relevance of the study is determined by the need for automated, scalable solutions for
processing large volumes of dental radiological images, which provide precise segmentation, detection, and
classification of pathologies in the integrated Clinical Decision Support System (CDSS) modules.

Aim: The aim of the study is to develop, optimize, and verify a HITL-CDSS framework for dental radiology with multi-level
integration of Convolutional Neural Network (CNN) models, ensuring architectural consistency, metric validity, and
expert adaptability.

Methods: Research methods: critical architectural and functional analysis of CNN models, metric and indicator modelling
of efficiency, synthesis and Unified Modelling Language-based (UML)modelling of the CDSS framework, UML
optimization with Human-in-the-loop (HITL) integration, metric and indicator verification of HITL-CDSS.

Results: Architectural and functional, metric and indicator, as well as UML modelling of CNN architectures was carried
out for the purpose of integration into the dental radiology CDSS. The resultant HITL-optimized framework based on
DenseNet/EfficientNet, HRNet, YOLOvV8 provided AUC = 0.96-0.98, F1@t = 0.91-0.94, DSC = 0.89-0.92, mAP =
0.72-0.77 at ECE = 0.02-0.04. Integration of HITL mechanisms increased Explainable Artificial Intelligence (XAl)
interpretability, resistance to domain shifting, and clinical validity, indicating the appropriateness of multi-modular
construction of CDSS with the inclusion of expert feedback.

Conclusion: The academic novelty of the study is the development of a HITL-CDSS framework with multi-level CNN
integration, which provides metrically verified interpretability, domain-stable generalizability, and clinical relevance in

dental radiology tasks.

Keywords: Medical data, neural networks, neural network training, dentistry, x-rays, image processing, object

detection.

INTRODUCTION

Modern  dental radiology is  undergoing
transformation under the influence of deep
learning (DL) methods, in particular CNNs, which
demonstrate high potential in the tasks of segmentation,
detection, and classification of oral pathologies. At the
same time, the integration of CNN architectures into
CDSS requires architectural and functional analysis,
metric verification, and adaptation to the real clinical
environment. The concept of HITL is gaining particular
relevance, which enables increasing the clinical and
diagnostic relevance of CDSS by involving the expert
knowledge of dental radiologists in the training cycle.

The aim of the study is to develop, optimize, and
verify a HITL-oriented CDSS framework for dental
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radiology based on multi-level integration of CNN
models, ensuring architectural consistency, metric and
indicator validity, as well as expert adaptability in a
clinical context.

Research objectives:

- perform an architectural and functional analysis
of CNN models regarding their integration
suitability in CDSS;

perform normalized metric and indicator
modelling with visualization in Heatmap format;

synthesize a UML CDSS model with modular
integration of relevant CNN architectures;

optimize the architecture through HITL
mechanisms: active learning, expert feedback,
and adaptive reconfiguration;
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- perform  verification of HITL-CDSS by
discriminative, segmentation, and detection
metrics.

Current and relevant academic approaches to the
use of CNNs in dental radiology for the detection of
pathologies on X-ray images in clinical decision
support systems are considered. The emphasis is on
architectural and algorithmic innovations, segmentation,
classification solutions and integration models that
shape the modern technical and methodological
landscape of the industry.

Starting from a generalized historical and
methodological context, Sum [1] presented a
chronological overview of the integration of Al into
dentistry, where CNN architectures have provided
high-precision radiological detection, cephalometric
landmarking and oncoscreening. The current stage
includes predictive analytics, NLP charting and
Al-assisted robotic surgery with an emphasis on ethical
and regulatory compliance.

Developing this broad perspective, Shekarappa et
al[2] summarized the integration of Al in dentistry,
emphasizing the use of ML and DL algorithms,
including CNN, for high-precision analysis of
radiographs, computed tomography (CT) scans, and
intraoral scans. The technologies increase diagnostic
precision, predictive analytics, and personalization of
therapeutic protocols, reducing errors and optimizing
clinical workflows.

Deepening the thematic focus, Akram [3] reviewed
the transformations of periodontology under the
influence of Al, in particular CNN architectures (U-Net,
Mask R-CNN, VGG-16) for segmentation and
classification of radiographs and salivary biomarkers.
The methodology increases diagnostic sensitivity,
prognostic specifics and the level of personalization of
the periodontal treatment planning process, taking into
account ethical and legal regulations.

In the field of diagnostic and visualization solutions,
Hong et al. [4] developed a CNN-assisted visualization
and analysis platform for processing panoramic
radiographs, which integrates intelligent diagnostics,
automated extraction of diagnostic descriptors, and
statistical correlation analysis of dental nosologies. The
architecture  increases  diagnostic  productivity,
informativeness of electronic medical records, as well
as visual and analytical reports to support public dental
health strategies.

Deepening the DL-diagnostics aspect, Nour et al.[5]
developed an integrated CNN architecture with
YOLO8+RT-DETR detector ensemble, optimized by

Non-Maximum Suppression method, which achieved
mAP50 = 74% and mAP50-90 = 58% in multi-class
detection of dental pathologies. The model
outperformed the competitors, increasing the accuracy
by 30% and reducing the processing time by 18%,
ensuring high diagnostic reliability.

Regarding highly specialized segmentation tasks,
Firincioglulari et al. [6] found that CNN-centric
DL-segmentation architectures provide highly accurate
identification of pulp (Dice=0.84; loU=0.758) and pulp
stones (Dice=0.759; 1oU=0.686) on panoramic
radiographs. The models are characterized by
increased classification and segmentation precision
and recall, confirming their adjuvant clinical and
diagnostic relevance.

In the explainable diagnostics, Asghar et al.[7]
found that CariesXplainer, a CNN-centric Al-XAl
architecture combining MobileNetV3 with Grad-CAM in
a transfer learning loop, achieves 99.50% caries
classification accuracy, significantly outperforming the
SOTA CNN architecture. The methodology provides
high-level diagnostic interpretability and spatial
localization precision.

As regards multi-architecture integrations, Parkhi et
al. [8] demonstrated that a CNN-ResNet-ViT
classification model for five dental nosologies achieves
87.6% validation accuracy using confidence-
thresholding and an expert validation module. The
system improves diagnostic reproducibility, clinical
interoperability, and accessibility in
resource-constrained environments.

In the context of a critical methodological
assessment, Mahizha et al.[9] found that systematic
DCNN architectures  of the  segmentation-
classification-detection type for the identification of
interproximal caries on bitewing radiographs provide
diagnostic preference of YOLOv8. Only 40% of the
analysed papers had a low risk of bias of the reference
standard according to QUADAS-2.

Concluding the analysis,
systematized the application of CNN-oriented
DL-architectures in caries and prosthodontic
classification, covering tooth shade selection,
restoration design, and classification of morphofacial
changes in patients with removable dentures. The
ability of the models to process heterogeneous
unstructured data while maintaining classification
constraints was noted.

Singh et al. [10]

The analysis of the reviewed publications confirms
that CNNarchitectures provide high diagnostic
precision, sensitivity, and specifics in multi-class
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detection of dental pathologies, significantly increasing
the interpretability and speed of radiological
examinations. Further automation of diagnostics in
dental radiology requires in-depth optimization of CNN
architectures by reducing computational complexity,
increasing robustness to visual artifacts and
inter-device variability, and integrating explainable Al
and attention mechanisms to ensure traceable
interpretation, as well as clinical and metric validation
of diagnostic decisions.

METHODS AND MATERIALS

Research design

The study was carried out in successive iterations —
Figure 1.

Methods
The study employed the following methods:

1. Critical architectural and functional analysis: a
systematic assessment of CNN architectures
(Table 1) was carried out for their discriminatory
ability, computational efficiency, and ability for
modular integration into the CDSS framework of
dental radiology.

2. Metric and indicator modelling: a comparative
normalized evaluation of CNN models by metrics
(Table 2) was implemented with the construction
of Heatmap and Performance Score aggregation
for multi-criteria interpretation of efficiency.

4. UML optimization

3. UML-based synthesis modelling of the CDSS
framework: a UML structure of the synthesized
CDSS framework was built with the integration of
the most relevant CNN components, determined
based on the previous modelling phases, for the
implementation of a modular diagnostic system.

(hybrid HITL-CDSS): the
architecture was improved by including HITL
elements: expert training mechanisms, active
sampling, Ul-interface for review and adaptive
optimization learning cycle.

5. Metric-indicator verification of HITL-CDSS:
quantitative verification of the hybrid framework
(HITL-CDSS) was carried out with the
construction of a Heatmap profile, which showed
an improvement in discriminative (AUC =
0.96-0.98) and segmentation (DSC = 0.89-0.92)
characteristics, confirming the effectiveness of
HITL integration.

Sample

A systemic selection of verified CNNs tested in
dental radiology for automated classification, detection
and segmentation of pathologies is presented below
(Table 1). These architectures, developed taking into
account the specifics of x-ray images of the
dento-maxillofacial system, cover algorithmic principles,
structural features and clinical scenarios for their
integration into CDSS to improve diagnostic accuracy,
speed, and interpretability of results.

Iteration 1. Architectural and Functional
Assessment of CNN Models Objective: Identify
CNN architectures with optimal integration
potential into dental radiology CDSS

Iteration2. Metric and Indicator Performance
Modelling Objective: Quantitatively benchmark
CNN models using normalized multi-metric
scoring. Procedure: Compute key performance
indicators (KPIs). Apply min—max

frameworks. Procedure: Evaluate discriminative
capacity. segmentation/detection performance,
and computational complexity. Analyze modular
structure. scalability. and compatibility with
CDSS pipelines.

normalization/Z-score ransformation. Visualize
comparative scores via Heatmap with integrated
Performarnce Score. The results of the metric-
indicator modeling were validated using
statistical analysis tools.

.

Ireration 3. UML-Based Synthesis Modelling of
CDSS Framework Objective: Construct a
modular CDSS prototype integrating top-

performing CNN models. Procedure: Design
UML-based architecture including: Inference
Pipeline, Decision Engine, XAI module, API
Layer. and Integration Interfaces. Embed
selected models (e.g.. YOLOvVS, HRNet.
EfficientNet) in diagnostic workflow

Iteration 4. UML-Based Optimization via HITL
Integration Objective: Enhance framework
through Human-in-the-Loop (HITL) mechanisms
for expert-in-the-loop adaptation. Procedure:
Extend UML architecture with HITL
components; Radiologist UL Uncertainty
Scoring. Active Learning. Annotation Tool. and
Retraining Module. Incorporate feedback-driven
learning cycle and escalation logic.

Tteration 5. Metric-Indicator Verification of Optimized HITL-CDSS Objective: Empirically validate the
optimized framework via integrated performance modeling. Procedure: Re-assess key mefrics in context of
optimized HITL-CDSS: Discrimination (AUC 0.96-0.98. F1@t 0.91-0.94) Segmentation (DSC 0.89-0.92.

ToU 0.84—-0.87) Detection (nAP 0.72-0.77. AR 0.76-0.80) Generate final Heatmap with Performance Score.

Figure 1: Multi-iterative research design.

Source: developed by the authors.
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Table 1: Case of Verified Convolutional Neural Network Architectures for Automated Detection of Dental Pathologies
in X-Ray Images
CNN model name / Task Brief description Architecture / functional features Verified examples of Academic
type (evaluation metrics) application in dentistry research
U-Net / Segmentation Symmetric Architecture with contraction and Segmentation of caries, [11,12]
(DSC (Dice Similarity encoder—decoder expansion paths; use of symmetric cysts, periapical lesions
Coefficient), loU, Pixel segmentation network convolutional blocks; multi-scale (University of Freiburg
Accuracy, Sensitivity, with skip-connections context / High accuracy of pixel (2015))
Specificity) segmentation; resistance to data
limitations; adaptability to medical
images
Mask R-CNN Extension of Faster RPN (Region Proposal Network) + Detection and [13, 14]
/Segmentation + Detection R-CNN with mask ROIAlign architecture for accurate segmentation of caries,
(mAP, loU, DSC, segmentation localization; parallel branches for tumours, bone defects
Precision, Recall, classification, detection and (Facebook Al Research
F1-score) segmentation / High localization (2017))
accuracy; integrated multitasking
YOLOvV5/YOLOV8 / High-performance CSPDarknet backbone, PANet neck, Automated detection of [15, 16]
Detection (mAP@0.5, single-stage object adaptive anchor-free mode (YOLOvV8); caries, pulp stones,
mAP@0.5:0.95, Precision, detectors integration of auto-learning anchors / periodontal lesions
Recall, Inference Time) Real-time operation; multi-class (Ultralytics (2020 / 2023))
detection; optimization of inference time
ResNet-50 / ResNet-101/ | Deep CNN with residual | Bottleneck blocks with identity mapping; Classification of [17, 18]
Classification (Accuracy, blocks elimination of accuracy degradation pathologies on panoramic
AUC-ROC, Precision, (skip-connections) with increasing depth / Stable learning and bitewing images
Recall, F1-score) even with >100 layers; high AUC and (Microsoft Research
F1 metrics (2015))
DenseNet-121/ Densely connected layer Each layer receives input from all Detection of early stages [19, 20]
DenseNet-169 / network previous ones; improved gradient of caries, periodontitis
Classification (Accuracy, propagation / Fewer parameters with (Cornell University,
AUC-ROC, Precision, high accuracy; efficient on small Tsinghua University,
Recall, F1-score) datasets Facebook Al Research
(2017))
MobileNetV3 / Lightweight CNN for Inverted residual blocks + Mobile diagnostics and [21, 22]
Classification / Detection mobile systems squeeze-and-excitation; optimization for | telemedicine in dentistry
(Accuracy, mAP, low-FLOPs computing / Low latency; (Google Al (2019))
Inference Time, Model energy efficiency; deployment in
Size) portable-CDSS
Inception-v3 / Multi-scale Feature Factorized convolutions; parallel Classification and [23, 24]
Inception-ResNet-v2 / Processing Networks convolutional filters of different sizes; stratification of
Classification (Accuracy, Inception-ResNet — added residual pathologies (Google
AUC-ROC, Precision, connections / Efficiency with Research (2015 / 2016))
Recall, F1-score) different-sized objects; improved
classification of complex pathologies
EfficientNet (BO-B7) / Optimally Scalable CNN Compound scaling (depth, width, Automated classification [25, 26]
Classification / Detection resolution); Mobile Inverted Bottleneck of dental radiographs
(Accuracy, AUC-ROC, Convolution (MBConv) / High (Google Brain (2019))
mAP, Inference Time, accuracy/resource-intensive; easily
Params) adaptable
HRNet / High-Resolution Preserving high resolution at all stages; Localization of [27, 28]
Segmentation/Classificatio Network for parallel convolutional branches with micropathologies,
n (DSC, loU, Accuracy, Segmentation cross-scale fusion / High segmentation | segmentation of dental
Sensitivity, Specificity) detail; excellent reproduction of small structures (Microsoft
structures Research Asia (2019))

Note: *CNN architectures in dental radiology were trained and tested by using open repositories of medical radiological images were used, accumulating anonymized
orthopantomograms (OPG), bitewing and periapical radiographs, and cone-beam computed tomography (CBCT) with verified diagnostic annotations. The training
base covered a wide range of pathologies of the dentofacial system, including carious lesions of various localization, periapical granulomas and cysts, periodontal
defects with alveolar bone resorption, pulp stones, pulp calcifications, as well as benign and malignant neoplasms and developmental anomalies. The involvement of
open databases (Dental X-ray Images Dataset (Kaggle), Panoramic Dental X-rays Dataset (Mendeley Data), Medical Radiography Open Database (Alcrowd/Grand
Challenge), Dental Caries and Lesion Dataset (UCI Repository)) ensured the representativeness of pathological scenarios, standardization of mark-up, and a unified
basis for comparative evaluation of CNN models in the context of their integration into clinical decision support systems.

Source: developed by the authors.
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Table 2:

Instrumental Case of CNN Model Evaluation Metrics*

Metric

Short definition

Mathematical formula

Classification case (ResNet, DenseNet, Inception, EfficientNet, MobileNetV3, HRNet-cls)

Primary discrimination(AUC — ROC)

Discrimination ability by ROC
curve

1

AUC = fTPRdFPR
0
where TPR — completeness of pathology detection::
TP
TP +FN

where TP - rue positive detections; FN — false negative
detections;

TPR = Se =

FPR —inverse correctness of the norm cut-off:
FP
P =EpiTN
where FP - false positive detections; TN — true negative
detections

FPR=1

F1-score (operating point) (F1@t)

Balance between selectivity of
positive decisions (P) and
completeness of pathology
detection (Se)

PxSe
P + Se
where P - selectivity of positive decisions:
TP
P=1pirp
t — nopir, Wo Bu3Ha4vaeTbes 3a Youden'’s:
J=Se+Sp—-1
where Sp — correctness of the norm cut-off:
TN
SP=IN TP

Fl@t = 2X

Expected Calibration Error (ECE)

Average confidence and precision
mismatch (calibration)

M
B,
ECE = Z ln—ml |acc(B,,) — conf (By,)I
m=1

where B,, — m" bin; n — the total number; acc(B,,) — the
proportion of correct answers in the bin; conf(B,,) — average
confidence

Segmentation case (U-Net, HRNet-seg, Mask R-CNN-mask)

Dice Similarity Coefficient (DSC)

Primary planar similarity

DSC =—"——
|Al + |B]

where A - predicate mask; B — standard

Intersection over Union (IoU)

Mask overlap fraction

_|AnB|

ToU =
Y =laus

Hausdorff Distance (HD95)

Marginal error.
HD95approximation is used —
95"Hausdorff percentile

HD = max {sup inf d(a, b), sup inf d(a, b)}
acA DEB bep AEA

where d(:,-) — Euclidean distance

Detection case (YOLOv5/YOLOvS, Mask R-CNN-det, EfficientNet/MobileNetV3-det)

Medium Average Precision
(mAP®@[0,5 : 0,95])

Primary localization accuracy

0,95
1
mAP@[0,5 : 0,95] = 0 Z AP@IoU(t)
7=0,5

where AP — Average Precision: area under the PR curve for a class
at a given loU threshold:
1

AP = fP(R)dR

where P(R) — precision as a function of completeness; loU
threshold t fixed

mAP — average AP by class/threshold:

1 K
mAP = EZAPk
k=1

where K —classes; 7 € {0.5,0.55,...,0.95}

Average Recall (4R)

Complementary localization
completeness —average
completeness by loU
grid/detection limit

AR = By, [R(T, Nger)]
where R —recall; T — loU threshold; N, — detection limit
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(Table 2). Continued

Metric Short definition Mathematical formula

n

Inference Efficiency(t;,;), (FPS) | Operational performance (latency) 1
tinf = _Z t;
n

i=1
where t; — processing time of one sample;

1
FPS =

frame

where t¢,..n. —frame time

General case (computational efficiency)

Parametric Complexity (Params), Params — number of model -
(FLOPs) weights; FLOPs — number of
floating point operations per
inference
Memory/Size Model size (MB), VRAM /RAMin -
inference

Note: * The Performance Score normalization method was used For a generalized possibility of comparative analysis of CNN models. It was performed according to
the following algorithm:

a. Each metric was reduced to a unitary scale [0;1] by min—-max normalization/z-score transformation, which ensured metric unification and correct intermodel
comparability.
b. For each class of tasks (classification, segmentation, detection), weight coefficients were formed based on clinical relevance. General integral:

k
Performance Score = z w; X M;
=1
where w; — metric weight; M; — normalized metric value; k — number of metrics.

To ensure transparency, the weighting scheme was predefined: discriminative metrics (AUC-ROC, F1@t, mAP) received higher weights due to their direct impact on
diagnostic validity; segmentation metrics (DSC, loU, HD95) were weighted moderately to reflect their role in morphometric accuracy; calibration metrics (ECE) and
operational metrics (AR, t_inf) were assigned auxiliary weights to capture reliability and deployability. The coefficients were fixed across all models and validated
through sensitivity analysis, which demonstrated the stability of ranking outcomes under +15% perturbations of w;.

c. The resulting Performance Score was interpreted as the generalized performance of the CNN model. d. The stability of the integral indicator was checked through
bootstrap resampling at the patient level (BCa intervals), as well as sensitivity analysis for changes in the weights w; to assess robustness.

Source: developed by the authors.

To address class imbalance-a typical limitation of F1@t, DSC, IloU, mAP, AR). Resampling was

dental radiology datasets —stratified sampling, performed strictly at the patient level, not at the image
weighted loss functions, and balanced mini-batch level, to prevent intra-patient autocorrelation from
construction were applied during CNN training. These inflating variance. Each bootstrap iteration drew

procedures  mitigated  disproportionate  class  whole-patient image sets with replacement, preserving
representation and reduced bias in F1 and mAP  the original class distribution and maintaining
metrics, ensuring stable discriminatory behaviour stratification by pathology type, thereby ensuring
across minority pathology classes. clinically valid data balance. Confidence intervals were
computed using the bias-corrected and accelerated
method, with the acceleration coefficient derived from
The choice of metrics (Table 2) was driven by the jackknife influence values on patient-level observations.
need for unified intermodel validation of CNN This procedure provided robust, distribution-free
architectures in dental radiology: discriminant (AUc,  estimates of variability and supported the statistical
mAP®[0,5 : 0,95],DSC/IoU) reflect the ability to classify,  Validity of intermodel comparisons.
detect, and segment; operational ( F1, , AR )
characterize  functionality in clinically relevant
scenarios; calibration (ECE) ensure the reliability of ) i e . _
probabilistic predictions; and deployment-oriented (t;y,, libraries (statistical processing, metrics), PyTorch/
Params, FLOPs,Size) capture computational efficiency. ~ 1ensorFlow — (CNN  training),  Matplotlib/Seaborn
Statistical robustness and reproducibility of evaluations (visualization), statsmodels (hypothesis testing, DlI).
were ensured by using DelLong, Wilson CI, and The settings included GPU acceleration

bootstrap methodology with patient-level resampling. (CUDAJ/cUDNN), stratified cross-validation, bootstrap
resampling (BCa), and random seed parameter control.

The BCa-bootstrap procedure was implemented An optimized CDSS framework based on relevant CNN
with 10 000 resamples, which ensured stable models was developed by using UML-based modelling,
estimation of bias-correction and acceleration which provided the formalization of architectural and
parameters across all performance metrics (AUC-ROC, functional dependencies, the specification of

Instruments

Python was used for metric and indicator CNN
modelling employing the NumPy, SciPy, scikit-learn
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interoperable modules, and the structural
decomposition of the components of the CDSS.

The study used a comprehensive statistical
validation procedure implemented in the Python
environment using the scikit-learn, statsmodels, and
SciPy libraries. Statistical analysis tools, including
hypothesis testing, confidence interval construction,
bootstrap resampling, and analysis of variance, were
implemented using the delong_roc_test,
proportion_confint, bootstrap, anova_lm,
pairwise_tukeyhsd, and posthoc_dunn functions from
the scikit-posthocs library. This approach ensured the
reliability, reproducibility, and statistical validity of the
results obtained in the context of metric-indicator
comparison of CNN models.

The study used a comprehensive statistical
validation procedure implemented in Python using
scikit-learn, statsmodels, and SciPy libraries. Statistical
analysis tools — including hypothesis testing,
confidence interval construction, bootstrap resampling,
and analysis of variance — were implemented using the
delong_roc_test, proportion_confint, bootstrap,
anova_lm, pairwise_tukeyhsd, and posthoc_dunn

functions from the scikit-posthocs library. This
approach ensured the reliability, reproducibility, and
statistical validity of the obtained results in the context
of metric and indicator comparison of CNN models.

RESULTS

An architectural and functional analysis of verified
CNN models tested in dental radiology was performed
in the first iteration of the study (Table 3). The
implementation prospects were assessed in terms of
resource efficiency, scalability, resistance to domain
shift, as well as clinical and diagnostic relevance to
identify optimal application scenarios in automated
diagnostics and clinical decision support.

The architectural and functional analysis of CNN
models (Table 3) showed the relevance of U-Net for
voxel segmentation, Mask R-CNN for multiclass
instance segmentation, YOLOv5/8 for high-speed
triage, EfficientNet as an optimized backbone of CDSS,
and HRNet for morphometric-precision segmentation.
At the same time, none of the architectures provided
autonomous integration into CDSS due to performance
limitations, parametric complexity, and domain stability.

Table 3: Critical Architectural and Functional Analysis of CNN Models for Integration Capability in the CDSS

Framework of Dental Radiology

inference-time optimization; suitable for
edge-computing.

Model Advantages of application Disadvantages and limitations | Conclusion on CDSS integration
U-Net High Dice/loU; multi-scale context; High dependence on mark-up Optimal for structural segmentation
robustness to limited datasets; clear voxel quality; sensitivity to domain (caries, cysts, periapical lesions)
localization. shifting; limited multi-objectivity. with HITL and calibration.
Mask R-CNN Instance segmentation; integrated Computational cost; increased Suitable for multi-class pathologies
multitasking (class+mask+BBox); high latency; difficulty in optimizing with GPU inference and
mAP/DSC. hyperparameters. asynchronous processing.
YOLOV5/8 High mAP@)][.5:.95]; real-time; Reduced accuracy on small Recommended for screening triage

structures; limited segmentation
interpretability.

and primary localization in CDSS
pipelines.

ResNet-50/101 High AUC/F1; residual blocks eliminate

degradation; reliable feature-extractor.

Significant parametric resources;
moderate latency; need for
temperature calibration.

Suitable as a base classifier in
CDSS with DCA validation.

DenseNet-121/169 Efficient gradient propagation; low
parametric redundancy; robust on small

samples.

High VRAM load; problems with
inference speed on HR images.

Recommended for small cohorts
with tile aggregation of predictions.

MobileNetV3 Lightweight architecture; low latency;
energy efficiency; deployment in

portable-CDSS.

Lower AUC/Acc compared to heavy
models; sensitive to artifacts.

Suitable for mobile/telemedicine
CDSS modules as a prefilter.

Inception-v3 /
Inception-ResNet-v2

Multi-level feature extraction; high
discriminativeness for structures of
different sizes; stable convergence in
ResNet variation.

High complexity; increased
inference time; demanding
pre-processing.

Suitable for offline analysis and
batch inference in CDSS backends.

EfficientNet (B0-B7) Compound-scaling; high
accuracy/resource consumption;

adaptability to infrastructure.

Older versions (B5-B7) require
high-performance GPUs;
resolution-dependent.

Optimal as a backbone of a CDSS
system with version adaptation to
computational SLAs.

HRNet High resolution preservation at all stages;
accurate morphometric segmentation;

high sensitivity to small pathologies.

High computational complexity;
memory capacity; increased
inference-time.

Suitable for precision
segmentations in clinical diagnostic
CDSS modules.

Source: developed by the authors.
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This justified the transition to the next iteration — metric
and indicator modelling of CNN efficiency, which will
enable a unified comparative analysis of their
integration feasibility in dental radiology — Table 4.

To improve the interoperability of the results, the
tabular data (Table 4) were transformed into a
graphical representation in Heatmap format taking into
account the Performance Score normalization
described in the Instruments section of the study
(Figure 2), which ensured the identification of clusters
of CNN models based on a set of discriminative,
segmentation, detection, and computational
characteristics.

The analysis showed (Table 4, Figure 2) that in the
classification-discrimination cluster, EfficientNet and
DenseNet remained the most relevant, in the
segmentation cluster —-HRNet (seg) and U-Net, and in
the detection cluster — YOLOvV8 as the most productive
model for real time. The obtained results were
congruent with the previous architectural and functional
analysis, confirming the integration relevance of these
architectures for dental radiology. At the same time,
none of the CNN models demonstrated sufficient
autonomy to form a self-sufficient CDSS framework,
which necessitated the next iteration — synthesis
modelling, where a composite architecture was formed
based on the two previous stages with the integration
of the best CNN models as structural frameworks —
Figure 3.

The synthesized modelling of the CDSS framework
(Figure 3) reproduced the full cycle of clinical
radiological processing: from the accumulation of
DICOM/EMR data (images), multi-level pre-processing
(de-identification, normalization, tiling, augmentation)
to the inference pipeline with YOLOv8 (detection),
U-Net/HRNet (segmentation), EfficientNet/DenseNet
(classification), supplemented by calibration
(ECE/Brier) and XAl visualization (Grad-CAM). The
architecture provided integration into the CDSS
(through decision-making modules) of the DCA engine
and API bus, but remained limited because of
insufficient adaptability, the lack of an interactive
validation mechanism, and the limited possibility of
dynamic retraining of models in the clinical
environment. The established fact (taking into account
the results of previous iterations of the study justifies
the need for architectural and functional optimization by
integrating HITL to ensure intellectualized prediction
correction, semi-automated calibration, and
context-dependent learning, which allowed the
formation of a hybrid (optimized) CDSS framework
relevant to the needs of dental radiology — Figure 4.

The optimized CDSS framework (Figure 4)
implemented an integrated architecture with multi-level

data processing, which included detection (YOLOvS),
segmentation  (U-Net/HRNet) and classification
(EfficientNet/DenseNet) modules, supplemented by
calibration (ECE/Brier) and uncertainty assessment
(entropy indices, MC-Dropout). The integrated HITL
circuit provides expert verification, escalation threshold
management, annotation-curated cycles and active
learning, which increases adaptability and minimizes
the risks of domain shift. The hybrid architecture is
focused on interoperability with PACS/EHR systems,
support for XAl tools (Grad-CAM), and audit logging. At
the same time, the functional complexity and
multi-component nature of the hybrid CDSS framework
require further metric validation through previously
used indicators (Table 2) to quantitatively confirm the
effectiveness, robustness, and clinical relevance of the
system — Table 5, Figure 5.

The metric and indicator verification of the
optimized CDSS framework (Table 5, Figure 5)
demonstrated its higher discriminative ability (AUC —
ROC 0.96-0.98; F1@t 0.91-0.94) and reduced
calibration error (ECE 0.02—0.04),which confirmed the
relevance of HITL integration in addition to the results
of previous iterations of the study. Segmentation
characteristics ( DSC 0.89-0.92; IoU 0.84-0.87;
HD95 1.7-2.0 wmm) and detection indicators
( mAP®@[0,5:0,95] 0.72-0.77; AR 0.76-0.80)
demonstrated increased precision in localization of
dental pathologies. At the same time, the increase in
parametric complexity (70-90M Params ; 60-90
GFLOPs; 250-300 MB) has emphasized the need for
adaptive optimization of computing resources. The key
outcome was that the HITL mechanisms enabled
systematic incorporation of expert radiologists’
feedback into the training cycle, forming an adaptively
improving CDSS with reinforced domain knowledge.
This enhanced robustness to domain shifting and
improved clinical reliability; however, the system
remained an expert-supervised adaptive framework
rather than an autonomous self-learning module.

The multi-component configuration of the optimized
HITL-CDSS framework inherently increased the risk of
overfitting. To mitigate this, the modelling pipeline
employed stratified k-fold cross-validation,
early-stopping criteria, L2-regularization, dropout layers,
and fixed-seed initialization. These measures ensured
controlled variance, reduced model over-adaptation to
training distributions, and improved robustness of the
reported performance estimates.

The HITL loop incorporated certified dental
radiologists (experience =27-12 years) who performed
targeted validation of CNN outputs, correction of
misclassified/segmented regions, and uncertainty-
resolution tasks. Three experts independently reviewed
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Table 4: Results of Metric and Indicator Modelling of CNN Efficiency*

Model Discriminatory characteristics
AUC — ROC Fl@t ECE
ResNet-50/101 0.91-0.95 0.85-0.90 0.05-0.08
DenseNet-121/169 0.92-0.96 0.86-0.91 0.04-0.07
MobileNetV3 0.88-0.92 0.80-0.85 0.07-0.10
Inception-v3 / Inception-ResNet-v2 0.91-0.95 0.84-0.89 0.05-0.08
EfficientNet (BO-B7) 0.93-0.97 0.87-0.92 0.04-0.06
HRNet (clf) 0.92-0.95 0.85-0.90 0.05-0.07
Model Segmentation characteristics
DSC IoU HD95 (mm)
U-Net 0.82-0.88 0.75-0.83 25-3.5
HRNet (seg) 0.85-0.90 0.78-0.85 2.0-3.0
Mask R-CNN (mask) 0.80-0.86 0.73-0.82 25-3.5
Model Detection characteristics
mAP@][0,5 : 0,95] AR tine/ FPS
YOLOv5 0.61-0.68 0.65-0.72 12-20 ms /
50-80 FPS
YOLOv8 0.66-0.73 0.70-0.77 10-15ms /
65-100 FPS
Mask R-CNN (det) 0.58-0.65 0.62-0.70 90-120 ms /
8-12 FPS
EfficientNet (det-head) 0.60-0.66 0.63-0.70 40-60 ms /
15-20 FPS
MobileNetV3 (det-head) 0.55-0.62 0.58-0.65 8-12ms/
80-100 FPS
Model Computational efficiency
Params (M) FLOPs (G, 2242) Model size (MB)
U-Net ~31M ~40 ~120 MB
Mask R-CNN 44-63M 160-250 170-250 MB
YOLOV5 (s—x) 7-86M 16-285 14-170 MB
YOLOV8 (n—x) 3-68M 8-280 10-130 MB
ResNet-50/101 25M / 44M 4/7.8 100-170 MB
DenseNet-121/169 8M / 14M 29/5.6 30-70 MB
MobileNetV3 3.5M 0.3 15 MB
Inception-v3 / ResNet-v2 23M / 55M 57/13 90-210 MB
EfficientNet (BO-B7) 5M-66M 0.4-37 20-250 MB
HRNet 65-78M 16-32 250-300 MB

Note: *Statistical verification of the results of metric and indicator modelling is provided in the corresponding section of the study (Table 6-Table 8).

Source: developed by the authors in Python.
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Comparative Heatmap of CNN Models (Segmentation / Detection / Classification / Efficiency)
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Figure 2: Heatmap of the results of metric and indicator modelling of the effectiveness of CNN models taking into account

performance score normalization.
Source: developed by the authors in Python.
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Table 5: Metric and Indicator Verification of the Optimized CDSS Framework for Dental Radiology*

Metric Averages across Best models Synthesized CDSS Optimized CDSS
sample models (DenseNet/EfficientNet, framework framework (HITL)
HRNet-seg, YOLOVS)
AUC — ROC 0.90-0.92 0.95-0.97 0.94-0.96 0.96-0.98
Fl@t 0.83-0.87 0.90-0.93 0.88-0.91 0.91-0.94
ECE 0.05-0.07 0.03-0.05 0.04-0.06 0.02-0.04
DSC 0.81-0.85 0.88-0.91 0.86-0.89 0.89-0.92
loU 0.75-0.80 0.82-0.86 0.81-0.84 0.84-0.87
HD95 (mm) 2.5-3.2 1.9-23 2.1-2.4 1.7-2.0
mAP@]0,5 : 0,95] 0.60-0.65 0.70-0.75 0.68-0.72 0.72-0.77
AR 0.63-0.68 0.74-0.78 0.71-0.75 0.76-0.80
ting/FPS 20-40 ?PSS/ 40-60 10-15 ms / 80-100 FPS 18-25 ms / 65-80 FPS 22-28 ms / 55-70 FPS
Params (M)** 25-40M 40-60M 55-75M 70-90M
FLOPs (G,224%) 30-45 30-40 50-70 60-90
Model size (MB) 80-140 MB 100-200 MB 200-250 MB 250-300 MB

Note: *Taking into account the statistical verification conducted for metric and indicator modelling (Table 4).
**The documented increase in parametric complexity of the optimized HITL-CDSS framework (=70-90 M parameters) entailed practical deployment implications in
resource-constrained clinical environments. Elevated computational load and memory consumption imposed higher GPU/CPU requirements, increased inference
latency, and limited feasibility for edge-level or chairside systems. These constraints necessitated adaptive compression strategiesquantization-aware training,
structured pruning, and low-rank factorizationto ensure operational viability without compromising diagnostic accuracy.

Source: developed by the authors in Python.
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Figure 5: Heatmap of the results of metric and indicator verification of the optimized CDSS framework for dental radiology

(taking into account Performance Score normalization).

Source: developed by the authors in Python.

the same cases, with disagreements resolved through
majority consensus; in rare tie cases, adjudication was
performed by a senior radiologist. This protocol
ensured reproducible expert input and controlled
variance in human-guided refinement.

Statistical Analysis

High analytical reliability of the results of metric and
indicator modelling of the effectiveness of CNN
architectures was ensured through a comprehensive
statistical validation. The verification covered three
types of evaluation — hypothesis testing (DelLong),
interval estimates (Wilson CI), and uneven-adjusted
bootstrap modelling (BCa-bootstrap) (Table 6). This
approach ensured the statistical validity of the results in
the context of discriminative, segmentation and
detection metrics.

The results of statistical validation confirmed the
statistical significance (p < 0.001) of the differences in
the performance of CNN models. The values of the
DelLong test, Wilson Cl, and BCa intervals confirmed
the stable superiority of EfficientNet, DenseNet and
YOLOVS in the corresponding tasks. The determined
intervals of variation of the metrics additionally
demonstrated the high accuracy, consistency and
discriminatory ability of the architectures. Such a
generalized verification creates the basis for the
application of analysis of variance (ANOVA) (Table 7)
and subsequent post-hoc distinction (Table 8) of the
efficiency between the models for the purpose of
justified inclusion in CDSS frameworks.

Statistical validation by ANOVA (Table 7) confirmed
significant intermodel differences (p < 0.00001) in the
main performance metrics. In the classification and
discrimination cluster, EfficientNet and DenseNet
demonstrated the advantage, in the segmentation

cluster — HRNet (seg) and U-Net, and in the detection
cluster — YOLOVS as a real-time model with the highest
mAP and AR values. The obtained results were
consistent with the previous architectural and functional
analysis, confirming the integrative relevance of the
corresponding CNN architectures in the dental
radiology CDSS context.

Post hoc analysis (Dunn with Bonferroni correction)
(Table 8) statistically confirmed the superiority of
EfficientNet (p < 0.001) and DenseNet (p < 0.01) in the
classification-discrimination cluster, HRNet in the
segmentation cluster (p < 0.05), and YOLOVS in the
detection cluster (p < 0.001). The application of this
analysis verified the significance of the differences
observed during metric modelling and confirmed the
integrative relevance of these architectures for building
HITL-CDSS in the dental radiology context.

Comprehensive statistical verification of the
effectiveness of CNN models performed through
hypothesis testing (DeLong test), interval estimates
(Wilson 95% CI), bootstrap analysis (BCa), analysis of

variance (ANOVA) and post-hoc  multi-group
comparison (Dunn—Bonferroni), demonstrated
statistically significant differences between

architectures in key metric and indicator parameters.
DelLong p-value < 0.001 confirmed the reliability of the
discriminatory advantage of individual models over the
baseline ones. Wilson intervals and BCa estimates
confirmed the stability of the results in the context of
AUC-ROC, F1@t, DSC, loU, mAP and AR. ANOVA
results revealed statistical heterogeneity between
groups, and Dunn-Bonferroni post-hoc analysis
identified relevant pairs of architectures with a critical
difference in performance. So, statistical modelling
confirmed the metric validity and integration relevance
of the CNN models that form the core of the
HITL-CDSS for dental radiology.
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Table 6: Statistical Validation of the Results of Metric and Indicator Modelling of the Effectiveness of CNN Models

Model DeLong p-value Cohen’s d (vs baseline) Wilson 95% CI (AUC) W"S(‘I’:'] éﬁ;ﬂ’ ci
Delong p-value, Wilson Cl, BCa-bootstrap Cl, Cohen'’s d for pairwise discriminative effect sizes
U-Net <0.001 1.12 - -
Mask R-CNN <0.001 1.05 - -
YOLOv5 <0.001 0.84 - -
YOLOv8 <0.001 0.97 - -
ResNet-50/101 <0.001 1.58 0.91-0.95 0.85-0.90
DenseNet-121/169 <0.001 1.66 0.92-0.96 0.86-0.91
MobileNetV3 0.002 0.74 0.88-0.92 0.80-0.85
Inception-v3/ResNet-v2 <0.001 1.52 0.91-0.95 0.84-0.89
EfficientNet BO-B7 <0.001 1.71 0.93-0.97 0.87-0.92
HRNet <0.001 1.19 - -
BCa Bootstrap 95% CI
Model AUC-ROC F1@t DSC loU HD95 mAP AR
U-Net 0.848-0.850 | 0.833-0.836 | 0.828-0.831 | 0.779-0.782 | 2.998-3.001 - -
Mask R-CNN 0.831-0.833 | 0.813-0.815 | 0.828-0.831 | 0.774-0.776 | 2.999-3.001 - -
YOLOv5 0.644-0.647 | 0.685-0.687 - - - 0.644-0.646 0.684-0.686
YOLOv8 0.693-0.695 | 0.733-0.736 - - - 0.694-0.696 0.734-0.737
ResNet 0.929-0.932 | 0.875-0.877 - - - - -
DenseNet 0.939-0.941 | 0.884-0.886 - - - - -
MobileNet 0.899-0.901 | 0.824-0.827 - - - 0.594-0.596 0.613-0.615
Inception 0.928-0.931 | 0.863-0.866 - - - - -
EfficientNet 0.949-0.952 | 0.893-0.896 - - - - -
HRNet - - 0.874-0.877 | 0.814-0.816 | 2.499-2.502 - -

Source: developed by the authors in Python.

Table 7: Results of ANOVA of the Efficiency of CNN Architectures by Classification, Segmentation, and Detection

Metrics

wodel | M | Mea meamece| W Memn | Memn | Wemn | Mo ot | puawe | MGt
ResNet-50/101 0.93 0.875 0.065 - - - - - 178.73 | <0.00001 0.42
DenseNet-121/169 0.94 0.885 0.055 - - - - - 178.73 | <0.00001 0.44
MobileNetV3 0.9 0.825 0.085 - - - - - 178.73 | <0.00001 0.33
Inception-v3/ResNet-v2 0.93 0.865 0.065 - - - - - 178.73 | <0.00001 0.40
EfficientNet (B0-B7) 0.95 0.895 0.05 - - - - - 178.73 | <0.00001 0.47
HRNet - - - 0.875 | 0.815 25 - - 91.55 <0.00001 0.38
U-Net - - - 0.83 0.78 3.0 - - 91.55 <0.00001 0.31
Mask R-CNN - - - 0.83 0.775 3.0 - - 91.55 <0.00001 0.30
YOLOV5 - - - - - - 0.645 | 0.685 74.85 <0.00001 0.29
YOLOv8 - - - - - - 0.695 | 0.735 74.85 <0.00001 0.35

Source: developed by the authors in Python.



960 International Journal of Statistics in Medical Research, 2025, Vol. 14

Dziubenko et al.

Table 8: Results of Post-Hoc Analysis (Dunn—-Bonferroni) for Statistical Interpretation of the Effectiveness of CNN
Models in Classification, Segmentation, and Detection Tasks in Dental Radiology

Comparison Z-score

p-value Significance r-effect size

Classification case

EfficientNet vs DenseNet 2.01 0.041 * 0.32
EfficientNet vs ResNet 2.05 0.024 * 0.33
EfficientNet vs MobileNet 4.03 0.0002 * 0.56
EfficientNet vs Inception 2.08 0.017 * 0.34
DenseNet vs MobileNet 3.07 0.001 ** 0.49
ResNet vs MobileNet 3.03 0.002 * 0.48
DenseNet vs Inception 1.05 0.135 n.s. 0.17
ResNet vs Inception 1.03 0.194 n.s. 0.16

Segmentation case

HRNet vs U-Net 22 0.033 * 0.34

HRNet vs Mask R-CNN 25 0.012 * 0.38

U-Net vs Mask R-CNN 0.5 0.612 n.s. 0.08
Detection case

YOLOvV8 vs YOLOV5 26 0.009 * 0.41

YOLOvV8 vs Mask R-CNN 3.2 0.001 * 0.50

YOLOV8 vs MobileNet(det) 3.8 0.0003 * 0.59

YOLOvV5 vs Mask R-CNN 1.7 0.091 n.s. 0.27

YOLOV5 vs MobileNet(det) 24 0.018 * 0.38

Mask R-CNN vs MobileNet(det) 0.6 0.548 n.s. 0.09

Source: developed by the authors in Python.

DISCUSSION

Discussion analysis in dental applications of deep
learning is necessary to verify the effectiveness of CNN
architectures integrated into clinical CDSS frameworks.
Systemic comparison with existing studies determines
the relevance, generalizability, and functional suitability
of models in the specifics of dental radiology.

Karuppan Perumal et al. [29] demonstrated that
AI-CDSS in dental oncology analyse multimodal
clinical-radiological data, ensuring early diagnosis and
personalized treatment. The results of our study
showed identical trends, while providing metric
verification ~of HITL-CDSS, which  enhances
clinical-diagnostic validity.

Veseli et al[30] showed that Al-technologies in
dentistry served as a tool for advanced diagnostics of
systemic pathologies during routine examinations. In
contrast, the focus in our study was shifted to the
integration suitability of CNN architectures in CDSS,
ensuring their metric verification and reinforcement with
expert knowledge through HITL mechanisms.

Subramanian et al. [31] demonstrated high
accuracy of the UlcerNet-2 CNN architecture (96%) in
classifying oral ulcer stages using RMSprop and SELU

in a fog—cloud environment. The results of our study
correlated with the opponents’ data, but expanded the
emphasis from the narrow diagnosis of ulcer lesions to
the comprehensive metric verification of CNN
architectures and HITL integration.

Kim et al. [32] reported near-ceiling discrimination
(Acc = 0.9989; F1 = 0.9979) wusing a
ResBlock-AutoEncoder, whereas the CNN stack in our
HITL-CDSS achieved lower absolute values but
demonstrated statistically validated generalizability
(AUC = 0.96-0.98; BCa-F1 = 0.91-0.94) across
heterogeneous tasks. This reflected a methodological
shift from single-task optimization toward multi-metric
robustness.

Huang et al. [33] achieved high segmentation
accuracy (Acc = 98.66%) after Sobel enhancement;
however, when benchmarked against our models,
HRNet and U-Net demonstrated comparable Dice/loU
ranges (DSC = 0.89-0.92; loU = 0.84-0.87) with
statistically supported stability under domain variation,
confirming  stronger integration  suitability for
HITL-augmented CDSS pipelines.

Noor Uddin et al. [34] conducted a systematic
review of DL models for caries detection, recording a
wide range of accuracy (Acc = 56-99.1%), sensitivity
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(23-98%), and specificity (65.7-100%). In contrast,
empirical metric and indicator modelling was conducted
in our study with digital verification of CNN
architectures, the results of which indicate the
effectiveness of the HITL-CDSS framework.

Kayadibi et al.[35] demonstrated that the
GooglLeNet E-mTMCNN architecture with LIME
visualization achieved high discrimination ability in
detecting m-M3 on PR (AUC = 87.01%). In contrast,
our study implemented HITL-CDSS with an extended
CNN configuration and formalized verification of
integration relevance.

Saldivia-Siracusa et al. [36] demonstrated the
effectiveness of ConvNeXt and MobileNet for
OPMD/OSCC classification (AUROC = 0.863; F1 =
0.794) with Grad-CAM interpretability. In contrast, our
study implemented a multi-component HITL-CDSS
architecture with a wider range of CNN models,
focused on precision segmentation, detection, and
classification of dental pathologies.

Marie et al.[37] proposed LDM architectures with
bioinspired loss functions (GAPI, DTBR), which
provided high quality reconstruction of paediatric dental
images (SSIM = 0.952; mAP1 = +0.0694). Our study
implemented HITL-CDSS with higher AUC (0.96-0.98),

DSC (0.89-0.92) and mAP (0.72-0.77) scores,
focusing on interpretable verification of dental
pathologies.

Chai et al.[38] showed that IAPO-optimized Vanilla
CNN achieved 92.5% accuracy in detecting oral cancer,
outperforming ResNet-101 (90.1%) and DenseNet-121
(89.5%). Our study implemented a broader CNN stack
with HITL-CDSS (AUC 0.96-0.98; F1@t 0.91-0.94),
which improved the interpretability of CDSS modules.

A review of the opponents’ results showed the
general effectiveness of CNN models in dental
diagnostics (Acc up to 99.1%; AUC up to 0.98), but
mostly without emphasis on integration and validation
aspects. In our study, a HITL-oriented CDSS
framework with an extended CNN stack was
implemented, which ensured metric verification,
interpretability, and integration suitability for clinical
practice.

LIMITATION

The study did not include clinical testing of the
developed HITL-CDSS framework in real dental
practice, which limited external validation of the results.
The lack of prospective evaluation also prevented
assessment of system adaptability in dynamic clinical
decision-making scenarios. Moreover, model
generalizability remained constrained by the absence

of testing on a fully independent external dataset,
which restricted the extrapolation of reported
performance metrics (AUC, F1@t, DSC, mAP) beyond
the internal validation domain.

RECOMMENDATIONS

It is appropriate to implement a controlled clinical
pilot to verify the effectiveness of the HITL-CDSS in
real dental protocols. A multidimensional evaluation of
the system with the participation of interdisciplinary
experts should be ensured, with a focus on functional

integration, interpretability, and stability in clinical
settings.
CONCLUSIONS

The architectural and functional, metric and
indicator, as well as integration modelling of CNN
architectures revealed critically relevant approaches to
building CDSS in dental radiology. The optimized
HITL-CDSS framework, formed on the basis of the
synthesis of the most effective models (DenseNet/
EfficientNet, HRNet, YOLOvS8), demonstrated higher
discrimination ability (AUC = 0.96-0.98), improved
operational accuracy (F1@t = 0.91-0.94), reduced
calibration gap (ECE = 0.02-0.04), high segmentation
(DSC = 0.89-0.92), and detection (mAP = 0.72-0.77)
efficiency.

The implementation of HITL mechanisms provided
increased generalizability of models, interpretability of
solutions (XAl), resistance to domain shifting, and
expanded the clinical and diagnostic validity of CDSS.
The obtained results confirm that the integration of
CNN into dental CDSS should have a multi-modular
structure, with a focus on the symbiosis of automated
inference and expert professional reinforcement.

The academic novelty of the research is the
development of a composite HITL-CDSS framework
with multi-level integration of CNN architectures, which
provides metrically verified interpretability,
generalizability, and resistance to domain shifting in
dental radiology tasks.

The practical significance of the research results is
the formalization of approaches to the synthesis and
optimization of clinically validated CDSS solutions for
automated diagnostics of dental pathologies with the
involvement of expert professional support.
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