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Abstract: Health-care administrators face ongoing challenges managing emergency department (ED) operations,
particularly in understanding how patient arrival trends fluctuate within the 24-hour day. Although prior research has
examined the times at which patients seek emergency care, most of these studies have used simple statistical methods
that do not account for time as a periodic variable. As a result, many significant time-of-day patterns may not be
detected. We use circular statistics on 142,005 hourly emergency department admissions at a large hospital in lowa from
January 2014 to August 2017. Overall, the pattern of ED visits presents an anisotropic distribution that is statistically
significant according to both Rayleigh and Kuiper tests. Patient arrival times show a circular mean in the early to mid-
afternoon, a marked late-afternoon modal peak, and a diffuse distribution across the day. Adjusted circular probability
models such as the von Mises distribution, cardioid distribution, and the wrapped normal distribution perform significantly
better than the circular uniform model when the AIC, BIC, CAIC, and HQIC criteria are considered. The circular summary
charts help in understanding the various trends observed in the time series graph. In pointing out how the use of a
circular method is a mathematically appropriate and more interpretable approach for describing trends related to
admissions on an hourly basis, this piece of research also points out the benefits of such a method as being a useful tool

for health-care planners.

Keywords: Circular Statistics, Emergency Department, Temporal Patterns, von Mises Distribution, Uncertainty

Quantification, Healthcare Operations.

1. INTRODUCTION

Emergency departments (EDs) serve as vital
gateways for providing emergency medical services, a
setting for immediate and unplanned treatment.
Increasing demand for ED services has placed further
pressure on staffing, patient throughput, and crowd
management across the world. One of the main
questions that underlies these issues is: when do
patients tend to arrive, in general?

Existing work consistently shows temporal variation
in ED and emergency service utilization. Studies have
documented pronounced daily, weekly, and seasonal
patterns in ED arrivals and length of stay, with peaks at
particular hours of the day and substantial variation
across days and months [1-4]. Forecasting studies
have employed regression, classical time-series
models, and machine learning to predict ED arrivals or
occupancy [5-9], informing staffing and bed-
management decisions.

*Address correspondence to this author at the Sri Ramachandra Faculty of
Engineering and Technology, Sri Ramachandra Institute of Higher Education
and Research, Porur, Chennai, India; E-mail: alshadkb@gmail.com

However, most prior investigations treat time-of-day
using linear methods that do not fully respect the
cyclical structure of the 24-hour clock. A clock reading
23:00 and one reading 01:00 are only two hours apart
on the circle, but appear far apart on a linear scale.
Classical treatments of circular data [10-13] and more
recent practical guidance [14-17] stress that hours,
directions, and phases are inherently periodic and
require specialized methods. Circular statistics provide
tools such as circular means and variances, circular
uniformity tests (e.g., Rayleigh and Kuiper tests), and
circular probability distributions (e.g., von Mises and
wrapped normal), which are now widely used in
biology, environmental science, and the social sciences
[15,18].

Despite a growing body of work on ED forecasting
[5-9] and temporal patterns in arrivals [1,3], the explicit
use of circular statistics for hour-of-day ED arrivals
remains uncommon. Related health research has
illustrated how sine-cosine terms can capture periodic
seasonal patterns [19], but this approach is rarely
extended to the 24-hour cycle via circular methods.
Recent work has demonstrated the value of circular
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statistics in medical contexts such as analyzing
circadian patterns in blood pressure [20] and activity
rhythms in critical care settings [21], yet their
application to ED operational planning remains
underexplored.

To address this methodological gap, we conduct a
comprehensive circular statistical analysis of hourly ED
admission data covering January 2014 through August
2017 from a major tertiary hospital in lowa. Unlike
previous ED forecasting studies, where time is treated
linearly or represented using ad-hoc hour-of-day
indicators, our work explicitly applies the full machinery
of circular statistics—including circular summary
measures, formal uniformity tests, and parametric
circular distribution fitting—to characterize the 24-hour
rhythm in ED arrivals. Specifically, this study: (1)
demonstrates that circular methods vyield more
mathematically appropriate and interpretable
characterizations of hourly ED patterns than linear
approaches; (2) provides a rigorous statistical
framework for identifying and quantifying daily
admission rhythms using established circular
distributions; (3) presents useful visualizations,
including rose diagrams and circular summaries, that
can directly inform operational decision-making; and (4)
establishes a methodological template for applying
circular statistics to other cyclical healthcare processes.

The dataset was compiled by Choudhury and Urena
and is publicly available in the Dryad repository
(https://datadryad.org/dataset/doi:10.5061/dryad.q57d4
g4) [5]. It has been used previously for hourly ED
forecasting based on traditional time-series models. By
applying circular measures of central tendency,
dispersion, distributional fitting, and formal uniformity
tests, this work offers a more accurate representation
of the daily rhythm of emergency care utilization and
complements existing forecasting studies.

2. MATERIALS AND METHODS

2.1. Study Design, Setting, and Dataset

We performed a retrospective observational study
using de-identified hourly ED admission data from a
large tertiary academic hospital in lowa. The dataset,
compiled by Choudhury and Urena and made publicly
available in the Dryad repository (https://datadryad.org/
dataset/doi:10.5061/dryad.q57d4g4) [5], contains
hourly arrival counts aggregated over the period
January 2014 to August 2017. For each hour of the day
(00:00 through 23:00), the dataset reports the total
number of ED admissions occurring in that hour over

the full study period. All personal identifiers were
removed prior to analysis, and only aggregated counts
were used.

2.2. Data Preparation, Descriptive Analysis, and
Circular Transformation

Each of the 24 hours was treated as a discrete point
on the 24-hour clock. Let A €{0,1,...,23} denote the
hour index. To apply circular statistical methods
appropriately [10,11,14], we converted these clock
hours into angular measurements in radians using

6, =27 iso,.., (1)
24

mapping the 24-hour day onto the unit circle, with

midnight (00:00) at angle 0, noon (12:00) at =, and so

. 2w
on in steps of — .
24

Let n, denote the total number of admissions
recorded at hour 5, across the study period. To
account for these differing frequencies, we formed a
frequency-weighted angular sample by repeating each
6, exactly n, times. This expanded vector of angles
represents each individual admission as a point on the

circle and is the basis for all circular computations, as
recommended for grouped circular data [15-17].

While this frequency-weighted expansion is the
standard approach for grouped circular data and allows
proper application of circular statistical methods, it does
have limitations. Most notably, by aggregating all
admissions within each hour into a single angular
value, we lose information about within-hour variability
in arrival times. For instance, admissions occurring at
14:05 and 14:55 are both ftreated identically as
occurring at hour 14. This aggregation may smooth
over finer temporal patterns such as quarter-hour or
half-hour cycles. Additionally, the method assumes that
each admission within an hour contributes equally to
the circular pattern, which may not fully capture
variations in patient acuity or service demand
throughout the hour. Despite these limitations, hourly
aggregation remains the most common temporal
resolution in ED operational data [1,2,5], and our
approach faithfully represents the information available
in such aggregated datasets. Future work with finer-
grained timestamps could address within-hour
variability more directly.

In parallel, we produced simple descriptive
summaries in the original hour scale: total counts per
hour, a line plot of hourly admissions across 00:00—
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23:00, and a heatmap of hourly counts with wrap-
around from 23:00 to 00:00. These linear visualizations
provide an intuitive first impression of the data, while
the circular diagrams emphasize the cyclical nature of
time-of-day.

2.3. Circular Statistical Methods and Distribution
Fitting

We computed classical circular summary statistics

as described by Fisher [10] and Mardia and Jupp [11].
Given an expanded angular sample {6}, we first

j=17

formed the mean sine and cosine components:

6=lzcos9j, (2)
n“

= 1.

S =;Esm9j. (3)

The mean resultant length R is
R=AC?+5, (4)

with R€[0,1]. Intuitively, R measures how tightly the

data cluster around a single direction: R=1 indicates
perfect concentration at one point on the circle, while
R=0 indicates complete dispersion uniformly around

the circle. The circular mean direction 6 is given by

0 =atan2(S,C), (5)
mapped to [0,27), and was subsequently converted
back to hours by

h=—0. (6)

The circular mean represents the “typical’ or
“average” time of day at which admissions occur,
accounting for the circular nature of the clock.

The circular variance was defined as
V=1-R, (7)

and the circular standard deviation S was computed
using the standard approximation [10,11]

S=vJ-2InR, (8)

expressed both in radians and in hours by scaling S by

22—4. A larger circular standard deviation indicates
T

greater spread of admissions throughout the day, while
a smaller value indicates tighter clustering around the
mean direction.

In addition to these measures, we identified the
circular median (defined as the 50th percentile of the
angular sample) and circular mode (the hour with
maximum admission count).

We then evaluated four circular probability models
commonly recommended for circular data [11,14,15]:
the circular uniform distribution, the von Mises
distribution, the cardioid distribution, and the wrapped
normal distribution. These distributions are all unimodal
and were selected based on standard practice in
circular data analysis [10,14]. Here we restricted
attention to unimodal circular distributions because the
empirical data exhibit a single clear peak in the late
afternoon (hour 17), with no secondary peaks of
comparable magnitude (Figure 2). While multimodal
circular distributions such as mixtures of von Mises
distributions exist [11,13], their use is typically justified
when multiple distinct peaks of similar prominence are
present—for instance, in biological contexts with
bimodal activity rhythms or navigational data with
multiple preferred directions. In our dataset, admissions
decline smoothly from the late-afternoon peak through
the evening and night, without a second distinct mode.
Introducing additional parameters for multimodal
models without empirical justification would risk
overfitting and complicate interpretation. Nonetheless,
if future studies reveal secondary peaks (e.g., a minor
morning surge in certain EDs), mixture models or other
multimodal approaches [13] would be appropriate
extensions.

2.3.1. Uniform Circular Distribution

The circular uniform model assumes all directions
are equally likely, with density

£O)=——, 0<0<2x. ©)
27
2.3.2. Von Mises Distribution

The von Mises distribution has density

S O3 u,K) = exp{xcos(0-u)}, (10)

1
271, (k)

where u is the mean direction, k=0 is the

concentration parameter, and I,(x) is the modified

Bessel function of the first kind and order zero [10,11].
Larger values of k indicate stronger clustering of data
around the mean direction u, analogous to smaller

variance in linear statistics. When k =0, the von Mises
distribution reduces to the circular uniform distribution.
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2.3.3. Cardioid Distribution

The cardioid distribution is a simple unimodal
circular distribution with density

1+2pcos(0-u)

5 (11)

fe@su,p)=

where u is the mean directon and p is a
concentration parameter satisfying 0=<p=<05 to
ensure a valid density [11]. Larger p Vvalues
correspond to stronger clustering around u, with p=0
yielding the uniform distribution and p=0.5 producing
maximum asymmetry.

2.3.4. Wrapped Normal Distribution

The wrapped normal distribution wraps a normal
variate with mean u and standard deviation o onto

the unit circle [11,13]. Its density at angle 6 is
Eexp{ 0 - [,L+2Jrk) } (12)

with the sum truncated numerically to a small range of
k values in practice. The parameter o controls the
degree of wrapping and concentration: smaller o
yields tighter clustering, while larger o corresponds to
greater dispersion.

fWN(H;M,U)—

For the von Mises, cardioid, and wrapped normal
models, parameters (u,x), (u,p), and (u,0) were

estimated by maximum likelihood using the expanded
angular sample, following standard implementations
[10,14,15]. The uniform model has no free parameters.

To compare the fit of these distributions, we used
the log-likelihood ¢ and four information criteria:
Akaike Information  Criterion (AIC), Bayesian
Information Criterion (BIC), corrected AIC (CAIC), and
the Hannan-Quinn Information Criterion (HQIC). For
each model with k free parameters and sample size
n , these are defined as

AIC =2k -2/, (13)

BIC = kIn(n)-2/, (14)

CAIC =AIC+M, (15)
n-k-

HOQIC =2kIn(Inn)-2¢, (16)

as commonly used in ED forecasting and model-
comparison studies [5-9].

2.4 Tests for Uniformity and Goodness-of-Fit

To assess whether arrivals were uniformly
distributed around the circle, we applied two widely

used circular uniformity tests [10,11,17]: the Rayleigh
test and Kuiper test.

The Rayleigh test statistic is defined as
Z=nRk’, (17)

which, under the null hypothesis of circular uniformity,
has an approximate distribution that allows
computation of a p-value [10]. This test is particularly

powerful for unimodal, non-uniform alternatives.

The Kuiper test compares the empirical cumulative
distribution function (ECDF) of the angles with the CDF
of the circular uniform distribution and is sensitive to
deviations anywhere on the circle [11,17]. It is a circular
analogue of the Kolmogorov-Smirnov test and is
invariant under rotation of the circle, making it suitable
for detecting both localized and global deviations from
uniformity.

In addition to these formal tests, we visually
compared the empirical histogram of hourly admissions
with the fitted circular probability density functions
(PDFs), and we compared the ECDF with fitted circular
cumulative distribution functions (CDFs) for the
uniform, von Mises, cardioid, and wrapped normal
models [15,17].

2.5. Software

All analyses were performed in Python (version
3.11). Numerical computation and data handling were
implemented using NumPy and Pandas, circular
statistics and distribution fitting using SciPy, and
plotting using Matplotlib. This combination follows
recent recommendations for reproducible circular data
analysis and visualization [15,17,18].

3. RESULTS AND DISCUSSION
3.1. Circular Statistical Summary

Table 1 presents the circular statistical measures for
hourly ED admissions. The circular mean of 15.3 hours
corresponds to approximately 15:15 (3:15 PM),
identifying this period as the typical admission hour.
The circular median of 14.0 hours (14:00, 2:00 PM)
yields a similar estimate, confirming that arrivals tend to
cluster in the early-to-mid-afternoon range. The circular
mode at 17 hours (17:00, 5:00 PM) shows that this
single hour recorded the highest frequency of
admissions. The mean resultant length R=0.27
indicates weak overall clustering when compared to
standard benchmarks [10, 11], which suggests the
presence of an afternoon peak while admissions
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remain fairly distributed across the 24-hour cycle. In
specific terms, an R value of 0.27 indicates a dominant
daily rhythm that is not tightly concentrated at a single
time—ED demand remains substantial throughout
many hours of the day rather than spiking sharply in
one narrow window. The corresponding circular
variance V =0.73 and circular standard deviation
S=1.62 radians (approximately 6.2 hours) reinforce
this impression of a broad spread. The fitted von Mises
distribution resulted in a mean direction parameter
u=153 hours (15:15), closely matching the circular

mean and confirming that the parametric model places
the peak in the same afternoon window. The
concentration parameter k =0.56 represents modest
clustering, in agreement with the observed mean
resultant length.

Rayleigh’s test statistic was Z=10174.63 witha p-

value below 0.001, whereas the Kuiper test statistic
was V=022, also with p<0.001. Together, these

tests give strong evidence against the null hypothesis
of a uniform 24-hour arrival pattern, confirming a
pronounced daily rhythm in ED admissions [10, 16].
These fluctuations pose an operational challenge, as
the results show that ED arrivals are far from random
within the course of a day. The very high degree of
significance of non-uniformity points to predictable,
systematic variation in demand, which can be
leveraged for operational planning. Specifically, the
concentration of arrivals in the afternoon and early
evening suggests that staffing and resource allocation
should be adjusted accordingly, rather than being
spread uniformly across all hours. The shape of this
rhythm—low activity overnight, rising through the
morning, peaking from early afternoon into early
evening, and declining again at night—is consistent

with prior descriptions of ED arrival patterns and
crowding dynamics [1-3].

The above summaries demonstrate that the ED
displays a strong circadian structure, with arrivals
concentrated from early afternoon to early evening but
non-negligible volumes across much of the day. Such
patterns align with previous observational work
documenting daytime peaks and nighttime troughs [1,
3] and complement studies on time-series forecasting
that consider the hour of day as an important predictor
[2, 5, 6].

3.2. Visualization of Circular Patterns

Figure 1 above shows the rose diagram (circular
histogram) of hourly ED admissions with the circular
mean direction overlaid. The length of the bars
represents the frequency of admissions in that hour,
plotted at its corresponding angle, making the cyclical
nature of the data visually explicit. The direction arrow
indicates that, on average, patients entered the ED in
the afternoon, prior to the peak hour.

The line plot in Figure 2 depicts ED admissions on a
linear time-of-day axis, with vertical lines indicating the
circular mean, circular median, and mode. This view
complements the rose diagram by presenting the same
information in a familiar format while emphasizing the
afternoon and early-evening peak.

Figure 3 summarizes mean direction and dispersion
on the circle. The mean resultant vector, of length
V=0.22, points to the estimated mean arrival time,

Table 1: Circular Statistical Measures of Hourly ED Admissions

Statistic

Value Interpretation

Circular Mean

15.3 hours

Typical admission hour

Circular Median

14.0 hours

Middle point

Circular Mode

17 hours

Highest count

Mean Resultant (R )

Weak clustering

Circular Variance (V')

High variance

Circular Std Dev (S ) 1.62 rad Dispersion
Circular Std Dev ~6.2 hrs Dispersion in hours
VM Mean (u) 15.3 hours Peak time
VM Concentration (k) Concentration
Rayleigh Stat ( Z ) 10174.63 Non-uniform
Rayleigh p -value <0.001 Significant
Kuiper Stat (V') Non-uniform

Kuiper p -value

<0.001

Significant
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Figure 1: Rose diagram of hourly ED admissions with circular mean direction indicated. Bars represent total admissions per

hour, mapped to angles on the 24-hour clock.
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Figure 2: Hourly ED admissions across the 24-hour day, with circular mean, median, and mode indicated as vertical reference

lines.

while the shaded band indicates approximately =1
circular standard deviation. As recommended for
circular data visualization [15,17], this plot
communicates both the dominant direction and the
degree of spread in a way that is directly interpretable
on the original circular scale.

3.3 Distributional
Criteria Comparison

Modelling and Information-

To assess how well different circular probability
models represent the observed pattern, we fitted the
circular uniform, von Mises, cardioid, and wrapped

normal distributions to the expanded angular sample.
Figure 4 shows the empirical histogram of hourly
angles with the fitted circular PDFs overlaid. The
continuous curves are scaled so that their total area
matches the total number of admissions, allowing direct
comparison between observed counts and model-
based expectations.

The fitted von Mises, cardioid, and wrapped normal
curves track the empirical shape of the histogram much
more closely than the flat uniform curve, particularly in
capturing the afternoon peak and the extended
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Circular Summary of Hourly ED Admissions
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Figure 3: Circular summary of mean direction and dispersion. The arrow shows the mean resultant vector; the shaded region
indicates =1 circular standard deviation around the mean direction.
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Figure 4: Histogram of hourly ED admission angles with fitted circular probability density functions: uniform, von Mises, cardioid,
and wrapped normal. Densities are scaled to histogram counts to aid visual comparison.

shoulder into early evening. This visual impression is
corroborated by the CDF comparison in Figure 5,
where the empirical CDF is plotted against the fitted
uniform, von Mises, cardioid, and wrapped normal
CDFs. All three non-uniform models follow the
empirical CDF closely across the entire circle, whereas
the uniform CDF deviates substantially.

To quantify relative fit quality, Table 2 summarizes
the information-criteria comparison across the four
models, reporting AIC, BIC, CAIC, and HQIC. Lower
values indicate better fit, with penalties for model

complexity. The cardioid model attains the lowest AIC,
BIC, CAIC, and HQIC values, closely followed by the
wrapped normal model; both substantially outperform
the circular uniform model. The von Mises model also
improves markedly on the uniform benchmark,
indicating that the additional parameters in these non-
uniform models are justified by improved fit to the data
[11,14,5-9].

While the cardioid model achieves the lowest
information criteria values, the wrapped normal model
performs nearly as well, with AIC and BIC differences
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Figure 5: Empirical cumulative distribution function (ECDF) of ED arrival angles and fitted circular CDFs for the uniform, von

Mises, cardioid, and wrapped normal models.

Table 2: Model Comparison Based on Information Criteria for the Cardioid, von Mises, Wrapped Normal, and Circular
Uniform Models. Lower Values Indicate Better Fit

Distribution k LogLik AlC BIC CAIC HaQIC
Wrapped Normal 2 -249667.385 499338.771 499358.498 499338.771 499344.665
Cardioid 2 -249458.215 498920.430 498940.158 498920.431 498926.324
von Mises 2 -250623.207 501250.415 501270.142 501250.415 501256.308
Uniform 0 -260987.733 521975.466 521975.466 521975.466 521975.466

of only :400—-420 units on a scale exceeding 498,000.
In practical terms, both models capture the empirical
distribution very effectively, and the small numerical
advantage of the cardioid may have limited operational
relevance. The von Mises model, though slightly less
optimal statistically, still fits the data far better than the
uniform model and remains a popular choice due to its
mathematical tractability and widespread use in circular
statistics [10,11]. For ED operational planning, any of
these three non-uniform models would provide a
reasonable basis for characterizing the daily rhythm.
The key practical insight is not which non-uniform
model is marginally superior, but rather that all non-
uniform models vastly outperform the uniform
assumption, underscoring the necessity of accounting
for circadian structure in ED demand modeling. The
choice among cardioid, wrapped normal, and von
Mises distributions may thus be guided by
computational convenience, interpretability, or
integration with existing forecasting frameworks, rather
than by small differences in information criteria [14,15].

These findings align with recent forecasting work
that emphasizes the importance of flexible, non-uniform

models in capturing ED arrival patterns [5-9]. While our
focus is on the static 24-hour pattern rather than
multihorizon forecasting, the same principle applies:
models that explicitly encode diurnal structure yield
more realistic representations of ED demand.

3.4. Heatmap and Circadian Structure

Figure 6 presents a heatmap of hourly ED
admissions across the circular day, with the 24th
column repeating 00:00 to show wrap-around
continuity. Darker cells indicate higher admission
counts. This visualization highlights the sustained band
of elevated activity from early afternoon into the
evening and the relative quiet during late-night and
early-morning hours.

Heatmap-style presentations of temporal variation
have been advocated as intuitive tools for
communicating ED crowding patterns to clinicians and
managers [1,8,9]. In our context, combining the
heatmap with circular plots reinforces the conclusion
that ED arrivals follow a pronounced circadian structure
that should be reflected in staffing and operational
planning.
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Heatmap of hourly ED admissions (24-hour circular day)
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Figure 6: Heatmap of hourly ED admissions with circular wrap-around, emphasizing the afternoon and early-evening peak and

reduced nighttime arrivals.

3.5 Relation to Previous Work and Practical
Implications

The daily pattern uncovered by circular statistics in
this dataset is consistent with prior observational and
forecasting studies of ED arrivals. For example,
Hertzum [1] reported strong effects of hour-of-day on
ED patient volume in Denmark, with daytime peaks and
nighttime troughs. Tiwari et al. [3] documented similar
temporal concentration in an Indian tertiary hospital,
and Jones et al. [2] showed that hour-of-day and
related variables substantially improve forecasting
performance.

More recent ED forecasting research has
investigated advanced time-series, regression, and
machine-learning approaches [5-9], often combining
calendar and meteorological features. Our analysis
supplements these efforts by focusing on the inherent
circular character of hour-of-day. Circular approaches
provide interpretable metrics such as the mean
direction, the mean resultant length, and the circular
variance, which are important characteristics of circular
distributions. These quantites can be directly
communicated to hospital leadership as &€oetypical
peak time&€« and &€cedegree of concentration around
the peakd€+ rather than abstract regression
coefficients.

To illustrate the practical utility of these findings,
consider a hypothetical ED currently using uniform 8-
hour staffing shifts (e.g., shifts starting at 00:00, 08:00,
and 16:00, each with equal staffing levels). Our
analysis shows that admissions peak around 17:00
(5:00 PM) and remain elevated from roughly 12:00 to
22:00, with a circular mean at 15:15 and substantial
dispersion (+6.2 hours). Based on these findings, ED
leadership could:

Increase staffing during the peak window
(14:00-20:00): Assign additional nurses, physicians,
and support staff to the afternoon and early-evening

shift to handle the documented surge in arrivals. For
instance, if the baseline staffing ratio is 1 physician per
10 patients per hour, the peak hours (15:00-18:00)
might justify increasing to 1 physician per 8 patients to
maintain service quality.

Reduce staffing during the trough (02:00-06:00):
With admissions reduced to approximately 2,200—
3,000 per hour during early morning hours (as opposed
to 8,485 at the peak), maintaining full daytime staffing
levels overnight is inefficient. Shifting one or two staff
members from the overnight shift to the afternoon shift
could improve resource utilization without
compromising the quality of care during low-demand
hours.

Implement flexible shift start times: Instead of
rigid 8-hour blocks, introduce staggered shifts starting
at 13:00, 14:00, and 15:00 to fit workforce availability to
the growing demand curve revealed by Figure 2.

Pre-position resources for the afternoon surge:
Ensure that examination rooms, diagnostic equipment,
and ancillary services are fully prepared by 14:00 each
day to accommodate the predictable increase in patient
flow.

Such alterations, grounded in the quantified circular
pattern, can reduce wait times during peak hours,
improve staff satisfaction by better matching workload
to staffing levels, and enhance overall ED efficiency [1,
9]. The circular mean and the parameters of dispersion
provide clear and interpretable targets for such
operational decisions, translating statistical findings into
staffing policies in a straightforward fashion.

From an operational viewpoint, the above-identified
afternoon to evening peak supports the concentration
of staff and resources in this window, while recognizing
that substantial arrivals continue across much of the
day. This is in keeping with other literature on best
practices for aligning ED staffing according to demand
to prevent crowding.
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3.6. Study Limitations

Several limitations may be noted for these results.
First, our analysis rests on data from a single hospital
in lowa over a 3.5-year period, which may limit
generalizability to other geographic regions, healthcare
systems, or time periods. Different EDs may have
distinct temporal patterns due to local demographics,
service availability (e.g., proximity to urgent care
clinics), and cultural factors affecting healthcare-
seeking behavior [3, 4].

Second, the dataset aggregates admissions across
multiple years (January 2014 to August 2017), which
obscures year-to-year variation in utilization or long-
term trend data. As a result, potential changes in arrival
patterns over time are not directly visible in the
aggregated visualizations. Seasonal effects, day-of-
week patterns, and holiday influences are not captured
by our hourly analysis. While circular methods are well-
suited to the 24-hour cycle, they do not address these
longer periodicities, which may also be operationally
relevant [1,2].

Third, we analyzed only aggregated hourly counts
without access to patient-level covariates such as age,
sex, chief complaint, triage acuity, or service times.
Consequently, we cannot determine whether the
observed circadian pattern is uniform across patient
subgroups or whether certain types of cases (e.g.,
trauma vs. medical complaints) exhibit different
temporal rhythms. Future work incorporating patient-
level data could refine our understanding of how
different populations contribute to the overall diurnal
pattern [9]. Fourth, as noted in Section 2.2, the
frequency-weighted expansion approach treats all
admissions within an hour as occurring at the same
angular point, thereby losing information about within-
hour variability. Finer temporal resolution (e.g., quarter-
hour or minute-level timestamps) would enable more
granular characterization of arrival patterns.

Finally, our analysis is descriptive and does not
establish causal mechanisms underlying the observed
circadian rhythm. Factors such as work schedules,
clinic hours, traffic patterns, and social routines likely
drive the afternoon peak, but our data do not permit
testing of such hypotheses. Nonetheless, the
documented pattern provides a robust empirical
foundation for operational planning, even in the
absence of causal explanation.

4. CONCLUSION

By applying circular statistical techniques to
142,005 hourly ED admissions from a large lowa
hospital spanning four years, we demonstrate that
patient arrivals follow a statistically significant, non-
uniform 24-hour pattern characterized by an early-to-
mid-afternoon mean, a late-afternoon modal peak, and
broad dispersion across the day. Circular measures of
central tendency and dispersion, together with the von
Mises, cardioid, and wrapped normal distributions,
provide a mathematically appropriate and interpretable
framework for describing these rhythms.

Both the Rayleigh and Kuiper tests confirm that
arrivals are far from uniformly distributed over the 24-
hour cycle. Fitted circular distributions substantially
outperform the circular uniform model in terms of AIC,
BIC, CAIC, and HQIC. Visualizations such as the rose
diagram, circular summary plot, CDF comparisons, and
circular heatmap effectively communicate these
findings to non-specialist audiences. More generally,
this study reinforces a fundamental principle discussed
throughout the literature on circular statistics [10, 11,
14, 15, 17]. variables that in their essence involve
circularity should be treated as such.

More broadly, this study underscores a general
principle highlighted in the circular statistics literature
[10,11,14,15,17]: when variables are inherently cyclical,
analyses should respect their circular structure. For
temporal patterns in emergency care, circular methods
offer a practical complement to established forecasting
approaches and can strengthen evidence-based
decisions about staffing, capacity, and resource
deployment in EDs.
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