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Abstract: Health-care administrators face ongoing challenges managing emergency department (ED) operations, 
particularly in understanding how patient arrival trends fluctuate within the 24-hour day. Although prior research has 
examined the times at which patients seek emergency care, most of these studies have used simple statistical methods 
that do not account for time as a periodic variable. As a result, many significant time-of-day patterns may not be 
detected. We use circular statistics on 142,005 hourly emergency department admissions at a large hospital in Iowa from 
January 2014 to August 2017. Overall, the pattern of ED visits presents an anisotropic distribution that is statistically 
significant according to both Rayleigh and Kuiper tests. Patient arrival times show a circular mean in the early to mid-
afternoon, a marked late-afternoon modal peak, and a diffuse distribution across the day. Adjusted circular probability 
models such as the von Mises distribution, cardioid distribution, and the wrapped normal distribution perform significantly 
better than the circular uniform model when the AIC, BIC, CAIC, and HQIC criteria are considered. The circular summary 
charts help in understanding the various trends observed in the time series graph. In pointing out how the use of a 
circular method is a mathematically appropriate and more interpretable approach for describing trends related to 
admissions on an hourly basis, this piece of research also points out the benefits of such a method as being a useful tool 
for health-care planners. 
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1. INTRODUCTION 

Emergency departments (EDs) serve as vital 
gateways for providing emergency medical services, a 
setting for immediate and unplanned treatment. 
Increasing demand for ED services has placed further 
pressure on staffing, patient throughput, and crowd 
management across the world. One of the main 
questions that underlies these issues is: when do 
patients tend to arrive, in general?  

Existing work consistently shows temporal variation 
in ED and emergency service utilization. Studies have 
documented pronounced daily, weekly, and seasonal 
patterns in ED arrivals and length of stay, with peaks at 
particular hours of the day and substantial variation 
across days and months [1-4]. Forecasting studies 
have employed regression, classical time-series 
models, and machine learning to predict ED arrivals or 
occupancy [5-9], informing staffing and bed-
management decisions.  
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However, most prior investigations treat time-of-day 
using linear methods that do not fully respect the 
cyclical structure of the 24-hour clock. A clock reading 
23:00 and one reading 01:00 are only two hours apart 
on the circle, but appear far apart on a linear scale. 
Classical treatments of circular data [10-13] and more 
recent practical guidance [14-17] stress that hours, 
directions, and phases are inherently periodic and 
require specialized methods. Circular statistics provide 
tools such as circular means and variances, circular 
uniformity tests (e.g., Rayleigh and Kuiper tests), and 
circular probability distributions (e.g., von Mises and 
wrapped normal), which are now widely used in 
biology, environmental science, and the social sciences 
[15,18].  

Despite a growing body of work on ED forecasting 
[5-9] and temporal patterns in arrivals [1,3], the explicit 
use of circular statistics for hour-of-day ED arrivals 
remains uncommon. Related health research has 
illustrated how sine-cosine terms can capture periodic 
seasonal patterns [19], but this approach is rarely 
extended to the 24-hour cycle via circular methods. 
Recent work has demonstrated the value of circular 
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statistics in medical contexts such as analyzing 
circadian patterns in blood pressure [20] and activity 
rhythms in critical care settings [21], yet their 
application to ED operational planning remains 
underexplored.  

To address this methodological gap, we conduct a 
comprehensive circular statistical analysis of hourly ED 
admission data covering January 2014 through August 
2017 from a major tertiary hospital in Iowa. Unlike 
previous ED forecasting studies, where time is treated 
linearly or represented using ad-hoc hour-of-day 
indicators, our work explicitly applies the full machinery 
of circular statistics–including circular summary 
measures, formal uniformity tests, and parametric 
circular distribution fitting–to characterize the 24-hour 
rhythm in ED arrivals. Specifically, this study: (1) 
demonstrates that circular methods yield more 
mathematically appropriate and interpretable 
characterizations of hourly ED patterns than linear 
approaches; (2) provides a rigorous statistical 
framework for identifying and quantifying daily 
admission rhythms using established circular 
distributions; (3) presents useful visualizations, 
including rose diagrams and circular summaries, that 
can directly inform operational decision-making; and (4) 
establishes a methodological template for applying 
circular statistics to other cyclical healthcare processes.  

The dataset was compiled by Choudhury and Urena 
and is publicly available in the Dryad repository 
(https://datadryad.org/dataset/doi:10.5061/dryad.q57d4
g4) [5]. It has been used previously for hourly ED 
forecasting based on traditional time-series models. By 
applying circular measures of central tendency, 
dispersion, distributional fitting, and formal uniformity 
tests, this work offers a more accurate representation 
of the daily rhythm of emergency care utilization and 
complements existing forecasting studies.  

2. MATERIALS AND METHODS 

2.1. Study Design, Setting, and Dataset 

We performed a retrospective observational study 
using de-identified hourly ED admission data from a 
large tertiary academic hospital in Iowa. The dataset, 
compiled by Choudhury and Urena and made publicly 
available in the Dryad repository (https://datadryad.org/ 
dataset/doi:10.5061/dryad.q57d4g4) [5], contains 
hourly arrival counts aggregated over the period 
January 2014 to August 2017. For each hour of the day 
(00:00 through 23:00), the dataset reports the total 
number of ED admissions occurring in that hour over 

the full study period. All personal identifiers were 
removed prior to analysis, and only aggregated counts 
were used.  

2.2. Data Preparation, Descriptive Analysis, and 
Circular Transformation 

Each of the 24 hours was treated as a discrete point 
on the 24-hour clock. Let  hi ! {0,1,…,23}  denote the 
hour index. To apply circular statistical methods 
appropriately [10,11,14], we converted these clock 
hours into angular measurements in radians using  

 
!i =

2"hi
24

, i = 0,…,23,           (1)  

mapping the 24-hour day onto the unit circle, with 
midnight (00:00) at angle 0 , noon (12:00) at ! , and so 

on in steps of 2!
24

.  

Let ni  denote the total number of admissions 
recorded at hour hi  across the study period. To 
account for these differing frequencies, we formed a 
frequency-weighted angular sample by repeating each 
!i  exactly ni  times. This expanded vector of angles 
represents each individual admission as a point on the 
circle and is the basis for all circular computations, as 
recommended for grouped circular data [15-17].  

While this frequency-weighted expansion is the 
standard approach for grouped circular data and allows 
proper application of circular statistical methods, it does 
have limitations. Most notably, by aggregating all 
admissions within each hour into a single angular 
value, we lose information about within-hour variability 
in arrival times. For instance, admissions occurring at 
14:05 and 14:55 are both treated identically as 
occurring at hour 14. This aggregation may smooth 
over finer temporal patterns such as quarter-hour or 
half-hour cycles. Additionally, the method assumes that 
each admission within an hour contributes equally to 
the circular pattern, which may not fully capture 
variations in patient acuity or service demand 
throughout the hour. Despite these limitations, hourly 
aggregation remains the most common temporal 
resolution in ED operational data [1,2,5], and our 
approach faithfully represents the information available 
in such aggregated datasets. Future work with finer-
grained timestamps could address within-hour 
variability more directly. 

In parallel, we produced simple descriptive 
summaries in the original hour scale: total counts per 
hour, a line plot of hourly admissions across 00:00–
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23:00, and a heatmap of hourly counts with wrap-
around from 23:00 to 00:00. These linear visualizations 
provide an intuitive first impression of the data, while 
the circular diagrams emphasize the cyclical nature of 
time-of-day.  

2.3. Circular Statistical Methods and Distribution 
Fitting 

We computed classical circular summary statistics 
as described by Fisher [10] and Mardia and Jupp [11]. 
Given an expanded angular sample {! j} j=1

n , we first 
formed the mean sine and cosine components:  

C = 1
n j=1

n

!cos" j ,            (2)  

S = 1
n j=1

n

!sin" j .            (3)  

The mean resultant length R  is  

R = C 2 + S 2 ,            (4)  

with R ! [0,1] . Intuitively, R  measures how tightly the 
data cluster around a single direction: R =1  indicates 
perfect concentration at one point on the circle, while 
R = 0  indicates complete dispersion uniformly around 
the circle. The circular mean direction !  is given by  

! = atan2(S ,C),            (5)  

mapped to [0,2! ) , and was subsequently converted 
back to hours by  

h = 24
2!

" .            (6)  

The circular mean represents the “typical” or 
“average” time of day at which admissions occur, 
accounting for the circular nature of the clock.  

The circular variance was defined as  

V =1! R,            (7)  

and the circular standard deviation S  was computed 
using the standard approximation [10,11]  

S = !2 lnR,            (8)  

expressed both in radians and in hours by scaling S  by 
24
2!

. A larger circular standard deviation indicates 

greater spread of admissions throughout the day, while 
a smaller value indicates tighter clustering around the 
mean direction.  

In addition to these measures, we identified the 
circular median (defined as the 50th percentile of the 
angular sample) and circular mode (the hour with 
maximum admission count).  

We then evaluated four circular probability models 
commonly recommended for circular data [11,14,15]: 
the circular uniform distribution, the von Mises 
distribution, the cardioid distribution, and the wrapped 
normal distribution. These distributions are all unimodal 
and were selected based on standard practice in 
circular data analysis [10,14]. Here we restricted 
attention to unimodal circular distributions because the 
empirical data exhibit a single clear peak in the late 
afternoon (hour 17), with no secondary peaks of 
comparable magnitude (Figure 2). While multimodal 
circular distributions such as mixtures of von Mises 
distributions exist [11,13], their use is typically justified 
when multiple distinct peaks of similar prominence are 
present—for instance, in biological contexts with 
bimodal activity rhythms or navigational data with 
multiple preferred directions. In our dataset, admissions 
decline smoothly from the late-afternoon peak through 
the evening and night, without a second distinct mode. 
Introducing additional parameters for multimodal 
models without empirical justification would risk 
overfitting and complicate interpretation. Nonetheless, 
if future studies reveal secondary peaks (e.g., a minor 
morning surge in certain EDs), mixture models or other 
multimodal approaches [13] would be appropriate 
extensions.  

2.3.1. Uniform Circular Distribution 

The circular uniform model assumes all directions 
are equally likely, with density  

fU (! ) =
1
2"
, 0 #! < 2" .           (9)  

2.3.2. Von Mises Distribution 

The von Mises distribution has density  

fVM (!;µ," ) =
1

2# I0 (" )
exp{" cos(! $µ)},       (10)  

where µ  is the mean direction, ! " 0  is the 
concentration parameter, and I0 (! )  is the modified 
Bessel function of the first kind and order zero [10,11]. 
Larger values of !  indicate stronger clustering of data 
around the mean direction µ , analogous to smaller 
variance in linear statistics. When ! = 0 , the von Mises 
distribution reduces to the circular uniform distribution.  
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2.3.3. Cardioid Distribution 

The cardioid distribution is a simple unimodal 
circular distribution with density  

fC (!;µ,") =
1+ 2" cos(! #µ)

2$
,        (11)  

where µ  is the mean direction and !  is a 
concentration parameter satisfying 0 ! " ! 0.5  to 
ensure a valid density [11]. Larger !  values 
correspond to stronger clustering around µ , with ! = 0  
yielding the uniform distribution and ! = 0.5  producing 
maximum asymmetry.  

2.3.4. Wrapped Normal Distribution 

 The wrapped normal distribution wraps a normal 
variate with mean µ  and standard deviation !  onto 
the unit circle [11,13]. Its density at angle !  is  

fWN (!;µ," ) =
1

" 2# k=$%

%

& exp $
(! $µ + 2#k)2

2" 2

'
(
)

*
+
,
,      (12)  

with the sum truncated numerically to a small range of 
k  values in practice. The parameter !  controls the 
degree of wrapping and concentration: smaller !  
yields tighter clustering, while larger !  corresponds to 
greater dispersion.  

For the von Mises, cardioid, and wrapped normal 
models, parameters (µ,! ) , (µ,!) , and (µ,! )  were 
estimated by maximum likelihood using the expanded 
angular sample, following standard implementations 
[10,14,15]. The uniform model has no free parameters.  

To compare the fit of these distributions, we used 
the log-likelihood  !  and four information criteria: 
Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC), corrected AIC (CAIC), and 
the Hannan-Quinn Information Criterion (HQIC). For 
each model with k  free parameters and sample size 
n , these are defined as  

 AIC = 2k ! 2!,          (13)  

 BIC = k ln(n)! 2!,         (14)  

CAIC = AIC + 2k(k +1)
n! k !1

,         (15)  

 HQIC = 2k ln(lnn)! 2!,         (16)  

as commonly used in ED forecasting and model-
comparison studies [5-9].  

2.4 Tests for Uniformity and Goodness-of-Fit 

To assess whether arrivals were uniformly 
distributed around the circle, we applied two widely 

used circular uniformity tests [10,11,17]: the Rayleigh 
test and Kuiper test.  

The Rayleigh test statistic is defined as  

Z = nR2,          (17)  

which, under the null hypothesis of circular uniformity, 
has an approximate distribution that allows 
computation of a p -value [10]. This test is particularly 
powerful for unimodal, non-uniform alternatives.  

The Kuiper test compares the empirical cumulative 
distribution function (ECDF) of the angles with the CDF 
of the circular uniform distribution and is sensitive to 
deviations anywhere on the circle [11,17]. It is a circular 
analogue of the Kolmogorov-Smirnov test and is 
invariant under rotation of the circle, making it suitable 
for detecting both localized and global deviations from 
uniformity.  

In addition to these formal tests, we visually 
compared the empirical histogram of hourly admissions 
with the fitted circular probability density functions 
(PDFs), and we compared the ECDF with fitted circular 
cumulative distribution functions (CDFs) for the 
uniform, von Mises, cardioid, and wrapped normal 
models [15,17].  

2.5. Software 

All analyses were performed in Python (version 
3.11). Numerical computation and data handling were 
implemented using NumPy and Pandas, circular 
statistics and distribution fitting using SciPy, and 
plotting using Matplotlib. This combination follows 
recent recommendations for reproducible circular data 
analysis and visualization [15,17,18].  

3. RESULTS AND DISCUSSION 

3.1. Circular Statistical Summary 

Table 1 presents the circular statistical measures for 
hourly ED admissions. The circular mean of 15.3 hours 
corresponds to approximately 15:15 (3:15 PM), 
identifying this period as the typical admission hour. 
The circular median of 14.0 hours (14:00, 2:00 PM) 
yields a similar estimate, confirming that arrivals tend to 
cluster in the early-to-mid-afternoon range. The circular 
mode at 17 hours (17:00, 5:00 PM) shows that this 
single hour recorded the highest frequency of 
admissions. The mean resultant length R = 0.27  
indicates weak overall clustering when compared to 
standard benchmarks [10, 11], which suggests the 
presence of an afternoon peak while admissions 
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remain fairly distributed across the 24-hour cycle. In 
specific terms, an R  value of 0.27 indicates a dominant 
daily rhythm that is not tightly concentrated at a single 
time—ED demand remains substantial throughout 
many hours of the day rather than spiking sharply in 
one narrow window. The corresponding circular 
variance V = 0.73  and circular standard deviation 
S =1.62  radians (approximately 6.2 hours) reinforce 
this impression of a broad spread. The fitted von Mises 
distribution resulted in a mean direction parameter 
µ =15.3  hours (15:15), closely matching the circular 
mean and confirming that the parametric model places 
the peak in the same afternoon window. The 
concentration parameter ! = 0.56  represents modest 
clustering, in agreement with the observed mean 
resultant length.  

Rayleigh’s test statistic was Z =10174.63  with a p -
value below 0.001, whereas the Kuiper test statistic 
was V = 0.22 , also with p < 0.001 . Together, these 
tests give strong evidence against the null hypothesis 
of a uniform 24-hour arrival pattern, confirming a 
pronounced daily rhythm in ED admissions [10, 16]. 
These fluctuations pose an operational challenge, as 
the results show that ED arrivals are far from random 
within the course of a day. The very high degree of 
significance of non-uniformity points to predictable, 
systematic variation in demand, which can be 
leveraged for operational planning. Specifically, the 
concentration of arrivals in the afternoon and early 
evening suggests that staffing and resource allocation 
should be adjusted accordingly, rather than being 
spread uniformly across all hours. The shape of this 
rhythm—low activity overnight, rising through the 
morning, peaking from early afternoon into early 
evening, and declining again at night—is consistent 

with prior descriptions of ED arrival patterns and 
crowding dynamics [1-3].  

The above summaries demonstrate that the ED 
displays a strong circadian structure, with arrivals 
concentrated from early afternoon to early evening but 
non-negligible volumes across much of the day. Such 
patterns align with previous observational work 
documenting daytime peaks and nighttime troughs [1, 
3] and complement studies on time-series forecasting 
that consider the hour of day as an important predictor 
[2, 5, 6].  

3.2. Visualization of Circular Patterns 

Figure 1 above shows the rose diagram (circular 
histogram) of hourly ED admissions with the circular 
mean direction overlaid. The length of the bars 
represents the frequency of admissions in that hour, 
plotted at its corresponding angle, making the cyclical 
nature of the data visually explicit. The direction arrow 
indicates that, on average, patients entered the ED in 
the afternoon, prior to the peak hour.  

The line plot in Figure 2 depicts ED admissions on a 
linear time-of-day axis, with vertical lines indicating the 
circular mean, circular median, and mode. This view 
complements the rose diagram by presenting the same 
information in a familiar format while emphasizing the 
afternoon and early-evening peak.  

Figure 3 summarizes mean direction and dispersion 
on the circle. The mean resultant vector, of length 
V = 0.22 , points to the estimated mean arrival time, 

Table 1: Circular Statistical Measures of Hourly ED Admissions  

Statistic   Value   Interpretation  

Circular Mean   15.3 hours   Typical admission hour  

Circular Median   14.0 hours   Middle point  

Circular Mode   17 hours   Highest count  

Mean Resultant ( R )   0.27   Weak clustering  

Circular Variance ( V )   0.73   High variance  

Circular Std Dev ( S )   1.62 rad   Dispersion  

Circular Std Dev   ! 6.2  hrs   Dispersion in hours  

VM Mean ( µ )   15.3 hours   Peak time  

VM Concentration ( ! )   0.56   Concentration  

Rayleigh Stat ( Z )   10174.63   Non-uniform  

Rayleigh p -value   < 0.001    Significant  

Kuiper Stat ( V )   0.22   Non-uniform  

Kuiper p -value   < 0.001    Significant  
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while the shaded band indicates approximately ±1  
circular standard deviation. As recommended for 
circular data visualization [15,17], this plot 
communicates both the dominant direction and the 
degree of spread in a way that is directly interpretable 
on the original circular scale.  

3.3 Distributional Modelling and Information-
Criteria Comparison 

To assess how well different circular probability 
models represent the observed pattern, we fitted the 
circular uniform, von Mises, cardioid, and wrapped 

normal distributions to the expanded angular sample. 
Figure 4 shows the empirical histogram of hourly 
angles with the fitted circular PDFs overlaid. The 
continuous curves are scaled so that their total area 
matches the total number of admissions, allowing direct 
comparison between observed counts and model-
based expectations.  

The fitted von Mises, cardioid, and wrapped normal 
curves track the empirical shape of the histogram much 
more closely than the flat uniform curve, particularly in 
capturing the afternoon peak and the extended 

 
Figure 1: Rose diagram of hourly ED admissions with circular mean direction indicated. Bars represent total admissions per 
hour, mapped to angles on the 24-hour clock.  

 

 
Figure 2: Hourly ED admissions across the 24-hour day, with circular mean, median, and mode indicated as vertical reference 
lines.  
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shoulder into early evening. This visual impression is 
corroborated by the CDF comparison in Figure 5, 
where the empirical CDF is plotted against the fitted 
uniform, von Mises, cardioid, and wrapped normal 
CDFs. All three non-uniform models follow the 
empirical CDF closely across the entire circle, whereas 
the uniform CDF deviates substantially.  

To quantify relative fit quality, Table 2 summarizes 
the information-criteria comparison across the four 
models, reporting AIC, BIC, CAIC, and HQIC. Lower 
values indicate better fit, with penalties for model 

complexity. The cardioid model attains the lowest AIC, 
BIC, CAIC, and HQIC values, closely followed by the 
wrapped normal model; both substantially outperform 
the circular uniform model. The von Mises model also 
improves markedly on the uniform benchmark, 
indicating that the additional parameters in these non-
uniform models are justified by improved fit to the data 
[11,14,5-9].  

While the cardioid model achieves the lowest 
information criteria values, the wrapped normal model 
performs nearly as well, with AIC and BIC differences 

 
Figure 3: Circular summary of mean direction and dispersion. The arrow shows the mean resultant vector; the shaded region 
indicates ±1  circular standard deviation around the mean direction.  

 

 
Figure 4: Histogram of hourly ED admission angles with fitted circular probability density functions: uniform, von Mises, cardioid, 
and wrapped normal. Densities are scaled to histogram counts to aid visual comparison.  
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of only : 400–420 units on a scale exceeding 498,000. 
In practical terms, both models capture the empirical 
distribution very effectively, and the small numerical 
advantage of the cardioid may have limited operational 
relevance. The von Mises model, though slightly less 
optimal statistically, still fits the data far better than the 
uniform model and remains a popular choice due to its 
mathematical tractability and widespread use in circular 
statistics [10,11]. For ED operational planning, any of 
these three non-uniform models would provide a 
reasonable basis for characterizing the daily rhythm. 
The key practical insight is not which non-uniform 
model is marginally superior, but rather that all non-
uniform models vastly outperform the uniform 
assumption, underscoring the necessity of accounting 
for circadian structure in ED demand modeling. The 
choice among cardioid, wrapped normal, and von 
Mises distributions may thus be guided by 
computational convenience, interpretability, or 
integration with existing forecasting frameworks, rather 
than by small differences in information criteria [14,15].  

These findings align with recent forecasting work 
that emphasizes the importance of flexible, non-uniform 

models in capturing ED arrival patterns [5-9]. While our 
focus is on the static 24-hour pattern rather than 
multihorizon forecasting, the same principle applies: 
models that explicitly encode diurnal structure yield 
more realistic representations of ED demand.  

3.4. Heatmap and Circadian Structure 

Figure 6 presents a heatmap of hourly ED 
admissions across the circular day, with the 24th 
column repeating 00:00 to show wrap-around 
continuity. Darker cells indicate higher admission 
counts. This visualization highlights the sustained band 
of elevated activity from early afternoon into the 
evening and the relative quiet during late-night and 
early-morning hours.  

Heatmap-style presentations of temporal variation 
have been advocated as intuitive tools for 
communicating ED crowding patterns to clinicians and 
managers [1,8,9]. In our context, combining the 
heatmap with circular plots reinforces the conclusion 
that ED arrivals follow a pronounced circadian structure 
that should be reflected in staffing and operational 
planning.  

 
Figure 5: Empirical cumulative distribution function (ECDF) of ED arrival angles and fitted circular CDFs for the uniform, von 
Mises, cardioid, and wrapped normal models.  

 

Table 2: Model Comparison Based on Information Criteria for the Cardioid, von Mises, Wrapped Normal, and Circular 
Uniform Models. Lower Values Indicate Better Fit 

Distribution   k    LogLik   AIC   BIC   CAIC   HQIC  

Wrapped Normal   2   -249667.385   499338.771   499358.498   499338.771   499344.665  

Cardioid   2   -249458.215   498920.430   498940.158   498920.431   498926.324  

von Mises   2   -250623.207   501250.415   501270.142   501250.415   501256.308  

Uniform   0   -260987.733   521975.466   521975.466   521975.466   521975.466  
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3.5 Relation to Previous Work and Practical 
Implications 

The daily pattern uncovered by circular statistics in 
this dataset is consistent with prior observational and 
forecasting studies of ED arrivals. For example, 
Hertzum [1] reported strong effects of hour-of-day on 
ED patient volume in Denmark, with daytime peaks and 
nighttime troughs. Tiwari et al. [3] documented similar 
temporal concentration in an Indian tertiary hospital, 
and Jones et al. [2] showed that hour-of-day and 
related variables substantially improve forecasting 
performance.  

More recent ED forecasting research has 
investigated advanced time-series, regression, and 
machine-learning approaches [5-9], often combining 
calendar and meteorological features. Our analysis 
supplements these efforts by focusing on the inherent 
circular character of hour-of-day. Circular approaches 
provide interpretable metrics such as the mean 
direction, the mean resultant length, and the circular 
variance, which are important characteristics of circular 
distributions. These quantities can be directly 
communicated to hospital leadership as â€œtypical 
peak timeâ€� and â€œdegree of concentration around 
the peakâ€� rather than abstract regression 
coefficients.  

To illustrate the practical utility of these findings, 
consider a hypothetical ED currently using uniform 8-
hour staffing shifts (e.g., shifts starting at 00:00, 08:00, 
and 16:00, each with equal staffing levels). Our 
analysis shows that admissions peak around 17:00 
(5:00 PM) and remain elevated from roughly 12:00 to 
22:00, with a circular mean at 15:15 and substantial 
dispersion (± 6.2 hours). Based on these findings, ED 
leadership could:  

Increase staffing during the peak window 
(14:00–20:00): Assign additional nurses, physicians, 
and support staff to the afternoon and early-evening 

shift to handle the documented surge in arrivals. For 
instance, if the baseline staffing ratio is 1 physician per 
10 patients per hour, the peak hours (15:00–18:00) 
might justify increasing to 1 physician per 8 patients to 
maintain service quality.  

Reduce staffing during the trough (02:00–06:00): 
With admissions reduced to approximately 2,200–
3,000 per hour during early morning hours (as opposed 
to 8,485 at the peak), maintaining full daytime staffing 
levels overnight is inefficient. Shifting one or two staff 
members from the overnight shift to the afternoon shift 
could improve resource utilization without 
compromising the quality of care during low-demand 
hours.  

Implement flexible shift start times: Instead of 
rigid 8-hour blocks, introduce staggered shifts starting 
at 13:00, 14:00, and 15:00 to fit workforce availability to 
the growing demand curve revealed by Figure 2.  

Pre-position resources for the afternoon surge: 
Ensure that examination rooms, diagnostic equipment, 
and ancillary services are fully prepared by 14:00 each 
day to accommodate the predictable increase in patient 
flow.  

Such alterations, grounded in the quantified circular 
pattern, can reduce wait times during peak hours, 
improve staff satisfaction by better matching workload 
to staffing levels, and enhance overall ED efficiency [1, 
9]. The circular mean and the parameters of dispersion 
provide clear and interpretable targets for such 
operational decisions, translating statistical findings into 
staffing policies in a straightforward fashion.  

From an operational viewpoint, the above-identified 
afternoon to evening peak supports the concentration 
of staff and resources in this window, while recognizing 
that substantial arrivals continue across much of the 
day. This is in keeping with other literature on best 
practices for aligning ED staffing according to demand 
to prevent crowding.  

 
Figure 6: Heatmap of hourly ED admissions with circular wrap-around, emphasizing the afternoon and early-evening peak and 
reduced nighttime arrivals.  
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3.6. Study Limitations 

Several limitations may be noted for these results. 
First, our analysis rests on data from a single hospital 
in Iowa over a 3.5-year period, which may limit 
generalizability to other geographic regions, healthcare 
systems, or time periods. Different EDs may have 
distinct temporal patterns due to local demographics, 
service availability (e.g., proximity to urgent care 
clinics), and cultural factors affecting healthcare-
seeking behavior [3, 4].  

Second, the dataset aggregates admissions across 
multiple years (January 2014 to August 2017), which 
obscures year-to-year variation in utilization or long-
term trend data. As a result, potential changes in arrival 
patterns over time are not directly visible in the 
aggregated visualizations. Seasonal effects, day-of-
week patterns, and holiday influences are not captured 
by our hourly analysis. While circular methods are well-
suited to the 24-hour cycle, they do not address these 
longer periodicities, which may also be operationally 
relevant [1,2].  

Third, we analyzed only aggregated hourly counts 
without access to patient-level covariates such as age, 
sex, chief complaint, triage acuity, or service times. 
Consequently, we cannot determine whether the 
observed circadian pattern is uniform across patient 
subgroups or whether certain types of cases (e.g., 
trauma vs. medical complaints) exhibit different 
temporal rhythms. Future work incorporating patient-
level data could refine our understanding of how 
different populations contribute to the overall diurnal 
pattern [9]. Fourth, as noted in Section 2.2, the 
frequency-weighted expansion approach treats all 
admissions within an hour as occurring at the same 
angular point, thereby losing information about within-
hour variability. Finer temporal resolution (e.g., quarter-
hour or minute-level timestamps) would enable more 
granular characterization of arrival patterns.  

Finally, our analysis is descriptive and does not 
establish causal mechanisms underlying the observed 
circadian rhythm. Factors such as work schedules, 
clinic hours, traffic patterns, and social routines likely 
drive the afternoon peak, but our data do not permit 
testing of such hypotheses. Nonetheless, the 
documented pattern provides a robust empirical 
foundation for operational planning, even in the 
absence of causal explanation.  

4. CONCLUSION 

By applying circular statistical techniques to 
142,005 hourly ED admissions from a large Iowa 
hospital spanning four years, we demonstrate that 
patient arrivals follow a statistically significant, non-
uniform 24-hour pattern characterized by an early-to-
mid-afternoon mean, a late-afternoon modal peak, and 
broad dispersion across the day. Circular measures of 
central tendency and dispersion, together with the von 
Mises, cardioid, and wrapped normal distributions, 
provide a mathematically appropriate and interpretable 
framework for describing these rhythms.  

Both the Rayleigh and Kuiper tests confirm that 
arrivals are far from uniformly distributed over the 24-
hour cycle. Fitted circular distributions substantially 
outperform the circular uniform model in terms of AIC, 
BIC, CAIC, and HQIC. Visualizations such as the rose 
diagram, circular summary plot, CDF comparisons, and 
circular heatmap effectively communicate these 
findings to non-specialist audiences. More generally, 
this study reinforces a fundamental principle discussed 
throughout the literature on circular statistics [10, 11, 
14, 15, 17]: variables that in their essence involve 
circularity should be treated as such.  

More broadly, this study underscores a general 
principle highlighted in the circular statistics literature 
[10,11,14,15,17]: when variables are inherently cyclical, 
analyses should respect their circular structure. For 
temporal patterns in emergency care, circular methods 
offer a practical complement to established forecasting 
approaches and can strengthen evidence-based 
decisions about staffing, capacity, and resource 
deployment in EDs.  
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