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Abstract: Evaluation of a therapeutic strategy is complex when the course of a disease is characterized by the 
occurrence of different kinds of events. Competing risks arise when the occurrence of specific events prevents the 
observation of other events. A particular case is semi-competing risks when only fatal events can prevent the 
observation of the non fatal ones.  

Kaplan-Meier is the most popular method to estimate overall or event free survival. On the other hand when a subset of 
events is considered and net survival is of concern, different estimators have been proposed. Kaplan-Meier method can 
be used only under the independence assumptions otherwise estimators based on multivariate distribution of times are 
needed. If causes of death are unknown, relative survival can approximate net survival only under specific assumptions 
on the mortality pattern. 

Kaplan-Meier method cannot be used to estimate crude cumulative incidence of specific events. 

The aim of this work is to present the survival functions used in competing risks framework, their non parametric 
estimators and semi parametric estimators for net survival based on Archimedean Copulas. This would be a help for the 
reader who is not experienced in competing risks analysis. 

A simulation study is performed to evaluate performances of net survival estimators. To illustrate survival functions in 
presence of different causes of death and of different kind of events a numerical example is given, a literature dataset on 
prostate cancer and a case series of breast cancer patients have been analysed. 

Keywords: Survival analysis, competing risks, crude cumulative incidence, net survival, relative survival, breast 
cancer. 

1. INTRODUCTION 

In several clinical studies, the evaluation of the 
effect of a therapy or the impact of prognostic factors is 
based on the time elapsed form the date of disease 
diagnosis or the beginning of treatment and the 
occurrence of events related to treatment failure. In the 
case of severe diseases, time to death (for all causes) 
is one of the main end-points and survival probability 
as a function of follow-up time is a clinically 
interpretable measure of prognostic impact.  

It is well known that a peculiar characteristic of 
survival analysis is that time to death (or time to any 
event of interest) may be not available for all patients 
(censoring). As an example, some patients are still 
alive at the study ending (administrative censoring) or 
they are alive and lost to follow-up (right censoring). In 
such a case, a bivariate distribution of the random 
variables time to death (T) and censoring time (C) is 
then of concern. For each patient, the observed data is 
the minimum between T and C, thus, if C is observed, it 
prevents the observation of T (and vice-versa). T and C 
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”compete” one each other to be observed and this 
condition is named ”competing risks”. The interest is on 
the marginal survival function of time to death. The 
information provided by such a kind of available data is 
sufficient to determine uniquely marginal survival only 
under the assumption of independence between T and 
C [1]. Under this assumption Kaplan-Meier method [2] 
is used to estimate marginal survival curves. Since its 
proposal, this method has been widely used in the 
analysis of time to event data derived from clinical 
studies also in the presence of different kinds of 
events, but, often, without an appropriate evaluation of 
the underlying assumptions and a correct interpretation 
of the estimated probabilities. Hereinafter, in the main 
probabilities useful in the presence of different kind of 
events during follow-up will be presented and 
commented. Moreover, the possible correct application 
of Kaplan-Meier method will be underlined. 

In several studies information on the causes of 
deaths is also considered in order to evaluate their 
specific impact. An exhaustive classification is then 
used, the simplest being a binary one: death for causes 
related or not related to the disease. In this case the 
main interest is on death for causes related to the 
disease and on its pertinent marginal survival function. 
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In fact results are often reported in terms of “cause 
specific survival”. In the analysis of data, available 
information is usually based on times to death and 
corresponding causes or censoring time for alive 
patients. Times to death for causes not related to the 
disease censor the times to deaths for causes related 
to the disease. A multivariate distribution is then of 
concern and competing risks are acting. Under the 
assumption of independent censoring (administrative 
and lost to follow-up), if the further independence 
assumption between time to death for the cause of 
interest and time to death for other causes is also 
tenable, Kaplan-Meier method can be used to estimate 
marginal “cause specific” survival probabilities. This 
approach is widely used since it can be simply 
implemented after considering as censored the times to 
other causes of deaths. Example can be found in 
several papers e.g in the case of breast cancer see [3] 
among others. 

The interpretation of the estimated “cause specific” 
survival needs to be done in terms of “net” survival, i.e 
in the hypothetical situation where mortality for the 
cause of interest can be observed for all patients. If the 
independence assumption between causes of death is 
not tenable, the estimate of the marginal survival 
function requires the knowledge of the multivariate 
distribution. In this case, problems arise because 
observed data do not allow an unbiased non 
parametric estimate (non identifiability, [4]). 

A proposed solution is based on the assumption of 
a particular structure of the multivariate distribution. 
Several multivariate survival distributions have been 
proposed, most of them are based on parametric 
distribution of marginal survival functions [5]. More 
flexible multivariate distributions are Copulas.  

A copula is defined as a function that joins 
multivariate distribution functions to their univariate 
marginal uniform distribution functions [6,7]. An 
advantage of copulas is that the marginal distributions 
need not to be defined, thus they can be non 
parametric as well.  

The above mentioned analysis are based on the 
classification of causes of death, thus it makes sense 
only if a “reliable” classification is available. As an 
example, for the study reported in [8] the classification 
of the cause of death was based on the previous 
neoplastic events and if there were doubts the general 
practitioner was contacted in order to have further 
information on patient health status. Nevertheless 

adequate information on causes of death is not always 
available. Without complete and reliable information on 
the cause of death we can resort to relative survival 
analysis for estimating net survival [9]. 

Relative survival is based on the relative survival 
ratio (RSR) which is defined as the observed survival in 
the patient group divided by the expected survival of a 
comparable group from the general population, 
matched to the patients with respect to the main 
demographic factors affecting patient survival (age, 
sex, calendar year). Relative survival is useful to 
evaluate the excess of mortality related to the disease 
in the study sample [10] and can be interpreted as net 
survival only under the following assumptions: the 
causes of deaths are independent, the reference 
population is practically free of the cause of interest, 
the death rate for other causes acts in the same way in 
the sample patients and in the reference population. 
Considering the same assumptions, a direct estimation 
of net survival which does not need the knowledge of 
the causes of death has been proposed [11]. 

The above considerations concerning the estimates 
of survival probability and cause specific survival 
probabilities in the framework of competing risks 
(except for relative survival) can be applied also when 
the efficacy of a therapy is evaluated in terms of the 
onset of adverse events, which are relevant for the 
study aims (e.g. in the case of breast cancer: local 
relapses, distant metastases, contralateral cancer, 
tumours in other sites, death without evidence of 
neoplastic progression). In the most comprehensive 
end-point all possible events should be considered 
directly or indirectly related to the failure of the therapy 
(as in the above case of death for all causes), 
otherwise a subsample of events can be considered 
aiming to a deep investigation of the reason of 
treatment failure (as in the above case of death for 
cause related to the disease). The latter estimate has 
to be interpreted in terms of marginal (net) survival 
function, i.e. a hypothetical situation where one of the 
events of interest considered in the subsample can be 
observed for all patients. An example of application of 
Kaplan-Meier method in such a context for breast 
cancer data can be found in [12]. 

A particular case of competing risks arises when the 
end-point of interest is composed by one or more non 
fatal events and the only “competing” event is a fatal 
one. This situation is usually referred to as “semi- 
competing risks”, since the occurrence of a fatal event 
preclude the occurrence of non fatal events but not 
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vice-versa. In semi-competing risks settings, times to 
fatal events are always observable and the incomplete 
observation relies only to non fatal events, thus a more 
efficient estimating procedure can be used with respect 
to the presence of competing risks, being known the 
“upper wedge” of the bivariate distribution [13]. 

Although “survival” probability is the widespread 
measure of treatment effect, in the presence of 
competing risks the cumulative probability of events is 
also of interest. In the case of the most comprehensive 
end-point where all possible events are considered 
(death “for all causes” or treatment failure, as above 
defined), the cumulative probability can be obtained by 
complement to one of Kaplan-Meier estimates. The 
cumulative probability of death or failure for a specific 
cause (crude cumulative incidence) cannot be 
estimated by the complement to one of the “cause 
specific free survival”. Crude incidences, in fact, 
estimate the probability of dying or failing for each 
cause in the “real” situation where different causes are 
acting. The pertinent estimator proposed by Kalbfleish 
and Prentice needs to be considered [14]. This 
estimator is now frequently used, although in some 
applications a “naive” estimation by Kaplan-Meier 
method is still reported. 

Following a “tutorial approach”, the aim of this work 
is to provide an initial support to a reader who knows 
“basic” method of survival analysis but she/he has a 
limited knowledge on competing risks methodological 
aspects. Using a standard statistical notation, the work 
should provide information which could be used to 
identify the most suitable function according to the 
study aim and to identify an adequate estimator for 
survival/incidence probability. Particular attention is 
given to net probability, including some recent 
developments related to semi-competing risks. These 
latter, according to the best knowledge of the Authors, 
are not included in classical text book for survival 
analysis to this day. Firstly the different survival 
functions are described starting from the multivariate 
distribution of latent failure times. The hazard functions 
related to the survival functions are defined and 
compared by some of their relationships. Kaplan-Meier 
and Kalbfleish and Prentice non parametric estimators 
for the crude cumulative incidence are shown and 
compared. Concerning the estimates of the net 
survival, the general definition of copulas function is 
provided. Although several copula functions can be 
used to estimate net survival in clinical applications [6], 
only the particular case of Archimedean Clayton 
Copulas is detailed. This is motivated by the availability 

of a simple closed form estimator which can be easily 
implemented by standard statistical software in the 
case of competing risks. Moreover, this copula is 
considered in the case of semi-competing risks as well. 
Some available literature is only cited for a deepened 
knowledge of Copula Functions [6,7], being a detailed 
Copulas dissertation out of the scope of the present 
work. For sake of simplicity only the case of two (semi) 
competing events is considered referring to bivariate 
copula functions. Given the availability of a strong 
consistent estimator of association parameter for 
copula function only in the presence of semi-competing 
risks, to exploit the performance of net survival 
estimate a simple simulation study will be presented 
only in this framework. In the case of causes of death, 
the interpretation of relative survival as net survival is 
also discussed. 

To provide a numerical example on the difference 
among survival functions a small dataset was 
generated by simulation from a bivariate Clayton 
Copula.  

For illustrative purposes a literature data set on 
prostate cancer is analyzed and discussed to allow 
readers to repeat and eventually extend the evaluation 
on the causes of death in relationship to the treatment 
in the competing risks framework.  

Moreover an example on small breast carcinoma is 
used to illustrate measures of survival in the presence 
of several events during the follow-up and of different 
causes of death at the end of follow-up. This dataset 
allows to consider analyses in competing and semi-
competing risks settings.  

2. MATERIALS AND METHODS 

Latent Failure Times 

At the beginning of follow-up each patient is 
considered at risk for all the K events. Jointly 
considering the vector of “latent” or “potential” failure 
times to K different events (t1,…,tK), enables 
postulating the joint survival function: 

 
S(y1,…, yk ,…yK ) = P(Y1 > y1,…, Yk > yk ,…, YK > yK ),  

where yk is the potential time to event k. This is a right-
sided cumulative distribution satisfying S(0,...,0,...,0)=1 
and S( ,..., ,..., )=0.  

An implicit assumption of the joint survival function 
is that every subject experiences all events sooner or 



124     International Journal of Statistics in Medical Research, 2015, Vol. 4, No. 1 Boracchi and Orenti 

later, thus if an event different form k at time t has 
already occurred for a subject j, he still is at risk of 
experiencing the event k after t. These event times are 
called “potential” as they are not always observed in 
real world. 

The survival probability at time t for all events 
(overall survival) is: 

S(t) = S(t, …, t, …, t) = P (Y1  > t, …, Yk  > t, …, YK  > t)   (1) 

It can be shown that the marginal distribution of Yk from 
S(t) is a proper survival distribution in the hypothetical 
condition where the events other than k have been 
removed: 

Sk (t) = S(0, ... , t, ... , 0) = P(Y1  > 0, …, Yk  > t, …, YK  > 0)  (2) 

This is the net survival function from event k [15]. 

It is worth noting that in the case of independence 
the overall survival equals the product of net survivals 
for different causes: S(t) = k Sk (t).  

On the other hand the crude survival function is 
based on the time to the first event for each subject, 
which is always observed: T=min(Y1,…,Yk,…,YK): 

S(k) (t) = P[min(Y1, …, Yk , … , YK ) > t, 

min(Y1, … , Yk , … , YK ) = Yk ]
        (3) 

The following relationship between overall and 
crude survival functions always holds: 

S(t) = S(k) (t)k=1

K
.  

The crude cumulative incidence is the probability of 
k as first event:  

Ik (t) = P(Y1  > t, … , Yk   t, … , YK  > t)         (4) 

Obviously: 1 S(t) = Ik (t)k=1

K
.  

Survival/Incidence Probability Functions and 
Corresponding Hazards in the Presence of 
Competing Risks 

Indicating as F(t) a “survival function”, i.e. (1), (2) or 
(3) and as h(t) the corresponding hazard function, the 
following relationship holds: 

F(t) = e H(t)            (5) 

where H(t) is the cumulative hazard: H(t) = h(u)du.
o

t
 

 

In the case of “overall” survival (1):  

h(t) is the overall hazard function, or instantaneous 
failure rate, which enables studying the dynamic 
process of the disease over time: 

(t) = lim
t 0+

P(t T < t + t T t)

t
         (6) 

where (t) t  is the probability of dying in the 

infinitesimal interval between t and t+ t, given survival 
until time t.  

In the case of net (or marginal) survival (2): 

h(t) is the net (or marginal) hazard: 

k (t) = lim
t 0+

P(t Yk < t + t Yk t)

t
        (7) 

where k (t) t  is the probability of dying for cause k in 

the infinitesimal interval between t and t+ t, 
conditionally to the fact that event k had not occurred 
before time t, in the hypotetical situation where all 
patients experience event k. 

In the case of crude cumulative incidence (4): 

h(t) is the sub-distribution hazard: 

 
k (t) = lim

t 0+

P(t T < t + t; K = k T t or (T < t; K k))

t
 

where 
 k (t) t  is the probability that k occurs as first 

event in the infinitesimal interval between t and t+ t, 
conditionally to the fact that no events have occurred 
before t or an event different from k have occurred 
before t [16]. How it can be argued from its definition, 
sub-distribution hazard is a measure which is not of 
direct clinical interpretation. 

A hazard function which is not directly related to the 
above survival functions (1,2,3) is the cause specific 
hazard (or crude) hazard rate: 

k (t) = lim
t 0+

P(t T < t + t, K = k T t)

t
        (9) 

where k (t) t  is the probability of event k in the 

infinitesimal interval between t and t+ t, in the 
presence of the remaining events acting 
simultaneously, given survival from all events until time 
t. 

The additive property is valid and the overall hazard 
can be expressed as the sum of all cause-specific 
hazards: (t) = k k (t).  
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For the survival corresponding to cause-specific 

hazard (Sk
* (t) = e k (t) ),  the property S(t) = k Sk

* (t)  

always holds. It is worth of note that Sk
* (t)  has no 

meaning, unless the different events are independent. 
Only in the case of independence among events, the 
cause-specific hazard equals the net hazard: 

k (t) = k (t),  and thus the cause-specific survival 

equals the net survival. 

Estimates of Survival/Incidence Probability 
Functions  

If there is no need to distinguish among different 
events, and under the assumption of independent 
censoring the Kaplan-Meier method can be adopted in 
order to estimate overall survival probability on the 
basis of overall hazard (6) and to obtain the 
corresponding overall incidence. 

S(t) = 1 (s)( )
s=0

t

        (10) 

(s)  is estimated only in correspondence to times in 

which events occurred by 
d(s)

n(s)
,  where d(s) is the 

number of events and n(s) the number of subjects 
exposed to risk at time s. 

In order to estimate net survival, under the 
assumption of independence among events, given the 
relationship between cause specific hazard and net 
hazard, the formula (10) can be used by substituting 
(s)  with k (s) , which is estimated by the ratio of the 

number of events of type k and the number of subjects 
at risk at time s: 

ˆ
k (s) =

dk (s)

n(s)
         (11) 

In this case, the estimation of net survival for the 
event k is obtained considering as censored times to 
occurrence of the events different from k and applying 
to this data Kaplan-Meier method. 

If the incidences of different events are considered, 
crude cumulative incidence can be estimated by 
Kalbfleish and Prentice method [14-15]: 

IK (t) = P(T t,K = k) = ks=1
t (s) S(s 1)      (12) 

In this case, k (s)  is the cause-specific hazard 

estimated by (11) and S(s 1)  is overall survival 
estimated by Kaplan-Meier method (10) considering 
the occurrence of any event. The estimate of sub-
distribution hazard can be obtained as follows 

 

k (s) =
k (s) S(s 1)

1 Ik (s)
 

The crude survival function is estimated by  

S(k )(t) = ks>t (s) S(s 1)        (13) 

and Ik (t)+ S(k )(t) 1  

It is worth noting Sk
*(t)  obtained by Kaplan-Meier 

method considering as censored time to other events 
does not provide an estimate of crude survival and that 

1 Sk
*(t)  does not provide an estimate of crude 

cumulative incidence of event k. 

For sake of simplicity, in the case where one of the 
K considered events is observed for all n patients, 
crude cumulative incidence for the event k is the 
proportion of patients who experience the event k, and 

it is less or equal to 1 Sk
*(t) . 

In fact, comparing equation (12) with 

1 Sk
*(t) = ks=0

t (s) Sk
*(s 1)  

it can be shown that the overall survival is always  
less than or equal to the cause-specific survival: 

S(s 1) Sk
*(s 1) . 

Relative Survival and Net Survival 

The cumulative relative survival is defined as: 

Relavive survival =
S0(t)

SE (t)
 

where the S0(t)  is the overall survival in the sample 

under study and the SE (t)  is the expected survival of a 

comparable group of the general population, matched 
to the sample under study with regard to the main 
demographic characteristics (sex, age, year of birth). 
Several methods have been proposed to calculate 
expected mortality from the population mortality tables. 
The population mortality tables give, for every calendar 
year (y), sex (s) and age (a), the conditional probability 
of death (qasy). The corresponding daily hazard is 

asy =
log(1 qasy )

365.25
. 

The cumulative hazard of death for each subject ( j) 
is obtained by summing the daily hazard for the time 
the subject is considered under observation in the 
study. The corresponding expected survival is 

SEj (t) = e
j (t ) . 
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The expected survival of the population under study 
is obtained as: 

SE(t) =
w j(t) SEj(t)j=1

n

w j(t)j=1
n  

where wj is a weight, depending on the method used to 
estimate expected survival [10, 17-18]. 

In order to a correct estimation of relative survival, 
the effect of age on the mortality can be accounted for 
to reduce bias [19]. Different performances are 
reported for the proposed methods but there is no a 
general agreement on the more appropriate one. 

Under the additive structure, the overall hazard of 
death is the sum of the hazard of death due to the 
disease of interest and the hazard of death due to other 
causes (cause specific hazards), then the overall 
survival is the product of the corresponding cause 
specific survival: 

S0(t)

SE(t)
=
S01
* (t) S02

* (t)

SE1
* (t) SE2

* (t)
. 

In the presence of independence between the 
causes of death, the cause specific survival correspond 
to net survival: 

S0(t)

SE(t)
=
S01(t) S02(t)

SE1(t) SE2(t)
. 

If the contributes of the cause of interest is 
negligible in the general population SE1(t) 1 . 

If the other cause acts in the same way in the 
sample under study and in the general population 
S0 2(t) SE 2(t) . 

Then 
S0(t)

SE(t)
S01(t),  

thus relative survival can be interpreted as a net 
survival for the causes of interest. 

Pohar Perme et al. [11] proposed an innovative 
method to estimate net survival. For the estimation of 
net survival, overall observed hazard 0  can be 

decomposed as follows: 0 = P + e  where P  is the 

hazard of death in the reference population and e  the 

excess hazard. Under the assumption that the hazard 
of death for the causes which are not of interest is 
given by the population mortality and, the observed 
hazard is larger than the population hazard, a survival 
function obtained by the excess hazard is named “net 

survival” [11]. Moreover, under the assumptions of non 
informative censoring and conditional independence 
between times to death for the cause of interest and 
times to death for the other causes (given sex, age and 
calendar year) an estimation of net survival for the 
cause of interest can be obtained starting from the 
cumulative weighted excess hazard [11]: 

e(L) = a1
l=1

L wildil - wil Pilyilii

wilyili

 

where l are interval times (which need to be small since 
the method was derived for continuous times), wil  is a 

weight for the subject i in the interval l, a1  is the width 

of the interval, yil  is time at risk for the subject i in the 

interval l, dil is the event indicator for the subject i in the 

interval l, Pil  is the population hazard corresponding 

to subject i in the interval l. The estimate of net survival 

is then obtained as Se(L) = e
- (L)  

The Use of Kaplan-Meier and Kalbfleisch and 
Prentice Estimators for Net Survival Functions 
when Independence among Events cannot be 
Assumed  

As the wrong estimation of net survival by Kaplan-
Meier method on cause specific hazard is related to the 
dependence of censoring due to times of other events, 
some modification of Kaplan-Meier estimator 
accounting for the dependence have been proposed 
(see [20] among others). 

Without assumption on independence of time to 
events, net survival is not estimable in a non 
parametric way on the basis of observed data in 
competing risks framework. Several works deal with 
this problem [21-24]. In particular Peterson [21] showed 
that the net survival probability for event k is bounded 
between overall survival and the complement to 1 of 
the crude cumulative incidence of the event of interest:  

S(t) Sk (t) 1 Ik (t) . 

For sake of simplicity, we consider a situation where 
only dichotomous classification is made: the event of 
interest and all other competing events. In the case of 
perfect positive correlation, the net survival probability 
of the event should be exactly equal to the overall 
survival (lower bound). Otherwise in the case of perfect 
negative correlation, the net survival probability of the 
event should be exactly equal to the complement to 1 
of the crude cumulative incidence of the event of 
interest (upper bound).  

To improve the above mentioned bounds a bivariate 
structure accounting for the dependence can be 
considered. In the case of two events (times y1 and y2) 
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with marginal survival functions S1(y1)  and S2(y1) . 

Klein and Moeschberger [23] proposed the following 
bivariate distribution: 

S(y1,y2 ) = S1(y1)
1- - S2(y2 )

1- 1
1
1       (14) 

 This distribution has the advantage that the 
association parameter  is directly related to Kendall’s 

tau:  =
1

+1
 and it can be interpreted as the predictive 

hazard ratio: 

lim
t 0

P(t Y2 < t + t Y2 t,Y1 = t)

P(t Y2 < t + t Y2 t,Y1 > t)
 

 = -1 indicates a perfect negative association, i.e. 
subjects who experienced the event of interest have no 
chance to experience other competing events in the 
future;  = 1 indicates a perfect positive association i.e. 
subjects who experienced the event of interest 
experience other competing events in the near future 
and  = 0 implies a perfect independence among times 
to different events. 

Given the relationship between net and crude 
survival, the estimation of net survival can be obtained 
solving a differential equation which, in the absence of 
ties and after fixing a value of , can be easily 
calculated on the bases of observed data [1]. 

Sk(t) = 1+ ( 1)n 1 1

n i+1T(i) t,I(i)=k

1
1
 

where T(i) are the ordered times for the occurrence 
of the all events (k=1 ,2) and times to the event which 
is not of interest are considered as censored. I(i)=k is 
the indicator function for the time i and the event k. It is 
worth of note that the function (14) pertains to a special 
multivariate distribution families called Copulas, which 
are used to express the joint survival distribution of 
times to different events as a function of their marginal 
survival distributions and parameters of their 
association. (14) is the Clayton Copula, a particular 
case of Archimedean Copulas.  

A copula C is called Archimedean if it admits the 
representation: 

C (S1(y1);S2 (y2 )) =
[ 1] S1(y1) + (S2 (y2 )( )( )  

where = 0,1[ ] 0, )  is a continuous, strictly 

decreasing and convex function such that (1) = 0.   

is a parameter within some parameter space .  is 

the so-called generator function and  is its pseudo-
inverse defined by 

[ 1](t) =
1(t) if 0 t (0)

0 if (0) t
 

Moreover, the above formula for C  yields a copula 

for 1  if and only if 1  is continuous and non-

increasing on [0, ] and strictly decreasing on 

0, 1(0)  [7]. 

The association parameter of Archimedean copulas 
has a direct relationship with Kendall’s tau: 

= 4
(u)

(u)0
1 du +1  

Several structured copula functions have been 
proposed in the literature and some detailed discussion 
of their properties and estimation procedures are also 
provided [6]. To estimate marginal function of Copulas, 
a graphic estimator has been proposed, that, in the 
special case of Archimedean Copulas, can be 
expressed in a closed form [25]. The original approach 
for copula graphic estimator is shown as a method to 
modify Kaplan-Meier estimator for the presence of 
dependent censoring by a Copula structure. It requires 
the observation of the variable Z=min(Y1,Y2) and the 
event observed at time Z. Times to event which are not 
of interest are then considered as censored.  

Starting from the relationship: 

[ 1] S1(t)+ (S2(t)( )( ) = S(t),  

Where S(t)  is the overall survival estimated by 
Kaplan-Meier method. The closed form for net survival 
estimator is: 

Sk(t) =
[ 1] S(ti ) (S (ti ) 1 / n( )( )ti t, i=k( )  

where n is the number of subject considered. 

The approach does not allow for the presence of 
censored times in the case of individuals for which no 
events are observed. To overcome this limitation a 
recent improvement of the original estimator has been 
proposed [26]. 

Indicating with D the potential censoring time,  the 
indicator for the event of interest ( =1 if the event 
occurs and 0 otherwise)  the indicator for censoring 
( =0 if the time is censored and 1 otherwise) and 
U=min (Z, D), the marginal distribution of Sk(t)  can be 

obtained from J(t) = 1 P(Z t)  and 

 
J(t) = P(Z t, = 1)  as follows: 
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Sk(t) =
1 (J(s))dJ(s)0

t        (15) 

Then it can be estimated plugging into (15) proper 
estimators of J(t) and 

 
J(t)  on the bases of the 

observed data U, , . Under the assumption of 
independent censoring a suitable estimator for J(t) is 
the Kaplan-Meier (using U and ) and a suitable 
estimator for 

 
J(t)  the is the crude cumulative incidence 

Ik(t).  

It is worth of note that the Copula function depends 
on the association parameter, which is not estimated 
by the above mentioned method. An empirical 
estimator of Kendall’s tau which could be used as a 
first insight has been proposed [27], but it is not biased 
only in the case of independence between times to 
events. 

In the case of semi-competing risks an alternative 
method based on Clayton copula has been proposed 
by Fine [13]. Two events are acting (k=1,2) and the 
event of type 1 is considered as the non terminal event 
and the event of type 2 the terminal one. The Clayton 
copula (14), is defined in the upper wedge 
(1 y1 y2 ) . 

Fine proposed a strongly consistent estimator for 
the association parameter . 

A closed-form estimator for net survival of the non 
fatal event k is obtained as: 

Ŝ1(t) = Ŝ(t)1
ˆ
Ŝ2 (t)

1 ˆ
+1

1

1 ˆ  

where ˆ  is a consistent estimator for , Ŝ  is the 
“overall” survival estimated by Kaplan-Meier method 
considering as events both non fatal and fatal events 

and Ŝ2  is survival from fatal event, estimated by 

Kaplan-Meier method considering as events only the 
fatal events, which are always observable. 

3. SIMULATION STUDY 

3.1. Monte Carlo Simulation for Net Survival 
Estimates 

A Monte Carlo simulation was conducted to 
evaluate the performance of the net survival estimator 
proposed by Fine et al. [13] in a semi-competing risks 
context. The first aim is to evaluate the bias obtained 
by naive Kaplan-Meier avoiding to account for the 
dependence. The second aim is to evaluate the 
robustness of the estimator under the situation where 
the underlying structure is not a Clayton Copula. To 
this issue we generate data from a Frank copula and 
use the Clayton copula structure in order to estimate 
both association parameter and survival function. 

In order to generate multivariate survival data we 
refer to the simulation procedure based on copulas 
proposed by Rotolo et al. [28]. 

The simulations scheme is based on Clayton s and 
Frank s copula. The dependence parameters are those 
corresponding to unconditional Kendall s tau of  = 0, 
0.333, 0.5 and 0.75. Samples of sizes 200 are used. 
The random variable Y1 has a unit exponential 
distribution; Y2 has a unit exponential distribution as 
well, such that P(Y1 > Y2) = 0.5. The censoring variable 
C follows a uniform distribution on [0, a], where a is 
such that P(Y2 > C) = 20%. All simulations are based 
on 1000 replicates. 

As regards estimators for S1(t), they are evaluated 
at ti= log(i/10), for i = 1, 3, 5, 7, 9, corresponding to the 

Table 1: Simulation Results for the Survival Function of the non Terminal Event Estimated by Fine et al. Method and 

Kaplan-Meier Method. For every Simulation Scenario 1000 Sample of size 200 are Generate by Clayton 

Copulas. Survival Functions are Evaluated at ti= log(i/10), for i=1, 3, 5, 7, 9, Corresponding to the 10th, the 

30th, the 50th, the 70th, and the 90th Percentile of the true Marginal Survival Function. Mean and Standard 
Errors () of Survival Functions are Reported here 

Data generated by Clayton copula 

=0 =0.333 =0.5 =0.75  

Fine KM Fine KM Fine KM Fine KM 

s10 0.077 (0.004) 0.106 (0.005) 0.095 (0.002) 0.228 (0.004) 0.099 (0.002) 0.267 (0.004) 0.100 (0.001) 0.299 (0.003) 

s30 0.291 (0.004) 0.299 (0.003) 0.297 (0.003) 0.420 (0.002) 0.298 (0.002) 0.466 (0.002) 0.301 (0.002) 0.519 (0.002) 

s50 0.494 (0.003) 0.499 (0.002) 0.499 (0.003) 0.579 (0.002) 0.495 (0.003) 0.614 (0.002) 0.500 (0.002) 0.669 (0.001) 

s70 0.698 (0.002) 0.701 (0.001) 0.697 (0.002) 0.734 (0.001) 0.696 (0.002) 0.754 (0.001) 0.698 (0.002) 0.794 (0.001) 

s90 0.899 (0.000) 0.900 (0.000) 0.898 (0.001) 0.904 (0.000) 0.898 (0.001) 0.908 (0.000) 0.899 (0.001) 0.920 (0.000) 
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10th, the 30th, the 50th, the 70th, and the 90th 
percentile of S1(t), the unit exponential survival 
function. Table 1 reports the simulation results of Fine 
and Kaplan-Maier estimator when data are generated 
from a Clayton copula models. Semi-parametric 
estimator proposed by Fine is unbiased. On the 
contrary the Kaplan-Meier estimator is accurate only 
under independence, whereas it may severely 
overestimate the survival probabilities when there is 
positive association between times to different events. 
Table 2 reports results of the simulation when data are 
generated from a Frank copula model. The bias for the 
estimate by Fine method is something biased and it 
increases at increasing association. 

4. A SIMULATED DATA SET FOR THE 
COMPARISON OF THE ESTIMATED SURVIVAL/ 
INCIDENCE PROBABILITIES  

The small dataset was generated by simulating data 
from the following bivariate distribution:  

P Y1 > y1,Y2 < y2 = C exp 1y1( ),exp( 2y2( )( ),  where C 

is the Clayton Copula: C(u1,u2 ) = u1 + u2 1
1/

. 

The simulation algorithm suggested in [26] was 
used by the following steps: 

20 values were generated from each of two 
independent random variables V1 and V2 distributed 
according to the exponential distribution with 
parameter=1. 

20 values were generated from a random variable Z 
distributed according to a Gamma distribution with 
parameters 1/  and 1. Then, for i=1,2 

Ui = (1+Vi / Z)
1/  were calculated and times 

Yi = ln+ (Ui) / i  where finally obtained. 

“observed” data in the competing risks framework were 
obtained considering the event corresponding to the 
minimum of (Y1,Y2). 

The followings parameters values were used: 
1= 2=1, =2. 

For sake of simplicity in the interpretation of the 
estimated survival/incidences probabilities only non 
censored observation were generated (Table 3).  

Concerning deaths for all causes, survival 
probability S(t) was calculated by Kaplan-Meier method 
and the cumulative incidence I(t) as 1-S(t). It can be 
noted that, in absence of censoring, the estimates 
correspond to the proportion of subjects alive after time 
t and deceased before time t, respectively (Table 4). 

Table 3: The Dataset of 20 Times and Cause of Death, 
Simulated from Clayton Copula Model 

times Cause of death 

0.02247599 1 

0.03135967 1 

0.04276071 1 

0.11677077 2 

0.15205448 1 

0.16618929 2 

0.24683757 2 

0.28932287 1 

0.35059856 2 

0.39596928 1 

0.53914335 1 

0.68546373 1 

0.69948798 1 

0.96073401 2 

1.08091976 1 

1.58229144 1 

2.03223993 1 

2.91893249 1 

3.21199164 1 

3.69451010 2 

Table 2: Simulation results for the survival function of the non terminal event estimated by Fine et al. method and 

Kaplan-Meier method. For every simulation scenario 1000 sample of size 200 are generate by Frank Copulas. 

Survival functions are evaluated at ti= log(i/10), for i=1, 3, 5, 7, 9, corresponding to the 10th, the 30th, the 

50th, the 70th, and the 90th percentile of the true marginal survival function. Mean and standard errors () of 
survival functions are reported here 

Data generated by Frank copula 

=0 =0.333 =0.5 =0.75  

Fine KM Fine KM Fine KM Fine KM 

s10 0.077 (0.067) 0.106 (0.067) 0.045 (0.030) 0.159 (0.066) 0.046 (0.024) 0.194 (0.066) 0.063 (0.023) 0.245 (0.059) 

s30 0.291 (0.063) 0.299 (0.053) 0.305 (0.062) 0.401 (0.050) 0.300 (0.060) 0.444 (0.049) 0.299 (0.050) 0.503 (0.044) 

s50 0.494 (0.052) 0.499 (0.045) 0.563 (0.057) 0.587 (0.042) 0.578 (0.064) 0.624 (0.041) 0.568 (0.069) 0.672 (0.037) 

s70 0.698 (0.040) 0.701 (0.037) 0.750 (0.041) 0.748 (0.033) 0.773 (0.044) 0.772 (0.032) 0.789 (0.051) 0.807 (0.030) 

s90 0.899 (0.021) 0.900 (0.021) 0.910 (0.021) 0.908 (0.021) 0.917 (0.022) 0.914 (0.020) 0.930 (0.021) 0.928 (0.018) 
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Concerning the two causes of deaths (Tables 5-6) 
net survival probability was calculated as: 

Si(t) = 1+
20

a. r(k)

20k=1
t

( +1)

e(k)

1/

, for i=1,2. 

where a.r(k) are subjects exposed at risk at time k and 
e(k) the number of death for the cause i at time k. 

The cause specific survival functions ( S1
*(t)  and 

S2
* (t) ) were estimated by Kaplan-Meier method after 

considering as censored times to death for the 
competing cause. It can be verified that the property:  

S(t) = S1
*(t) S2

* (t)  holds. Crude survival probabilities 

(S(1)(t), S(2)(t)) correspond to the proportions of subjects 
who deceased for the considered cause at a time 
greater than t. Crude survivals are always lesser than 
(or equal to) cause specific survivals. It can be verified 
that the property: S(t)=S(1)(t)+S(2)(t) holds. Crude 
cumulative incidences (I1(t),I2(t)) correspond to the 
proportion of patients whose occurrence of the death 
for the cause is lesser or equal to t. It can be verified 
that the property: I(t)= I1(t)+I2(t) holds. 1-I1(t) and 1-I2(t) 
do not correspond neither to cause specific survivals 
nor to crude survivals. 

5. EXAMPLE ON PROSTATE CANCER 

The original study consists of 506 patients randomly 
allocated to one of four treatment regimes: placebo, 0.2 
mg, 1.0 mg, and 5.0 mg DES daily. Further details 
regarding these data are given in [29]. As reported in 
the paper [30], placebo and 0.2 mg were designated as 
low-dose DES and 1.0 mg and 5.0 mg as high-dose. A 
dataset of this study was found at the following link 
http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets, 
where are reported records of 502 patients. Of these, 
354 died (190 in low-dose and 164 in high dose) with 
155 classified as cancer deaths (91 in low-dose and 64 
in high dose), 127 classified as cardiovascular (59 in 
low-dose and 68 in high dose) and 72 classified as 
other causes (40 in low-dose and 32 in high dose). 
Survival time was recorded in months.  

Aiming to compare treatment effect, the main end-
point could be overall survival. Nevertheless, to deeply 
evaluate treatment effect, it is appropriate to consider, 
the causes of death. 

Overall survival according to treatment is shown in 
Figure 1. Patients treated with high dose, have a better 

Table 4: Death for Each Cause. For each time t number of subject at risk (# a.r.), number of events (# e), Overall 
survival S(t) and overall incidence I(t) are reported 

t # a.r. # e S(t) I(t) 

0.02247599 20 1 0.95 0.05 

0.03135967 19 1 0.90 0.10 

0.04276071 18 1 0.85 0.15 

0.11677077 17 1 0.80 0.20 

0.15205448 16 1 0.75 0.25 

0.16618929 15 1 0.70 0.30 

0.24683757 14 1 0.65 0.35 

0.28932287 13 1 0.60 0.40 

0.35059856 12 1 0.55 0.45 

0.39596928 11 1 0.50 0.50 

0.53914335 10 1 0.45 0.55 

0.68546373 9 1 0.40 0.60 

0.69948798 8 1 0.35 0.65 

0.96073401 7 1 0.30 0.70 

1.08091976 6 1 0.25 0.75 

1.58229144 5 1 0.20 0.80 

2.03223993 4 1 0.15 0.85 

2.91893249 3 1 0.10 0.90 

3.21199164 2 1 0.05 0.95 

3.69451010 1 1 0.00 1.00 
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Table 5: Death for cause 1. For each time t are reported: number of subject at risk (# a.r.), number of events (#e), cause 

specific survival S1
*(t) , net survival S1(t), crude survival S(1)(t), 1- crude cumulative incidence (1-I1(t)), 

cumulative incidence (I1(t)) 

t # a.r #e S*1(t) S1(t) S(1)(t) 1-I1(t) I1(t) 

0.02247599 20 1 0.95000000 0.95346259 0.65 0.95 0.05 

0.03135967 19 1 0.90000000 0.90660860 0.60 0.90 0.10 

0.04276071 18 1 0.85000000 0.85945126 0.55 0.85 0.15 

0.11677077 17 0 0.85000000 0.85945126 0.55 0.85 0.15 

0.15205448 16 1 0.79687500 0.80344697 0.50 0.80 0.20 

0.16618929 15 0 0.79687500 0.80344697 0.50 0.80 0.20 

0.24683757 14 0 0.79687500 0.80344697 0.50 0.80 0.20 

0.28932287 13 1 0.73557692 0.72295890 0.45 0.75 0.25 

0.35059856 12 0 0.73557692 0.72295890 0.45 0.75 0.25 

0.39596928 11 1 0.66870629 0.63065361 0.40 0.70 0.30 

0.53914335 10 1 0.60183566 0.54929249 0.35 0.65 0.35 

0.68546373 9 1 0.53496503 0.47609871 0.30 0.60 0.40 

0.69948798 8 1 0.46809441 0.40912886 0.25 0.55 0.45 

0.96073401 7 0 0.46809441 0.40912886 0.25 0.55 0.45 

1.08091976 6 1 0.39007867 0.32144698 0.20 0.50 0.50 

1.58229144 5 1 0.31206294 0.24939359 0.15 0.45 0.55 

2.03223993 4 1 0.23404720 0.18706167 0.10 0.40 0.60 

2.91893249 3 1 0.15603147 0.13107214 0.05 0.35 0.65 

3.21199164 2 1 0.07801573 0.07950353 0.00 0.30 0.70 

3.69451010 1 0 0.07801573 0.07950353 0.00 0.30 0.70 

 

Table 6: Death for cause 2. For each time t are reported: number of subject at risk (# a.r.), number of events (#e), cause 

specific survival ( S2
* (t) ), net survival (S2(t)), crude survival (S(2)(t)), 1- crude cumulative incidence (1-I2(t)), 

cumulative incidence I2(t). 

t # a.r #e S*1(t) S1(t) S(1)(t) 1-I1(t) I1(t) 

0.02247599 20 0 1.0000000 1.00000000 0.30 1.00 0.00 

0.03135967 19 0 1.0000000 1.00000000 0.30 1.00 0.00 

0.04276071 18 0 1.0000000 1.00000000 0.30 1.00 0.00 

0.11677077 17 1 0.9411765 0.92734486 0.25 0.95 0.05 

0.15205448 16 0 0.9411765 0.92734486 0.25 0.95 0.05 

0.16618929 15 1 0.8784314 0.84519340 0.20 0.90 0.10 

0.24683757 14 1 0.8156863 0.76890882 0.15 0.85 0.15 

0.28932287 13 0 0.8156863 0.76890882 0.15 0.85 0.15 

0.35059856 12 1 0.7477124 0.68130096 0.10 0.80 0.20 

0.39596928 11 0 0.7477124 0.68130096 0.10 0.80 0.20 

0.53914335 10 0 0.7477124 0.68130096 0.10 0.80 0.20 

0.68546373 9 0 0.7477124 0.68130096 0.10 0.80 0.20 

0.69948798 8 0 0.7477124 0.68130096 0.10 0.80 0.20 

0.96073401 7 1 0.6408964 0.47210060 0.05 0.75 0.25 

1.08091976 6 0 0.6408964 0.47210060 0.05 0.75 0.25 

1.58229144 5 0 0.6408964 0.47210060 0.05 0.75 0.25 

2.03223993 4 0 0.6408964 0.47210060 0.05 0.75 0.25 

2.91893249 3 0 0.6408964 0.47210060 0.05 0.75 0.25 

3.21199164 2 0 0.6408964 0.47210060 0.05 0.75 0.25 

3.69451010 1 1 0.0000000 0.03525661 0.00 0.70 0.30 
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Figure 1: Overall survival estimated by Kaplan-Meier method 
according to treatment group  in prostate cancer dataset. 

survival experience. Subdividing mortality according to 
the causes of dealth (Figure 2), it can be observed that 
the greatest impact on mortality incidence is the 
mortality related to cancer (panel(a)) where the 
advantage of high dose treatment is evident. On the 
other hand, mortality incidence for cardiovascular 
disease is higher for patients with high dose treatment 
than that for patients with low-dose treatment. 
Incidences of mortality for other causes seem quite 
similar in the two treatment groups. The global 
advantage of high dose treatment is thus reduced 
because of the reverse effect of treatment in mortality 
for cardiovascular cause. If modification of treatment 

could allow to eliminate the mortality for cardiovascular 
death (and other causes of mortality), what would be 
treatment effect? The information can be obtained 
considering net survival for cancer. Before using a 
specific method for estimating net survival the 
association among times to death for different causes 
was evaluated. The estimated Kendall’s tau for times to 
death for cardiovascular and cancer were: -0.0003 in 
patients treated with low dose and 0.0004 in patients 
treated with high dose. Thus having no evidence of 
sensible association, Kaplan-Meier method after 
censoring time to deaths for non cancer causes was 
adopted (Figure 3). It is evident that the advantage of 
high dose treatment is greater than the corresponding 
one given by overall survival. It should be interesting to 
represent crude survival curves for the causes of 
deaths. The problem is the application of formula (13) 
in the presence of censored times when a death is not 
observed for all patients. At t=  all patients will die but 
we don’t know the exact time and the cause of death. 

6. EXAMPLE ON SMALL BREAST CANCER 

From 1973 to 1989 at the National Cancer Institute 
in Milan a series of clinical trials was done to compare 
different therapeutic strategy in women with small, non-
metastatic primary breast cancer. Historical dataset 
regarding three clinical trials have been analyzed here. 

Between 1973 and 1980, 701 women with breast 
cancers measuring no more than 2 cm in diameter 
were randomly assigned to undergo radical 
mastectomy (349 patients) or breast-conserving 

 

Figure 2: Estimates of crude cumulative incidences in prostate cancer dataset according to treatment group and cause of 
death: cancer (panel a), cardiovascular (panel b) and other (panel c). 
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surgery (quadrantectomy) followed by radiotherapy to 
the ipsilateral mammary tissue (QUART, 352 patients). 
After 1976, patients in both groups who had positive 
axillary nodes also received adjuvant chemotherapy 
with cyclophosphamide, methotrexate, and fluorouracil. 
Details on the results of this trial are reported in 
Veronesi et al. [31]. 

 

Figure 3: Estimates of net cancer survival in prostate cancer 
dataset according to treatment group. 

Between 1985 and 1987, 705 patients were accrued 
in a randomised clinical trial comparing two 
conservation treatment strategies: quadrantectomy, 
axillary dissection and radiotherapy (QUART, 360 
women) versus tumorectomy and axillary dissection 
followed by external radiotherapy and a boost with Ir 
implantation (TART, 345 women). No second surgery 
was given to women with affected surgical margins. 
Details on the results of this trial are reported in Mariani 
et al. [32]. 

Between 1987 and 1989, 567 eligible women with 
carcinoma of the breast were randomly assigned to 
quadrantectomy, axillary dissection and radiotherapy 
(QUART, 294 women) and to quadrantectomy with 
axillary dissection without radiotherapy (QUAD, 273 
women). Details on the results of this trial are reported 
in Veronesi et al. [33].  

In both two last randomized trials axillary node 
positive women received adjuvant medical therapy: 
premenopausal and postmenopausal patients negative 
for estrogen receptors received chemotherapy, while 
postmenopausal patients positive for estrogen 
receptors received tamoxifen. 

Concerning overall survival and disease free 
survival, no statistically significant differences were 
found between surgical treatments. In any case, aiming 
to consider a homogeneous group of patients 
according to treatment, only quadrantectomy followed 
by radiotherapy (QUART) was considered. Thus a 
dataset formed by 1006 women is analysed (352 of the 
first trial, 360 of the second trial and 294 of the third 
trial). In this case series, the clinical well known 
prognostic factor is axillary lymph-node metastases, 
since all patients were classified in T1 tumour stage. 

In the original papers [31-33] overall survival 
functions and crude cumulative incidences of first 
failure were presented according to treatment group, 
whereas our aim is the preliminary analysis on the 
whole case series in order to discuss the interpretation 
of the different survival curves and pertinent estimators, 
focusing attention on net breast cancer survival and net 
relapse free survival. A related purpose is the 
evaluation of association between different events 
occurring during the follow up, in particular of 
association between times to relapse and times to 
death. This quantity, although of clinical interest, was 
not evaluated in original articles [31-33]. 

Analysis of Death 

As regards the clinical example we can observe that 
272 of the 1006 women died within 15 years of follow-
up. The overall survival function, given in Figure 4, 
shows that the probability of surviving from death due 
to any cause 5, 10 or 15 years from surgery is 
respectively 0.91, 0.8 and 0.7. 

 

Figure 4: Overall survival estimated by Kaplan-Meier method 
(continuous line) and 95% confidence interval (dotted lines). 
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The causes of deaths were classified as related to 
breast cancer or related to other causes. Since data 
are taken from clinical trials, accurate follow-up is 
available and the classification of causes of death is 
retained reliable by clinician. In this clinical example it 
can be useful to focus attention only on death due to 
breast cancer, thus to estimate survival from breast 
cancer death. 

Death Due to Breast Cancer 

As regards the whole dataset, 200 deaths were 
classified as related to breast cancer and 72 as related 
to other causes. The net survival probability is thus of 
concern, i.e, the probability of surviving to breast 
cancer in the case this is the only acting cause of death 
in the population. 

If independence between the two causes of death is 
assumed, Kaplan-Meier method can be used, 
considering as censored times to death for other 
causes (Figure 5, panel a). The independence, 
although in this case could be clinically reasonable, 
cannot be a priori assumed. To investigate this issue, 
Kendall’s tau coefficient of concordance for bivariate 
censored data [27] can be used, as first insight. The 
estimate is K=15.5*10-5 thus the assumption of 
independence can be tenable. However Clayton copula 
graphical estimator can be used to compute net 
survival with association parameter =3.1*10-4, 
corresponding to the Kendall’s tau previously 
estimated. The estimated net survival probability is 
shown in Figure 5, panel b. As expected, net survival 
estimates obtained by Kaplan-Meier method and 
copula graphic estimator, are practically overlapping. 

Concerning relative survival, the expected survival of 
the reference population was obtained by ISTAT 
mortality tables. The estimated net survival probability 
at 5, 10, 15 years is 0.93, 0.84 and 0.78 respectively, 
whereas relative survival at 5, 10, 15 year is 0.94, 0.85 
and 0.79 respectively. It can be observed that the 
estimate is slightly higher than those obtained by the 
two above mentioned methods. Although the 
assumption of independence between causes of 
deaths and the low contribution of the mortality related 
to breast cancer in the reference population can be 
considered as tenable, the study sample is conditioned 
by the protocol’s inclusion criteria (absence of 
comorbidities which avoid the application of surgery or 
chemotherapy) thus other causes of deaths may not 
acting as in the reference population. This condition 
induce to caution in interpreting of relative survival as 
net survival.  

If the interest is on the incidence of death, the 
overall incidence is estimated by 1-Kapln-Meier overall 
survival estimates. Overall incidence can be 
decomposed in the incidence of death related to breast 
cancer and incidence of death related to other causes 
(Figure 6). The greatest incidence of mortality is due to 
breast cancer. This incidence is the estimate of the 
probability of death as a consequence of breast cancer. 

Analysis of Events 

Within 15 years of follow-up the following events 
were observed: intra breast tumour recurrences (IBTR), 
distant metastases (DM), contralateral tumours (CT), 
other primary tumours, deaths without evidence of 
neoplastic events. The most comprehensive end-point 

 

Figure 5: Estimates of (net) survival for breast cancer by Kaplan-Meier method (panel a), copula graphic estimator (panel b) 
and relative survival (panel c) (continuous line) and 95% confidence intervals (dotted lines). 
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is composed by the first observed event, irrespective to 
the type of event (436 patients). In this framework, 
each event is considered directly or indirectly a failure 
to the therapeutic strategy and here named “first 
failure”. First failure is then decomposed in events 
related to tumour progression (IBTR+DM+CT), named 
“relapse” (347 patients) and not related to tumour 
progression (89 patients). Crude cumulative incidences 
are of concerns. The crude cumulative incidence of 
relapse estimates the probability of observing a relapse 
as first event (Figure 7). 

 

Figure 7: Estimates of first failure (FF) and of crude 
cumulative incidence of relapse (R) and of other events (OE) 
(continuous line) and 95% confidence intervals (dotted lines). 

Relapse free survival probability is the measure 
most frequently reported in papers on breast cancer 
prognosis. Relapse free survival need to be interpreted 
as a “net survival” because it estimates the probability 
of surviving form relapse, in the hypothetical situation 
where a relapse is observable in all patients. As after 
the occurrence of other primary tumours, breast cancer 
tumour progression is no more considered as clinically 
interpretable and death as first event prevents the 
observation of the relapse, but no vice versa, thus the 
semi-competing risks framework is of concern. In this 
case the assumption of independence is not reliable 
because relapse can reasonably increase the risk of 
death. Thus a copula structure for the joint survival 
distribution is needed. The Fine estimate of the Clayton 
association parameter is 7.36, corresponding to a 
Kendall =0.79 and indicating a strong positive 
correlation between the two events. In particular, the 
hazard of death or other primary tumour after a relapse 
is 7.36 times bigger than the hazard of death or other 
primary tumour without previous relapse. 

Relapse free survival estimated by Kaplan-Meier 
method is biased because of the lack of independence 
(Figure 8, panel a) and it is higher than the copula 
estimation of Fine method (Figure 8, panel b). 
Estimated relapse free survival at 5, 10, 15 years by 
Kaplan-Meier method is 0.82, 0.69 and 0.62 
respectively and the corresponding estimates by Fine 
method is 0.82, 0.66 and 0.56 respectively.  

The net relapse free survival must be included 
between the lower bound, representing survival to first 
failure and upper bound representing 1-crude 
cumulative incidence of relapse (Figure 9). It can be 
noted that Fine estimates of relapse free survival is 
near to lower bound because of the strong positive 
association between times to events. 

7. CONCLUDING REMARKS 

One can say that at the beginning of the treatment 
each patient is potentially exposed to the risk of 
different kinds of events, each one at a different time 
period. According to the study aims usually composite 
end-points are defined considering the occurrence of at 
least one of the possible events or subsamples of 
events. Competing risk setting is usually cited if the 
occurrence of some events prevents the observation of 
the occurrence of other events of interest. Nevertheless 
it can be considered that also in the case of the most 
comprehensive composite end-point the occurrence of 
events is not always observable because of patients 

 

Figure 6: Estimates of overall incidence of mortality (OD) 
and of crude cumulative incidence of mortality for specific 
causes of death: death related to breast cancer (DBC) and 
death related to other causes (DOC) (continuous line) and 
95% confidence intervals (dotted lines). 
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who are lost to follow-up or because of administrative 
censoring, thus competing risks setting is always of 
concern. The independence assumption between the 
process of censoring and the occurrence of events 
should be carefully considered because biased 
estimates are obtained if dependence is ignored.  

 

Figure 9: Bounding of net relapse free survival (NS) between 
lower bound (LB) represented by first failure free survival and 
upper bound (UB) represented by complement to 1 of the 
crude cumulative incidence of relapse. 

When several kinds of events could occur during 
follow-up, partial event history is observed, 

independence among time to different events rarely 
can be assumed. This allows a simple non parametric 
estimate of crude survival or crude cumulative 
incidence while it avoids the possibility to estimate net 
survival functions without assumption on multivariate 
dependence structure. The attention is frequently on 
cumulative incidence of events (see [34] among 
others). We question whether this is always the most 
appropriate evaluation criteria or the choice is mainly 
related to the estimability of this measure and the 
availability of dedicated software. Since long time, in 
several clinical studies Kaplan-Meier method has been 
used in presence of competing risks to estimate the 
“event free survival curve” considering as 
(independent) censoring times to occurrence of other 
events. The interpretation of this estimate as “net” 
survival function is not explicitly provided, although it 
could be argued that “net” probability is of main interest 
for the Authors. On the other hand several 
methodological papers appeared on clinical journal to 
show that Kaplan-Meier method is not adequate and 
crude cumulative incidence needs to be used. In 
particular, some papers include consideration about the 
inappropriateness of the Kaplan-Meier methods to 
estimate crude cumulative incidence (see [34-35] 
among others). Again, the possibility of the interest in 
net survival is not taken into account. It is a matter of 
fact that the interpretation of net survival when more 
events are acting is more difficult than that of 
cumulative incidence, being related to an ”hypothetical” 

 

Figure 8: Estimates of (net) relapse free survival by Kaplan-Meier method (panel a) and Fine’s method (panel b) (continuous 
line) and 95% confidence intervals (dotted lines). 
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situation of cause removal. Nevertheless marginal 
survival received attention since long time and an 
increasing number of studies are focussed on its 
estimation, mainly in the evaluation of mortality data on 
population registry (the most recent paper we found is 
[36].  

From methodological point of view papers on the 
estimate of marginal survival can be found mainly since 
the beginning of 1980 and literature is increasing by 
proposing complex estimation methods (see [37] 
among others) and regression models [38-40]. 
Although the potential interest in clinical application and 
the availability of methodological issues, the use of net 
survival is till now not so diffuse as crude cumulative 
incidence. One of the reason may be that the non 
identifiability cited by Tsiatis’s paper [4] is well known 
and the need of assumptions on multivariate 
distribution without the possibility to evaluate their 
tenability may arise doubts in “applied” statisticians. On 
the other hand, on classical survival books ([15, 41] 
among others) the theory of competing risk is mainly 
focused on estimable functions. Also considering a well 
known book specific for competing risk analysis [42], 
the survival/incidence functions are widely and deeply 
afforded, several multivariate distributional examples 
are given but the theory of Copulas is not shown. 
Copulas have been proposed as a flexible multivariate 
structures which can be used to estimate net survival 
probabilities. Multiple families of Copulas, having very 
different structures are described on books ([7] among 
others) and several evaluable papers on their 
properties, interpretations and sensitivity are available 
([6] among others). This may render possible to chose 
a structure adequate to a specific clinical situation but 
the general estimation process of net survival, based 
on the relationship between net and estimable 
functions, requires the solution of a system of 
differential equations, which may be not easy to 
implement. An incentive to use a particular family of 
Copula function for clinical applications is the 
interpretability of its association parameter. The 
interpretation of the association parameter as 
predictive hazard ratio and the relationship with 
Kendall’s tau, are some motivations for which 
Archimedean Copulas (in particular Clayton Copula) 
are suggested in clinical applications. Another incentive 
is the possibility to built a simple algorithms which can 
be adopted in a simple way on the basis of Kaplan-
Meier and crude incidence probabilities. Archimedean 
Copulas give this possibility [1, 25-26]. A problem is 
that the above mentioned estimation algorithms are 

based on the knowledge of the value of the association 
parameter. To avoid this difficulty, some non 
parametric procedures available for Kendall’s tau in the 
presence of bivariate censored data may be used ([27] 
among others). In the case of semi-competing risks, an 
unified approach has been proposed by Fine for a 
Clayton Copula [13]. The interpretation of the 
survival/probabilities functions available in competing 
risks framework allow to evaluate different aspects 
related to the prognosis and may give a more 
comprehensive knowledge of the disease progression 
and /or this impact on general population. In order to 
facilitate the comparison of the different 
survival/incidence estimates, a simple simulated 
dataset on 20 observation from Clayton Copula was 
proposed. The absence of censoring enables to use 
proportions of events which are easily interpreted.  

Concerning the literature example on prostate 
cancer, the interpretation of treatment effect needs to 
decompose the overall incidence of death according to 
the different causes. This enable pinpointing the impact 
of the putative harmful effect of high dose treatment 
which is related to higher cardiovascular mortality. 
Although the overall survival experience is better for 
high dose treatment, the elimination of the harmful 
effect should improve the advantage of high dose 
treatment, as estimated by net survival. 

Concerning the dataset on breast cancer, the 
estimation of the association parameter provides 
putative evidence that the independence assumption 
between causes of death is tenable then Kaplan-Meier 
approach can be used to estimate net breast cancer 
survival. On the contrary, in a semi-competing 
framework, a strong association between time to 
relapses and time to death was found. Thus the net 
relapse free survival estimate based on Clayton Copula 
is very different from the corresponding Kaplan-Meier 
one. The information is relevant as relapse free survival 
is one of the most considered end-point in cancer 
prognostic studies. It is worth of note that in the 
majority of published cancer prognostic studies it is 
estimated by Kaplan-Meier method censoring times to 
non considered events. The incidence of different 
events, estimated by Kalbfleish and Prentice method, 
gives a deep knowledge on the composition of 
treatment failure. In our example the impact of relapses 
is greater of that of death without evidence of previous 
neoplastic event. A deeper investigation of the 
contribution of the neoplastic events on treatment 
failure shows that metastases is the event of greatest 
impact (data not shown).  
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With this note we hope to stimulate applied 
statisticians to evaluate all possible measures for study 
end-points, including marginal survival and to develop 
simulation studies to investigate the robustness of 
multivariate distribution assumptions in several 
scenarios of clinical situations. 
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