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Abstract: Missing data commonly occur in large epidemiologic studies. Ignoring incompleteness or handling the data 
inappropriately may bias study results, reduce power and efficiency, and alter important risk/benefit relationships. 
Standard ways of dealing with missing values, such as complete case analysis (CCA), are generally inappropriate due to 

the loss of precision and risk of bias. Multiple imputation by fully conditional specification (FCS MI) is a powerful and 
statistically valid method for creating imputations in large data sets which include both categorical and continuous 
variables. It specifies the multivariate imputation model on a variable-by-variable basis and offers a principled yet flexible 

method of addressing missing data, which is particularly useful for large data sets with complex data structures. 
However, FCS MI is still rarely used in epidemiology, and few practical resources exist to guide researchers in the 
implementation of this technique. We demonstrate the application of FCS MI in support of a large epidemiologic study 

evaluating national blood utilization patterns in a sub-Saharan African country. A number of practical tips and guidelines 
for implementing FCS MI based on this experience are described. 
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1. INTRODUCTION 

Missing data are a pervasive problem in large 

epidemiologic studies. Incomplete data may arise due 

to refusal, attrition, measurement errors and 

miscommunication. Missing data result in a loss of 

precision and are also a source of bias if observations 

are not missing completely at random (MCAR) [1-3]. 

The most widely adopted strategy for dealing with 

missing data is to omit observations having missing 

values and perform a complete case analysis (CCA). In 

certain circumstances (e.g. when there is less than 5% 

missingness and the missing is MCAR), CCA may be 

an acceptable approach. In practice, however, these 

circumstances rarely occur [4]. The cumulative effect of 

missing data in several variables often leads to 

exclusion of a substantial proportion of the original 

sample, which in turn causes a substantial loss of 

precision and power. CCA may suffer from a loss of 

information in the incomplete cases and risk of bias if 

the missing data are not MCAR. More general 

objections to CCA are that it lacks an underlying 

statistical rationale and that it is difficult to determine 

when CCA will yield reasonable results [5]. Other 

method, like single imputation (SI), simply replaces the 

missing value with either a mean value or another  
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appropriate value from a similar unit or “neighbor,” to 

create a ‘complete’ data set [3,4]. SI underestimates 

the uncertainty introduced by imputation, which may 

cause the generation of inappropriately small variances 

and potentially biased estimates. None of these above 

ad hoc approaches is statistically valid in general and 

they can lead to serious bias. 

Statistical methods for addressing missing values 

have been actively pursued in recent years, including 

maximum likelihood (ML) estimation [6], Bayesian 

estimation [7] and multiple imputation (MI) [8], all of 

which are based on the assumption that data are 

missing at random (MAR) [9]. These approaches are 

especially useful when the data contain many patterns 

of missing values, or when both categorical and 

continuous random variables are involved. However, 

MI is the only technique that is computationally 

straightforward, versatile, relatively easy to apply, and 

increasingly available in standard statistical software, 

including SAS PROC MI and R MICE (Multiple 

Imputation by Chained Equations) package [10]. For 

general missing data patterns, there are two major 

iterative methods for doing multiple imputation: the joint 

modeling (JM) and the fully conditional specification 

(FCS) method [11]. Joint modeling is based on the 

assumption of joint multivariate normality of all 

variables, which implies that valid imputations may be 

generated by linear regression equations. It is ill-suited 

for imputing categorical variables since it assumes 
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normality and linearity [12, 13]. FCS relaxes that 

assumption and is rapidly emerging as a commonly 

used method for handling missing data [14-16]. FCS MI 

specifies the multivariate imputation model on a 

variable-by-variable basis by a set of conditional 

densities, one for each incomplete variable. This 

permits a great deal of flexibility, since an appropriate 

regression model can be selected for each variable 

(e.g. linear regression for continuous variables, logistic 

regression for categorical variables) [10, 17]. 

Simulation studies provide evidence that FCS MI 

generally yields estimates that are unbiased and 

provide appropriate coverage [11, 18]. However, FCS 

is still rarely used in epidemiology, perhaps in part 

because relatively little practical guidance is available 

for implementing and evaluating this method. Only few 

studies have looked at practical questions about how to 

implement MI in large data sets used for diverse 

purposes [19-21]. 

The present study aims to provide an introduction to 

FCS MI with a focus on practical aspects and 

challenges in using this method for dealing with 

multivariate missing data. We introduce the basic 

concepts and general methodology, and provide 

detailed guidance based on our experience with a large 

epidemiologic study evaluating national blood utilization 

patterns in Namibia, a country in southern Africa. 

Studying blood utilization patterns is essential for 

forecasting and predicting future blood stock 

requirements. However, broader analyses which 

evaluate blood utilization at a national level are lacking 

[22]. To our knowledge, this study is the first multi-year 

evaluation of national blood component use in an 

African country [23]. 

2. METHOD 

2.1. Blood Transfusion Service of Namibia 
(NAMBTS) Nationally Representative Census 

NAMBTS is the only organization authorized to 

collect, process and distribute blood and blood 

components intended for transfusion in Namibia. 

Clinical and demographic data from 46 transfusion 

centers were reviewed for a four year period from 

August 1, 2007 through July 31, 2011. A total of 39,313 

blood requests (each representing a transfusion event) 

were submitted to NAMBTS during the study period 

[23]. Since these data are primarily used for billing 

purposes, clinical and patient demographic variables 

captured on the paper-based blood request form (e.g., 

diagnosis, age and sex) were sometimes, but not 

always, entered into a national electronic database. To 

standardize the analysis, data on diagnoses reported 

by clinicians were matched to broad diagnostic 

categories in the WHO International Classification of 

Disease (ICD-10) system. As shown in Table 1, 

records were 100% complete for location and date, as 

well as number and type of blood component ordered. 

However, 23.2%, 19.6% and 9.9% of records were 

missing for Diagnosis, Age and Gender, respectively. 

Due to the cumulative effect of missing data in these 

variables, 32.4% of the total 39,313 blood requests had 

at least one missing value. To create a full national 

census for the four year study period, and to minimize 

Table 1: Frequency Analysis of Missing Variables in Original NAMBTS Data During the Study Period: X Observed; •  

Missing 

Missing data pattern 2007/2008 2008/2009 2009/2010 2010/2011 Grand Total 

Diagnosis Age Gender 

n 

(events) 

% n 

(events) 

% n 

(events) 

% n 

(events) 

% n 

(events) 

% 

X X X 5825 66.19 7060 70.86 7418 70.53 6286 62.66 26589 67.63 

X X . 67 0.76 37 0.37 6 0.06 17 0.17 127 0.32 

X . X 818 9.30 1031 10.35 875 8.32 586 5.84 3310 8.42 

X . . 61 0.69 42 0.42 16 0.15 38 0.38 157 0.40 

. X X 1080 12.27 819 8.22 1048 9.96 1875 18.69 4822 12.27 

. X . 19 0.22 7 0.07 9 0.09 15 0.15 50 0.13 

. . X 226 2.57 169 1.70 255 2.42 437 4.36 1087 2.76 

. . . 704 8.00 798 8.01 891 8.47 778 7.76 3171 8.07 

Grand Total Events 8800 100% 9963 100% 10518 100% 10032 100% 39313 100% 

Note: A transfusion event is defined as any patient record in which at least 1 type of blood component is ordered for an individual patient. Total numbers of each 
type of blood component unit associated with each transfusion event are established and stratified by component type and by year [23]. 
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bias due to any systematic differences between 

complete records and those with missing data, FCS MI 

was performed to impute estimated values. Based on 

the imputed datasets obtained by this method, we 

further analyzed blood utilization patterns stratified by 

diagnosis, gender and age, and developed a unique 

portrait of blood use in Namibia. 

2.2. Imputation 

Assumptions 

The risk of bias due to missing data depends on the 

reasons why data are missing. Three types of missing 

data are commonly classified: missing completely at 

random (MCAR), missing at random (MAR), and 

missing not at random (MNAR). MCAR indicates that 

the probability of an observation being missing does 

not depend on the value of any variables under study, 

which is a fairly strong assumption and tends to be 

relatively rare. MAR indicates the probability of missing 

depend only on the subset of complete cases, and is 

less restrictive than MCAR. Most MI methods, including 

FCS MI, generally assume that the data is at least 

MAR, and therefore remains valid if observations are 

MCAR. 

MNAR indicates the probability that a missing value 

is associated with the missing variable itself and with 

other variables. It can be difficult to determine whether 

variables are MNAR, because the information that 

would confirm that values are MNAR is unobserved. As 

a result, the decision to treat data as MNAR is often 

made based on theoretical and/or substantive 

information, rather than information present in the data 

itself. Therefore, biases caused by data that are MNAR 

can be addressed only by sensitivity analyses 

examining the effect of different assumptions about the 

missing data mechanism.  

Algorithms 

The key step of the MI procedure is the specification 

of the imputation model. Two general approaches for 

imputing multivariate missing data have emerged: joint 

modeling (JM) and FCS. JM involves specifying a 

multivariate distribution for the missing data, and 

drawing imputation from their conditional distributions 

by Markov Chain Monte Carlo (MCMC) techniques 

[10]. This methodology is attractive if the multivariate 

distribution is a reasonable description of the data. 

However, in practice, the data often consists of 

variables with different scales, and quite complex 

relations between variables may occur that are hard to 

capture in an explicitly specified joint distribution for the 

entire data. Instead of drawing the imputations from a 

pre-specified joint distribution, FCS imputations are 

generated sequentially by specifying an imputation 

model for each variable given the other variables. Let Y 

be the partially observed complete sample, consisting 

of p variables, from the multivariate distribution P(Y| ). 

Further, let Y–j be all variables in the data except Yj , j = 

1, …, p. We assume that the multivariate distribution of 

Y is completely specified by , a vector of unknown 

parameters. The posterior distribution of  is obtained 

by iteratively sampling from conditional distributions of 

the form 

P(Y1| Y2, Y3, …, Yp, 1) 

 

P(Yp| Y1, Y2, …, Yp-1, p) 

The parameters 1,…, p are specific to the 

respective conditional densities and are not necessarily 

the product of a factorization of the “true’ joint 

distribution P(Y| ). FCS starts with an initial imputation 

and draws imputations by iterating over the conditional 

densities and sequentially filling in the current draws of 

each variable. The tth iteration of the Gibbs sampler is 

1
*(t)

 ~ P( 1| Y1
Obs

, Y2
t-1

, …, Yp
t-1

), 

Y1
*(t)

 ~ P(Y1| Y1
Obs

, Y2
t-1

, …, Yp
t-1

, 1
*(t)

), 

 

p
*(t)

 ~ P( p| Y1
Obs

, Y2
t-1

, …, Yp-1
t
), 

Yp
*(t)

 ~ P(Yp| Yp
Obs

, Y1
1
, …, Yp

t-1
, p

*(t)
), 

where Yj
(t) 

= (Yj
Obs

, Yj
*(t)

) is the imputed value for the 

variable j at the tth iteration [24]. After the cycle 

reaches convergence, the current draws are taken as 

the first set of imputed values. The cycle is then 

repeated until the desired number of imputations has 

been achieved. 

FCS MI Using SAS PROC MI  

SAS PROC MI performs the imputation stage and 

can be used with either monotone or arbitrary missing 

patterns. The FCS statement is a new addition to the 

PROC MI in SAS version 9.3. This procedure does not 

start with a specified multivariate posterior distribution 

of observed data, but instead uses a separate 

conditional distribution of each imputed variable. It is 

attractive because of its ability to impute both 

continuous and categorical variables appropriately. It 

can also incorporate features such as the specification 

of upper or lower bounds for variables, and a rounding 
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option for imputed values. The general coding 

procedure for PROC MI using FCS statement is shown 

in Supporting Materials. 

The discriminant function, logistic regression, 

regression, and predictive mean matching methods are 

available in the FCS statement. For continuous 

variables, the regression (REG) and predictive mean 

matching (REGPPM) methods can be used to impute 

missing values. The logistic regression (LOGISTIC) 

method can be used for variables having binary or 

ordinal responses, and the discriminant function 

(DISCRIM) method is used for variables having binary 

or nominal responses.  

Generally the imputation model should include all 

the variables likely to be used in the subsequent 

analyses [25]. For the imputation of a particular 

variable, the model should include variables in the 

complete-data model, variables that are correlated with 

the imputed variable, and variables that are associated 

with the missingness of the imputed variable. The 

dependent variable(s) must be included in the 

imputation model. Otherwise the imputed values will 

not have the same relationship to the dependent 

variable that the observed values do. Typically m = 4-

20 imputations are created, resulting in 4-20 “complete” 

imputed data sets, though more are computationally 

feasible and better characterize the variability 

introduced into the results due to the imputation 

process [26]. In our case, the FCS statement included 

a specific modelling approach to impute missing values 

for both continuous (Age) and categorical variables 

(Diagnosis and Gender) with arbitrary missing patterns. 

Imputation Diagnostics 

Once the imputation model has been specified and 

the initial imputations created, the quality of imputations 

should be examined. Graphic and numeric diagnostics 

are commonly used for identifying problematic 

variables and detecting possible implausible values 

[27]. Imputations can be checked by using a standard 

of reasonability: the differences between the observed 

and imputed values, and the distribution of the 

completed data as a whole, can be checked to see 

whether they make sense in the context of the problem 

being studied. These diagnostics are applied to one 

randomly selected completed data set constructed by 

FCS imputations and then repeated with another one to 

confirm if similar results are obtained. Kernel density 

estimate plots are used to visually compare the 

distributions of the observed, imputed and completed 

values of each variable. When there is large number of 

variables, it may be difficult to carefully examine 

graphical summaries of each variable. Numerical 

summaries that compare differences in means and 

standard deviations are an additional approach to 

identifying problematic variables and may be more 

feasible within the context of large datasets. For 

numeric diagnostic, nonparametric Kolmogorov-

Smirnov (KS) test is used to numerically compare the 

marginal distribution and test statistically significant 

differences (p-value). When p-value is less than 0.05, 

we would reject the hypothesis that there is no 

significant difference between two empirical 

distributions. Imputation diagnostics should be used to 

identify potentially problematic variables. Then 

information regarding the missingness, along with 

substantive knowledge, can be used to determine 

whether the imputations are in fact reasonable or 

whether the procedure needs to be further modified 

[19]. 

FCS MI Analysis  

The m imputations are intended to represent a 

plausible range of values that approximate the missing 

value, had it not been missing. The variability of values 

within this range allows the uncertainty in the 

imputation process to be quantified and integrated into 

the analysis. Each of the m “complete” data sets is 

analyzed using a standard analytic method that will 

estimate the quantities of scientific interest. Results on 

each data set will vary due to the difference in values 

during the multiple imputations. Then the estimates 

from the imputed data sets are combined or pooled to 

generate a single set of estimates. The overall estimate 

is the average of the estimates. The variance of that 

overall estimate is a function of variance within each 

imputed data set and the variance across the data sets: 

Vartotal ( ) = Varwithin ( )+ 1+
1

m
Varbetween ( ).  

The strength of MI is that any analysis model can be 

applied to the imputed data sets. In SAS, the command 

PROC MIANALYZE is used to combine results across 

datasets automatically. This make the analysis of 

imputed datasets no more complicated than running a 

single regression in a single dataset. In our case, 

multinomial logistic regression model was applied to 

each imputed data set to compute the conditional 

proportions (p) and 95% Confidence Interval (CI) for 

three blood unit types (RBC, Platelet and FFP). Finally 

the results were combined using PROC MIANALYZE to 
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give the valid estimates. FCS MI results in statistically 

valid estimates with confidence intervals that account 

for the uncertainty caused by the missing data as well 

as the sampling error of the estimates using CCA [14]. 

Comparison of FCS MI and CCA  

MI is widely advocated as an improvement over 

CCA. However, it is often implemented without 

adequate consideration of whether it offers any 

advantage over CCA for the research question of 

interest, or whether potential gains may be offset by 

bias from a poorly fitting imputation model, particularly 

as the amount of missing data increases. For these 

reasons, it has been recommended to carry out a CCA 

in parallel when using MI for handling missingness [5]. 

Where CCA and MI analysis give different results, the 

analyst should attempt to understand why, and this 

should be reported in publications.  

3. RESULTS 

Table 1 shows the frequency analysis of three 

missing variables (Diagnosis, Age and Gender) in 

original NAMBTS data sample. Due to the cumulative 

effect of missing data in three variables, 32.4% of total 

blood requests had at least one missing value. FCS MI 

was then performed to handle missing data and create 

a full four year NAMBTS national census. The 

imputation model included all the variables likely to be 

used in the subsequent analyses to ensure that all of 

the information in the large dataset was used. The 

imputation number was chosen as 20 and finally 20 

complete data sets were obtained.  

To examine the quality of imputation, one imputed 

data set was selected randomly for imputation 

diagnostics, and the missing variable Age was used as 

an example for imputation diagnostics. As shown in 

Figure 1, the shape of the Age distribution of the 

imputed values (blue line) differed from that of the 

observed values (green line), while the distribution 

between the observed (green line) and the completed 

data (red line) was quite similar. Numeric diagnostics 

were further applied to numerically compare the 

empirical distributions of Age in the observed, imputed 

and completed data and test the statistically significant 

differences (p-value). We could identify quickly the 

differences of Age distribution among three different 

data sets. Figure 2 shows a simple example if we 

choose a ‘good’ or ‘bad’ imputation model, what will 

happen in imputation diagnostics. Since the Age 

distribution is not normal, REGPMM model is chosen 

as an appropriate model (blue line) for imputing Age, 

instead of using REG model (red line) which assumes 

 

Figure 1: Imputation diagnostics (Graphic and Numeric). 
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normality. For imputing Diagnosis and Gender which 

both had nominal responses, thus the discriminant 

function (DISCRIM) method was used to impute these 

categorical variables. 

 

Figure 2: Comparison of imputation models: Blue line 
represents the Age distribution of imputed data by an 
appropriate REGPMM model (Imputed_Good); Red line 
represents the Age distribution of imputed data by an 
inappropriate REG model (Imputation_Bad); Green line 
represents the Age distribution of the observed data set.  

To evaluate the blood utilization pattern, the 

conditional proportion (p) of each blood unit type (RBC, 

Platelet and FFP) was computed to develop a unique 

portrait of blood use in Namibia. Table 2 showed the 

counts of each type of blood component unit 

associated with each transfusion event, stratified by 

component types. A total of 39,313 events accounted 

for 91,389 blood component units. 91,389 and 60,632 

total blood component units were counted from FCI MS 

and CCA respectively. Table 3 (Supporting Tables 4, 5) 

showed the total number of RBC (FFP and platelet) 

units requested during the study period were further 

stratified by diagnosis, age and gender (Supporting 

Tables 4 and 5 shown in Supporting Materials). The 

predominant four ICD categories associated with three 

blood component units were listed for comparison. For 

example, Table 3 showed the top four diagnoses in the 

“Diseases of the blood and blood-forming organs and 

certain disorders involving the immune mechanism 

(D50-D89)”, “Infectious Disease (A00-B99)”, 

“Pregnancy (O00-O99)”, and “Gastrointestinal (K20-

K93)” accounted for 38.9%, 14.8%, 11.1% and 6.1% of 

RBC units issued, respectively. The remaining 30% of 

units issued were associated with 15 other ICD 

categories, none of which individually accounted for 

more than 5% of all units, and six of which accounted 

for <1% of all units. These 15 other ICD categories 

were classified as “All others”. Studying blood 

utilization patterns is essential for forecasting and 

predicting future blood stock requirements and it may 

help set realistic national blood collection goals [23]. 

4. DISCUSSION 

To obtain valid inferences or statistical estimates of 

interest from imputed data, imputation should preserve 

the structure in the data, as well as any uncertainty 

about this structure, and account for any reasons 

related to the process that generated the missing data. 

FCS MI specifies the multivariate imputation model on 

a variable-by-variable basis by a set of conditional 

densities, one for each incomplete variable. It is 

particularly appealing in settings in which a number of 

variables have missing data, some of which are 

continuous and some of which are categorical [26, 28].  

Checking of imputation models is necessary 

because it can identify model defects and facilitate 

model improvement. Some deviations of the observed 

and imputed data can be expected under MAR (Figure 

1). But that is not necessarily a problem because the 

distributions should be similar only if the data are 

Table 2: Comparison of Total Blood Component Unit Counts by FCS MI and CCA 

 FCS MI CCA 

Component Type n (units)* % 95% CI n (units) % 

RBC 78,660 86.1 (85.8, 86.3) 52,284 86.2 

FFP 9,751 10.7 (10.5, 10.9) 6,082 10.0 

Platelets 2,978 3.3 (3.1, 3.4) 2,266 3.7 

Total Units 91,389 100.0  60,632 100.0 

*Mean value from 20 imputed data sets. 
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MCAR. In fact, these differences may be indicative of 

the bias that imputation is trying to address. However, 

we can see dramatic distribution differences between 

observed and imputed data if the ‘bad’ REG model is 

chosen for imputing Age (Figure 2). This large 

difference in imputation diagnostics is a sign for a 

potential problem, meaning further assessment of the 

imputation model is required. The best practice may be 

to repeat the analysis under different imputation 

models to see if, and how, changes in the imputation 

model result in changes in the final results. Choosing a 

good imputation model is important since the quality of 

the imputation model will influence the quality of the 

final results. 

Once the imputation model has been specified and 

the initial imputations created, imputation diagnostics 

are commonly used for identifying problematic 

variables and detecting possible implausible values. 

More complex imputation diagnostics method can be 

found [27], in which residuals from regression models 

were used to determine which differences in 

distribution were reasonable. Methods for addressing 

imputation diagnostics are an area of on-going 

statistical research. Further research is needed to 

incorporate the imputation diagnostics directly into 

common MI software packages [29]. 

Comparing results from FCS MI and CCA may 

provide clues about the nature of the data. It also 

provides reassurance if inference from the two are 

similar, but may highlight issues with one or both 

approaches if results differ substantially. As shown in 

Table 3 (Supporting Tables 4, 5), FCS MI and CCA 

were conducted to estimate the conditional proportions 

for three blood unit uses (RBC, Platelet and FFP) 

stratified by Diagnosis, Age and Gender. While 

resorting to complete cases is simple, CCA suffers 

from a loss of information in the incomplete cases and 

risk of bias if the missing data is not MCAR. FCS MI 

may reduce bias in estimates while accounting for the 

uncertainty in the imputation process, preserving study 

power and holding less restrictive but more plausible 

MAR assumption. 

Although attractive, FCS MI is not without 

drawbacks [17]. First, FCS MI is based on the 

assumption of MAR. For missing data which is MNAR, 

new methods generating MIs under MNAR model will 

be required for handing such kind of missing data [30, 

31], which is out of the interest of this study. Another 

way is to preclude MNAR data to MAR by changing the 

study design. For example, when MNAR attrition is 

anticipated, we could ask one more question at each 

occasion of measurement for each participant, “How 

likely are you to drop out this study before next 

session?” Collecting this additional covariate and 

including it in the imputation model will effectively 

convert an MNAR situation to MAR [3]. Thus, FCS MI 

can still be used. Second, for FCS MI, each conditional 

density has to be specified separately, so substantial 

modeling effort can be needed for data sets with many 

variables. Third, FCS MI lacks the theoretical 

justification of some other well developed imputation 

approaches like MCMC. Relatively little is known about 

the quality of the resulting imputations because the 

implied joint distributions may not exist theoretically 

and that convergence criteria are ambiguous [11].  

In conclusion, FCS MI is a powerful and statistically 

valid method for creating imputations in large data sets 

with complex data structures. This paper provides a 

detailed guidance for using FCS MI method to deal with 

multivariate missing data in large data sets, with the 

aim of helping researchers to implement and use this 

method for their own data.  
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