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Abstract: Objectives: The aim of this study was to identify the risk factors associated with number of crime committed by 
youth (Youth Delinquency) between ages 10-17, using Ordinary Least Square (OLS), Poisson Regression model (PRM), 
Negative Binomial Regression model (NBRM)& Zero Inflated Negative Binomial (ZINB) with the aim to choose the most 

appropriate model for the observed count data. 

Methodology: The data in the study was collected from youth whose mothers enrolled in Philadelphia Collaborative 
Perinatal Project (CPP). School and delinquency record (between ages 10-17) was obtained by the Centre for studies in 

Criminology and Criminal Law. Literature search suggest that factors associated with child delinquency can be divided 
into four main factors as Individual, Family, School and Peer. Therefore we included variables in the analysis 
accordingly.  

Result: For OLS scatter plot of residuals versus estimated counts showed definite pattern of heterogeneity (non-constant 
variance). The likelihood-ratio (LR) test of over dispersion yields the significant p-value, which implied that the outcome 
variable is overdispersed. The plot of the difference between the actual probabilities and the mean predicted probabilities 

for each model showed that PRM has poor predictions for low counts (0-2).  

Conclusion: NBRM and ZINB both performed well, however fit statistics revealed that NBRM has provided more closed 
predication as compare ZINB.NB modeling techniques provides much more compelling and accurate results instead of 

basic PRM or those available through simple linear or log-linear modeling techniques. 
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1. INTRODUCTION 

Count Variables indicate how many times specific 

event has occurred. A count variable can take only 

zero or positive integer values as an event cannot 

occur a negative number of times. There are several 

multidisciplinary examples including number of doctor 

visits [1], number of alcohol drink consumed [2], 

number of road traffic accidents [3], number of 

publications [4], number of children ever born to a 

women [5]. Studies that model theses counts and their 

association with other variables provide information 

leading to better understanding of the problem under 

study. 

When the mean of the count variable is relatively 

high, OLS regression techniques provide reasonable 

results. However, when the mean of the count is low, 

OLS regression yields Inefficient, inconsistent and 

biased estimates [4, 6]. In this regard, Poison 

Regression Model (PRM) has been served as the basic 

model as it lends itself well with the nature of count 

data and relatively easy to understand. However  
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Poisson Regression Model (PRM) assumes that the 

mean and variance of count variable are equal, a 

property known as equidispersion. Practically, in most 

of applications actual data may be overdispersed (that 

is variance exceeds the mean), which has similar 

consequences as the failure of homoscedasticity 

(constant variance) assumption in OLS regression [1].  

Due to this restriction, Negative Binomial regression 

model (NB) has been developed which has the 

capability to account for overdispersion. But sometimes 

data in hand contains far more zeros (excessive 

number of zeros) than are allowed [4, 7]. Although 

overdispersed count model that is NBRM can be used 

to model the data having zero counts. The problem of 

excessive zero counts can be handled by using Zero 

Inflated Negative Binomial Regression Model (ZINB) 

introduced by lambert [8] and Greene [9] and there 

may be little advantage in fitting ZINB. In ZINB data are 

assumed to come from a mixture of two distributions. 

The structural zeros from a binary distribution are 

mixed with the non-negative integer outcomes 

(including zeros) from a count distribution. Logistic 

regression is usually used to model the structural 

zeros, and negative binomial regression is used for the 

count outcomes.  
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The aim of this study is to identify the risk factors 

associated with number of crime committed by youth 

between ages 10-17 (Youth Delinquency) using, PRM, 

NB & ZINB with the aim to choose the most appropriate 

model for the observed data. 

METHODOLOGY 

The data we used in the study was collected from 

youth whose mothers enrolled in Philadelphia 

Collaborative Perinatal Project (CPP) between 1959 to 

1974. (http://doi.org/10.3886/ICPSR08928.v2). Upon 

registration, each mother was administered a series of 

interviews. Data recorded for each child from birth 

through age seven were recorded on several variables. 

School and delinquency record (between ages 10-17) 

were obtained by the Centre for studies in Criminology 

and Criminal Law [10]. 

Recent literature search suggest that factors 

associated with child delinquency can be divided into 

four main factors as Individual, Family, School and 

Peer [11-13]. Therefore we included variables in the 

analysis accordingly Table 1. 

Statistical Analysis 

The adequacy of OLS model was examined by 

scatter plot of residuals versus estimated counts. To 

compare count models, the difference between the 

observed probabilities for each count and the average 

predicted probabilities for each model were plotted on 

the same graph. All regression analyses were 

performed using Stata version 11.1. 

RESULTS 

The results of the estimated Regression Models 

presented in Table 2. For OLS scatter plot of residuals 

versus estimated counts showed definite pattern of 

heterogeneity (non-constant variance), indicating OLS 

regression model was not appropriate choice. 

To choose between PRM and NBRM, the likelihood-

ratio (LR) test of over dispersion yields the significant 

p-value, chibar2 (01) =183.72, p =<.01, which implied 

that the outcome variable is overdispersed and hence 

NBRM is the better choice. 

Table 1: Description of Variables Used in the Analyses 

Variable Description 

Gender 0= Male  

1= Female 

Income Family income at the time of Registration in CPP 

Remedial Disciplinary Codes In School 

Nursery School Attendance  

 

Subscales of CAT
1 

CAT_1 

CAT_2 

CAT_3 

CAT_4 

CAT_5 

CAT_6 

CAT_7 

Number of times an individual enrolled in a disciplinary program during High School 

0=Yes 

1=No 

 

Vocabulary Score 

Comprehension Score 

Reading Score 

Computation Score 

Concept& Problem Score 

Total Maths Score 

Mechanics Score 

Subscales of WISC
2
 

WISC-1 

WISC-2 

WISC-3 

WISC-4 

WISC-5 

WISC-6 

WISC-7 

WISC-8 

 

Information Score 

Comprehension Score 

Vocabulary Score 

Digit Span Score 

Block Design Score 

Coding Performance Score 

Verbal I.Q SCORE 

Performance I.Q Score 
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Figure 1: Difference between the observed probabilities and the average predicted probabilities. 

Additionally, the results of Voung test, a test to 

determine whether ZINB is statistically preferred over 

NBRM, yields the insignificant p-value of 0.105, 

supporting NRBM as compare to ZINB. 

Figure 1 is the plot of the difference between the 

actual probabilities and the mean predicted 

probabilities for each model. It is apparent that PRM 

has poor predictions for low counts (0-2). Among 

NBRM and ZINB, both performed well, however 

investigation based on fit statistics revealed that NBRM 

has provided more closed predication as compare 

ZINB. 

Gender, Income, evidence of disciplinary problems 

at school and two subscales of CAT were found to be 

the statistically significant risk factors associated with 

youth delinquency in all models. Additionally, one 

subscale of CAT was significant only in PRM and one 

subscale was significant both in OLS and PRM. Since, 

the results obtained from OLS and PRM could lead to 

incorrect inference and also as Figure 1 suggest that 

the NBRM is the most appropriate model, therefore, we 

focused only on NB Model.  

Being a male youth, increases the expectation of 

committing a crime. Income at registration in CPP was 

negatively associated with delinquency. Similarly youth 

with low achievement score are more opt to have an 

offense record. Whereas, evidence of disciplinary 

problems at school, presented in the model as the 

number of times an individual enrolled in a disciplinary 

program was positively associated with youth 

delinquency (Table 2). 

Estimated Coefficients of NB and ZINB can be 

interpreted in the same way as in PRM. For example, 

results of NB regression revealed that being a female 

youth decreases the expected number of crimes by a 

factor of 0.38. Results can also be expressed in term of 

percentage as being a female youth decreases the 

expected number of crimes by 62% (Table 2). 

DISCUSSION 

In this study we have compared modern 

approaches of analyzing count outcome by using 

empirical data of Youth delinquency. The study showed 

that gender, lower family income, lower achievements 

& disciplinary problems at school were the strongest 

predictors of youth delinquency. 

While PRM is the good starting point due to its 

simplicity, it rarely explains the data in hand [3, 7]. The 

NBRM that induces overdispersion may be sometimes 

more suitable. When there is high frequency of zero 

count in dataset, ZINB may be more appropriate [8, 9].  

In this study NBRM completely outperformed the 

basic PRM. On the other hand although the proportion 
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of zero observations in dataset was approximately 25% 

but still NBRM was the best fitted model which 

suggests that when fitting a series of models without 

any theoretical justification, it is easy to overfit the data 

[14, 15]. The fit of count models was assessed by 

comparing the predicted average proportion of each 

count outcome to observed proportion [16, 17].  

The results of our study suggest that serious over 

dispersion can results into inflated test statistics which 

could eventually lead to incorrect statistical inference 

.For example two variables two CAT variables were not 

significant in both PRM and NBRM attained statistical 

significance in PRM. Due to its structure, the Negative 

Binomial modeling techniques provides much more 

compelling and accurate results instead of basic PRM 

or those available through simple linear or log-linear 

modeling techniques. 

CONCLUSION 

NBRM has provided more closed predication as 

compare ZINB.NB modeling techniques provides much 

more compelling and accurate results instead of basic 

PRM or those available through simple linear or log-

linear modeling techniques. 
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