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Abstract: Background: Receiver operating characteristic (ROC) curve and derived measures as the Area Under the 
Curve (AUC) are often used for evaluating the discriminatory capability of a continuous biomarker in distinguishing 
between alternative states of health. However, if the marker shows an irregular distribution, with a dominance of 
diseased subjects in noncontiguous regions, classification using a single cutpoint is not appropriate, and it would lead to 
erroneous conclusions. This study sought to describe a procedure for improving the discriminatory capacity of a 
continuous biomarker, by using generalized additive models (GAMs) for binary data. 

Methods: A new classification rule is obtained by using logistic GAM regression models to transform the original 
biomarker, with the predicted probabilities being the new transformed continuous biomarker. We propose using this 
transformed biomarker to establish optimal cut-offs or intervals on which to base the classification. This methodology is 
applied to different controlled scenarios, and to real data from a prospective study of patients undergoing surgery at a 
University Teaching Hospital, for examining plasma glucose as postoperative infection biomarker. 

Results: Both, theoretical scenarios and real data results show that when the risk marker-disease relationship is not 
monotone, using the new transformed biomarker entails an improvement in discriminatory capacity. Moreover, in these 
situations, an optimal interval seems more reasonable than a single cutpoint to define lower and higher disease-risk 
categories. 

Conclusions: Using statistical tools which allow for greater flexibility (e.g., GAMs) can optimize the classificatory capacity 
of a potential marker using ROC analysis. So, it is important to question linearity in marker-outcome relationships, in 
order to avoid erroneous conclusions. 
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1. BACKGROUND 

Biomarkers serve various clinical functions, 
including diagnosis, prediction and prognosis of 
disease. Traditionally the receiver operating 
characteristic (ROC) curve [1, 2] and derived measures 
such as the Area Under the Curve (AUC) [3] are used 
for evaluating the discriminatory capability of a 
continuous marker in distinguishing between alternative 
states of health. Within the ROC framework, biomarker 
levels above and below a given cut-off value result in 
individuals being labeled as diseased or nondiseased, 
respectively. In many situations, however, the 
classification rule that minimizes the overall 
misclassification error is not necessarily the criterion 
used in ROC analysis [4]. For instance, in cases where 
the marker shows an irregular distribution, with a  
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dominance of diseased subjects in non-contiguous 
regions, classification by reference to a cut-off value is 
neither feasible nor logical. Indeed, use of such an 
analysis would lead to erroneous conclusions, and a 
modification of the classification rule is therefore 
necessary [5]. An intuitive solution to this problem 
would be to estimate the probability of belonging to one 
of the states (e.g., diseased status) as a function of the 
values of the marker, with the predicted probabilities 
thus being regarded as a new continuous biomarker. 
We propose to estimate such probabilities by means of 
generalized additive models (GAMs) for binary data. 
GAMs are modern regression techniques that have the 
advantage of not assuming a parametric relationship 
between status and biomarker, and eliminate the need 
for the researcher to impose functional assumptions 
[6]. Furthermore, there are other important clinical 
tasks that are affected by the classification rule 
adopted, such as selection of optimal cut-off values [7-
10]. The most widely-used criteria for cut-off value 
selection are based on accuracy measures, and so it is 
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essential that this decision be underpinned by the best 
classification rule based on a given marker. 
Accordingly, this study sought to describe a procedure 
for improving the discriminatory capacity of a 
continuous biomarker, by using generalized additive 
models for binary data. In addition, this paper outlines a 
new approach for dealing with the selection of cut-off 
values for a continuous biomarker. 

2. METHODS 

2.1. Statistical Methodology 

Let Y be a continuous biomarker. An individual can 
be classified as diseased (D) or non-diseased ( D ) on 
the basis of Y by choosing a cut-off value, c, such that: 
if Y  c, the subject is classified as diseased; and if Y < 
c, he/she is classified as non-diseased. Hence, each 
chosen cut-off value, c, will give rise to a true positive 
fraction (TPF) (or sensitivity), 

  
TPF(c) = P [Y c | D]  and 

a false positive fraction (FPF) (or 1-specificity), 
FPF(c) = P [Y c | D] . In such a situation, the ROC 

curve is defined as the set of all TPF-FPF pairs that 
can be obtained by a varying cut-off value, c, 

FPF(c),TPF(c)( ),c ( ,+ ){ } , or equivalently, as the 

function of the form 
  
ROC(t) = S

D
(S

D

1(t)),   t (0,1) , 

where S
D

( y) = P [Y y | D]  and S
D

( y) = P [Y y | D]  

are the survival functions of Y in the diseased and 
healthy populations, respectively. 

Several indices can serve as summaries of the 
discriminatory capacity of the ROC curve. The most 
commonly used of these is the area under the ROC 
curve (AUC), taking values from 0.5 (no power of 
discrimination) to 1 (perfect power of discrimination) [3]. 

As pointed out above, in many situations the Y-
based classification rule that minimizes the overall 
misclassification error is not the criterion used in ROC 
analysis. Moreover, the best Y-based classifier with a 
cut-off as the decision threshold is that which is based 
on the conditional probability of one of the states (e.g., 
diseased), given the values of Y [4, 13]. Accordingly, 
the best classifier,   Y , can be expressed as: 

   
Y f (Y ) = P [D |Y ] (0,1)          (1) 

In practice, however, the function, f (.), of (1) is 
unknown, and its estimation would be required. In this 
study, the function f (.) is estimated by using a logistic 
GAM regression model as follows: 

  

f (Y ) = P [D |Y ] = g 1( + h(Y )) =
exp( + h(Y ))

1+ exp( + h(Y ))
       (2) 

where g (.) is the logit link function (known), and h (.) is 
a smooth (unknown) function. 

To date, several approaches have been proposed in 
the statistical literature for estimating the model (2), 
including methods based on penalized regression 
splines [14, 15] or the Bayesian versions of these [16]. 
Alternatively, the local scoring algorithm with kernel-
type smoothers can also be used [17, 18]. 

In this paper, we used penalized regression with 
B(asic)-splines as smoothers [14], for the purpose of 
estimating the function h(.). When estimating h(.), a 
crucial step is choosing the smoothing parameter that 
is to control the smoothness of the resulting estimate. 
In this study, the optimal smoothing parameter is 
chosen automatically by use of the Un-Biased Risk 
Estimator (UBRE) criterion [19]. 

Once model (2) has been fitted, the estimated 
probabilities are used as the new classifier, with the 
corresponding ROC curve and AUC then being 
obtained. 

It should be noted that GAM-logistic models are 
also suitable tools for estimating the odds ratio (OR) 
function, which generalizes the concept of OR per unit 
increase in the continuous marker. Assuming model 
(2), OR(y,yref ) can be expressed as [11, 20]: 

  
OR( y, y

ref
) = exp(h( y) h( y

ref
))          (3) 

2.2. Validation on Theoretical Scenarios 

The proposed methodology introduced in the 
previous subsection was applied to several controlled 
scenarios. Specifically, we analyzed different situations 
in which the distribution of marker Y among the healthy 
and diseased populations was assumed to be known, 
and assessed the improvement in the classificatory 
capacity of the transformed marker 

   
Y = P [D |Y ]  over 

that of the crude marker. In all cases a 50% disease 
prevalence was assumed. 

Scenario 1. Normal distributions with the same 
dispersion in healthy and diseased subjects: 

  
Y | D  ~ N(0, 0.5); 

  
Y | D  ~ N(0.5, 0.5) (see Figure 1). 

Scenario 2. Normal distributions with different 
dispersion in healthy and diseased subjects: 



298     International Journal of Statistics in Medical Research, 2015, Vol. 4, No. 3 López-Ratón et al. 

  
Y | D  ~ N(0, 0.5); 

  
Y | D  ~ N(0.3,0.9) (see Figure 2). 

Scenario 3. Normal distribution in healthy subjects 
and mixture of normal distributions in diseased 
subjects: 

  
Y | D  ~ N(1.5, 0.8); 

  
Y | D  ~ 0.5 x N(0, 0.7) + 

0.5 x N(3, 0.6) (see Figure 3). 

2.3. Study Population 

We used data drawn from a prospective study of 
patients who underwent surgical interventions at the 
Hospital Clínico Universitario de Santiago (Santiago de 
Compostela, Spain) in the period January 1996 through 
March 1997 [11]. The aim of this study was to ascertain 
factors associated with the appearance of 
postoperative infection (POI). 

Of the 2353 individuals contained in the database, 
postoperative infection was detected in 460 during 

follow-up. Infection was strongly correlated with type of 
surgery performed. Classification of type of operation 
was based on Altemeier class [12], which categorizes 
surgery into the following 4 types: clean; clean-
contaminated; contaminated; and dirty to a lesser or 
greater degree of bacterial contamination. This study 
evaluated whether glucose levels could predict 
appearance of infection in the immediate postoperative 
period. By way of example, and to prevent the 
presence of possible confounding variables, only the 
group of clean surgical interventions on nondiabetic 
individuals was considered for analysis purposes. The 
final sample comprised 836 patients, 45 of whom 
presented with POI. 

2.4. Statistical Software 

The software used for analysis purposes was the R 
statistics package [21]. Logistic GAMs were fitted using 

 

Figure 1: Theoretical scenario 1. 

(a) Probability distribution of crude marker Y among diseased (solid line) and healthy subjects (dashed line) in Scenario 1. (b) 
Probability of being diseased according to the values of marker Y ( f (Y ) = P [Y | D] ). The resulting ROC curves for the crude 

marker Y and transformed marker   Y  (Y = f (Y ) = P [Y | D] ) are shown in Figure (c). As can be seen, in this case both ROC 

curves coincide. 
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the gam function of the mgcv package [22]. ROC curves 
and their corresponding AUCs were estimated using 
spline smoothing techniques [23]. This code was 
obtained from the authors of that paper. The rest of 
routines, including those necessary for the calculation 
of optimal cut-off points, are obtainable from the 
authors on request. 

3. RESULTS 

3.1. Performance Under Different Theoretical 
Scenarios 

For illustration, we present the results obtained 
when the methodology proposed in subsection 2.1. 
was applied to the theoretical scenarios considered 
previously in subsection 2.2. Figure 1 shows the 
situation corresponding to Scenario 1. As can be seen, 
there is no interspersion in the marker's distribution 
among healthy and diseased subjects, so that the 

probability of being ill increases linearly with any 
increase in the value of Y. This situation is consistent 
with a linear logistic regression model, and so the 
classic approach is acceptable, with the use of crude 
and transformed markers, Y and Y , yielding the same 
result in terms of ROC/AUC (AUCY = AUC

Y
= 0.76). 

Under Scenarios 2 and 3, however, (see Figures 2 
and 3, respectively) there is interspersion in the 
marker's distribution among healthy and diseased 
subjects. Hence, the probability of being ill does not 
show a monotone increasing behavior vis-á-vis the 
values of Y. In such scenarios, therefore, the 
classification rule assumed in the ROC is not the one 
that will minimize classification errors, and when the 
marker is transformed by   Y , classificatory capacity 
improves. This can be seen in Figures 2c and 3c, 
which depict the ROC curves corresponding to Y and 
Y  under both scenarios. As will be noted, regardless of 
the FPF value chosen, the corresponding TPF is 
always higher (or the same) for the transformed 

 

Figure 2: Theoretical scenario 2. 

(a) Probability distribution of crude marker Y among diseased (solid line) and healthy subjects (dashed line) in Scenario 2. (b) 
Probability of being diseased according to the values of marker Y ( f (Y ) = P [Y | D] ). The resulting ROC curves for the crude 

marker Y (solid line) and transformed marker   Y (
   
Y = f (Y ) = P [Y | D] ) (dashed line) are shown in Figure (c). 
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marker. Lastly, whereas AUC values for the crude 
marker Y are AUCY = 0.62 and AUCY = 0.51 in 
Scenarios 2 and 3, respectively, these change to 
AUC

Y
= 0.70 and AUC

Y
= 0.86 when using the 

transformed marker   Y .  

In general, the suitability or unsuitability of using the 
transformed marker for discriminatory purposes is 
dictated by the form adopted by the function 

  
f (Y ) = P [D |Y ] . If this function is strictly monotone 

increasing (Scenario 1), then using the transformed 
marker yields no gain in terms of discrimination, since 
the ROC curve is invariant to this type of transformation 
[24, 25]. 

Impact on Selecting Optimal Marker Threshold 

Situations in which the risk marker/disease 
relationship is not monotone increasing (or decreasing) 
give rise to a new challenge linked to the choice of the 
“optimal” cut-off point. In such cases, rather than 

proposing a single cut-off value as the classification 
rule, it would seem more reasonable to use an optimal 
interval that will define individuals with lower (higher) 
risk of presenting with the disease. Hence, unlike the 
classical approach, which consists of identifying a 
single cut-off point, c, for the marker, the proposed 
methodology enables a range of marker values to be 
obtained which are applicable to a wider variety of risk 
situations. 

Based on the theoretical scenarios presented in the 
above subsection 2.2, this study proposes the use of 
transformed marker Y  for the choice of optimal cut-off 
point(s). Cut-off values are calculated in two stages, as 
follows: a) the optimality criterion is applied to the 
transformed marker 

   
Y = f (Y ) = P [D |Y ] , thereby 

obtaining the “optimal” probability or risk cut-off: and, b) 
the crude marker value/s that corresponds/correspond 
to this probability is/are then computed. For this 

purpose, the inverse function of f is calculated, 
   
f 1(Y ) , 

 

Figure 3: Theoretical scenario 3. 

(a) Probability distribution of crude marker Y among diseased (solid line) and healthy subjects (dashed line) in Scenario 3. (b) 
Probability of being diseased according to the values of marker Y (

  
f (Y ) = P [Y | D] ). The resulting ROC curves for the crude 

marker Y (solid line) and transformed marker   Y ( Y = f (Y ) = P [Y | D] ) (dashed line) are shown in Figure (c). 
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for which an explicit form does not always exist but 
which can be calculated by means of numerical 
approximation techniques. 

In the literature, there are numerous criteria for 
selecting optimal cut-off values. By way of illustration, 
the criterion used in this study was that which ensured 
an FPF = 0.20. This choice enables direct observation 
of the gain in sensitivity resulting from the use of the 
transformed marker. 

As can be seen from Figure 4a, in Scenario 1 the 
choice of cut-off point is independent of the use of Y or 
Y , with a single cut-off being obtained in both cases, 
i.e., the value 0.42, corresponding to a TPF = 0.56. 
Under Scenarios 2 and 3, in contrast, (see Figures 4b 
and 4c) the choice of cut-off changes according to 
whether the decision is based on the crude or 
transformed marker. In Scenario 2, the optimal cut-off 
point obtained by the classic method is 0.42, which 
corresponds to a TPF = 0.45. When the choice of the 
cut-off point is based on the values of the transformed 
marker, the optimal probability value is 0.48 which 

corresponds to a TPF = 0.51, i.e., use of the 
transformed marker yields a 6 % sensitivity gain. The 
optimal probability value corresponds to an interval of 
crude marker values ranging from -0.74 to 0.56. The 
classification rule derived from determination of this 
optimal interval would lay down that individuals within 
this interval are to be deemed healthy and the 
remainder, diseased. 

Under Scenario 3, the phenomenon, albeit 
analogous, is more pronounced in terms of sensitivity 
gain. Thus, if one were to base oneself on the crude 
marker and take the marker value showing an FPF = 
0.20 as being optimal, a cut-off point of 2.17 associated 
with a TPF = 0.46 would be obtained; on the other 
hand, if the transformed-marker point with an FPF = 
0.20 were taken as optimal, a value of 0.68 would be 
obtained, which has a TPF = 0.77 and yields an 
optimal crude value interval (0.46, 2.51). In other 
words, the latter case would result in a 31 % sensitivity 
gain. In brief, in any case where the risk is not 
monotone (Scenarios 2 and 3), applying the optimal 
cut-off point selection criterion to the transformed 

 

Figure 4: Choice of optimal cut-off points of marker Y in theoretical scenarios. 

Choice based on crude marker Y, and transformed marker 
   
Y = f (Y ) = P [Y | D]  in theoretical scenarios 1, 2 and 3 (figures (a), 

(b) and (c), respectively). In each figure: solid horizontal line depicts optimal cut-off point obtained on application of criterion of 
optimality to transformed marker   Y ; dashed vertical lines depict extremes of the interval of optimal cut-off points derived from 
the above optimal cut-off point; and, solid vertical line depicts optimal cut-off point obtained on application of criterion of 
optimality to Y . Under Scenario 1, a single optimal cut-off point is obtained, which is independent of the application of the 
criterion of optimality to Y or Y . Under Scenario 2, the optimal cut-off point obtained on application of criterion of optimality to Y, 
is contained in the interval of the optimal cut-off point derived from the optimal risk on the basis of the transformed marker   Y . 
Under Scenario 3, the pertinent optimal cut-off point obtained on application of criterion of optimality to Y, does not belong to the 
optimal interval derived from the optimal risk. 
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marker ensures that more sensitive values are 
obtained for any given value of specificity. 

3.2. Application to Real Data 

The methodology introduced in subsection 2.1. is 
applied here to the real data from a prospective study 
previously presented in subsection 2.3 performed for 
evaluating the discriminatory capacity of plasma 
glucose as postoperative infection biomarker. 
Specifically, a GAM model was fitted, given by the 
expression: 

P [POI |Glucose] = g 1( + h(Glucose)) =
exp( + h(Glucose))

1+ exp( + h(Glucose))
 

In above expression (4), Glucose is the continuous 
variable that represents plasma glucose levels, POI is 
the binary indicator variable of the presence (POI = 1) 
or absence (POI = 0) of postoperative infection, and 
h(.) is an unknown smooth function. 

To assess glucose's classificatory capacity, ROC 
curves and the AUC were calculated for both crude and 
GAM-transformed glucose markers. Similarly, glucose 
cut-off points associated with a value of FPF = 0.20 
were designated as optimal. This criterion was applied 
to: (a) the crude marker (Glucose); and (b) to the 
marker transformed by the model (4). 

Figure 5a shows the kernel-type estimate of marker 
density among healthy and diseased subjects. As will 
be seen, glucose distribution in healthy and diseased 
subjects displayed a high level of interspersion, with 
characteristics similar to those displayed under 
Scenario 2. Individuals with POI registered extreme 
glucose values (high and low) compared with those 
who failed to develop postoperative infection 
(intermediate values). 

Figure 5b depicts the ln OR function for the 
reference value yref = 95 mg/dL, for the model given by 
expression (3). As can be seen, rather than being 

 

Figure 5: Analysis of plasma glucose as postoperative infection (POI) marker. 

(a) Kernel-type estimate of plasma-glucose marker density in the presence and absence of postoperative infection (POI); (b) 
estimation of LnOR(y; yref) (yref = 95) between glucose and POI; and, (c) ROC curves for glucose and for glucose transformed 
by the GAM fitted. 
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linear, the relationship between plasma glucose and 
POI shows a “spoon” shape [11, 26]. In other words, 
situations of hypo- and hyperglycaemia pose a higher 
risk of suffering from POI than do intermediate values. 

The ROC curves for the crude glucose marker and 
the GAM-transformed marker (see (4)) are shown in 
Figure 5c. The AUC obtained for the glucose marker 
was 0.60 and its corresponding 95% bootstrap 
confidence interval (CI) [27] was (0.49, 0.70). In the 
light of this result, there would seem to be no evidence 
to indicate that glucose values can be used for 
discerning POI. However, the AUC (CI) for the 
transformed marker was 0.69 (0.60, 0.78) with the 
value of 0.5 lying outside this interval. Although the 
AUC obtained was not high, these results nonetheless 
allow for plasma glucose to be regarded as a possible 
biomarker for POI. 

Lastly, when the optimality criterion was applied to 
the crude marker values, the resulting glucose cut-off 
value was 112 mg/dL (FPF=0.20, TPF=0.44). When 
this same optimality condition was applied to the 
transformed glucose marker, an optimal probability 
value of 0.05 (FPF=0.20, TPF=0.52) was obtained, 
which corresponds to crude glucose values of 82 
mg/dL and 117 mg/dL. As in theoretical Scenarios 2 
and 3, the choice of the optimal cut-off point varies 
according to whether the optimality criterion is based 
on the glucose values or on the risk associated with 
each such value. In this case, basing oneself on the 
transformed marker results in a 8% gain in sensitivity. 

4. DISCUSSION 

This study shows: firstly, how the use of GAMs 
improves the classificatory capacity of a potential 
continuous marker, particularly in situations where 
there is a high level of interspersion in the marker's 
distribution among the subpopulations of healthy and 
diseased subjects; and secondly, how this type of 
modeling may modify the choice of suitable cut-off 
points. 

Situations of nonlinearity in the marker/outcome 
relationship tend to arise relatively frequently in the 
sphere of clinical-epidemiologic research. For instance, 
it is frequent for U- or J-shaped relationships to be 
found when analyzing the appearance of 
cardiovascular events and plasma glucose [28] or 
hormone levels [29]. In the different theoretical 
distribution scenarios analyzed, as well as in the 
application to real data outlined above, classificatory 
capacity is seen to improve in terms of ROC/AUC when 

the transformed marker is used in situations that reflect 
a nonlinear risk marker/disease relationship. An 
additional advantage of the method proposed here is 
that it provides a tool for calculating more appropriate 
cut-off points, inasmuch as it takes the relationship 
between marker values and clinical outcomes into 
account. Hence, in such U- or J-shaped relationships, 
two values will be selected that will delimit an optimal 
interval within which there is a lower probability of 
being ill. 

The criterion used, by way of illustration, for the 
choice of cut-off points in this study was for a 
designated FPF value to be set. Similarly, other optimal 
cut-off selection criteria could have been used, such as 
the approach that simultaneously maximizes sensitivity 
and specificity [30] or the method based on 
maximization of the Youden index [10, 31]. Using the 
proposed criterion, we obtained an interval of lower 
POI risk for a plasma glucose range of 81 to 117 
mg/dL. These cut-off points are in line with the results 
of published studies on risk of infection and glucose 
values [32]. To our knowledge, this is the first time an 
optimal interval -as opposed to a single point- has been 
proposed for enhancing the accuracy of a continuous 
marker. However, caution must be exercised when 
choosing the threshold or range of thresholds. The 
threshold selection criterion should be based on the 
clinical context, and may involve weighing the expected 
costs against the benefits associated with a high-risk 
designation. Other clinical settings may involve an 
entirely different balance between disease severity, 
treatment efficacy and side-effects, leading to different 
choices according to the importance of sensitivity 
versus specificity. One of the strengths of this proposal 
is that the proposed methodology can be easily used 
by clinicians and epidemiologists. We used spline 
smoothing methods to estimate ROC curves and 
related measures but other available tools, such as 
empirical or kernel smoothing techniques, can equally 
be used. 

The results obtained in this study can be extended 
to other biomedical scenarios, such as survival 
analysis. In this context, the outcome variable is 
deemed to be time-dependent, and the concepts of 
ROC curve and AUC apply to this situation [33, 34]. 
The fitting of Cox regression models [35] used for 
survival analysis and the modeling of hazard ratios may 
likewise be performed by flexible methods analogous to 
those described for logistic regression [28, 36], so that 
nonparametric modeling can also be used to obtain 
more suitable markers in this context.  
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A further interesting task linked to the methodology 
presented here is its extension to a multivariate 
context. ROC analysis can also be used in conjunction 
with GAM logistic models in the context of the use of 
combined markers for diagnosis purposes [37]. 

5. CONCLUSIONS 

It is important to stress the need to question linearity 
in marker-outcome relationships: firstly, because failure 
to do so may lead to erroneous conclusions; and 
secondly, because the use of statistical tools that make 
for greater flexibility (e.g., GAMs) can optimize the 
classificatory capacity of a potential marker from the 
standpoint of ROC analysis. 
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