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Abstract: When performing many hypothesis tests at once a correction for multiplicity is needed to both keep under 

control the number of false discoveries and be able to detect the true departures from the null hypotheses. A recently 
introduced method which has been proved to be useful in genomics, neuroimaging and other fields consists in 

probabilistically controlling that the number of falsely rejected hypotheses does not exceed a pre-specified (low) k . We 

introduce a new multiple testing procedure which is based on the idea of generalized augmentation: at first a number of 
hypotheses is rejected without any correction, then this number is adjusted by adding or removing rejections. The 

procedure is shown to keep under control the probability of k  or more false rejections. We show a small simulation 

study which suggests that the new procedure is very powerful, especially when the number of tests at stake is large. We 
conclude with an illustration on a benchmark data set on classification of colon cancer.  
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1. INTRODUCTION 

Consider the problem of simultaneously testing a 

finite number of null hypotheses. A simple approach 

would be to test each hypothesis at level , without 

taking into account the multiplicity. However, when the 

number of true hypotheses is large, we shall be nearly 

certain that there will be false positives in the list of 

rejections. Under reasonable assumptions it actually 

happens that the number of false positives is 

increasing with the number of tests. 

A possible solution would be to design a 

simoultaneous inference procedure leading to a list of 

rejections with no false positives with high probability. 

This is known as control of the FamilyWise Error Rate 

(FWER), to be more rigorously defined below, and can 

be simply achieved with the famous Bonferroni 

correction (that is, testing each hypothesis at level 

/ m , where m  is the number of tests). There of 

course are available many other corrections controlling 

the FWER. 

In analogy with the concept of power for a single 

test, one must also take into account the ability of 

multiple testing procedures to detect departures from 

the null hypotheses at population level. When the 

number of tests is large, control of the FWER becomes 

so stringent that a very low number of hypotheses (if 

any) are rejected, no matter the true departure from the 

null hypothesis. It is easily seen for instance that the  
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Bonferroni correction leads to an infinitesimal level 

(with m ). 

One of the aims of recent developments in multiple 

testing has been to overcome this problem. Mainly two 

routes have been followed. First, other error measures 

besides the FWER have been defined and motivated 

for applications. Secondly, for a fixed Type I error rate, 

multiple testing corrections which are possibly more 

and more powerful (at least in special situations) have 

been developed. 

A simple generalization of the FWER, denoted as 

k -FWER, dates back at least to [1], and has been 

recently the focus of few papers, like [2-5] and others. 

The aim of this paper is to and develop a multiple 

testing procedure which controls the k -FWER and is 

powerful, especially in the difficult situation in which the 

number of tests is large. We will do so by building on 

the results of [6], who has recently introduced the idea 

of Generalized AUGmEntation (GAUGE) in multiple 

testing: at first, a certain number of hypotheses is 

rejected with a single-inference procedure; then this 

number is adjusted (augmented or negatively 

augmentated) in order to achieve control of the desired 

Type I error rate. 

For a deep discussion of the main ideas in the area 

of multiple testing refer to [7], and to [8] for a review of 

recent developments. In the following section we will 

briefly recall the necessary background. The rest of the 

paper is as follows: Section 2 will introduce the new k -

FWER controlling procedure based on the assumption 

of independence among the test statistics, and briefly 

discuss the case of dependent test statistics. In Section 
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3 we provide a simulation study. In Section 4 we show 

an application to a benchmark data set on DNA 

microarrays. In Section 5 we give some concluding 

remarks. 

1.1. Background 

Table 1 summarizes the outcome of a multiple 
testing procedure in which m  tests are being 

performed. We denote with H 0 ( j)  the null hypothesis 

associated with the j -th test, with H1( j)  the 

corresponding alternative. M 0  of the m  nulls are true, 

M1  are false; R  of the m  null hypotheses are 

rejected. With N1|0  and N1|1  we denote respectively the 

number of false and true positives. Similarly, N0|1  and 

N0|0  denote the number of false and true negatives. 

Table 1: Outcome in Testing m  Hypotheses 

Null Hypotheses    

Not Rejected  Rejected  Total  

True  N0|0  N1|0  M 0  

False  N0|1  N1|1  M1  

Total  m R  R  m  

 

Tests are performed through the use of test 

statistics 
 
T = (Tnj ( j) : j =1,…,m) . Test statistics are 

defined on the basis of the problem and data at hand, 
and so that higher values indicate a larger discrepancy 
between the data and the null hypothesis. Commonly 
used test statistics include t -statistics for testing on the 
mean of a single population or comparing the means of 
two populations, F -statistics for comparing the means 
of three or more populations; or the nonparametric 
rank-based counterparts like the Mann-Whitney and 
Kruskal-Wallis test statistics. See for instance [9] for a 
discussion and an extensive simulation on the use of 
parametric and non-parametric tests in multiple testing. 
Of course it is not uncommon to use other test 
statistics, like chi-squares, log-ranks, log-odds and so 
on. 

We assume for each test a p -value has been 

computed (possibly by resampling). Assuming two-
sided alternatives, the j -th p -value is defined as  

pj = Pr(|Tnj ( j) | > | tn j ( j) | | H 0 ( j)),  (1) 

where tn ( j)  is the observed value of the test statistic 

Tn ( j) . 

The probability in equation (1) is then computed 
based on the asymptotic distribution under the null 
hypothesis of each statistic, which is known or in many 
cases approximately normal for large samples. In other 
cases, a permutation or bootstrap can be applied and 
the p -values estimated by resampling. 

Throughout we adopt the notation p( j )  to denote the 

j -th ordered statistic of the vector of p -values, with 

p(0) = 0  and p(m+1) = 1 . After the p -values are 

computed, the multiple testing problem reduces to 
fixing a cut-off T  which is theoretically proved to bring 
a pre-specified Type I error rate below a certain  for 

any configuration of true and false hypotheses, when 

rejecting all the hypotheses corresponding to pj T . 

While traditional methods involve control of the 
FWER, defined as the probability of making one or 
more false rejections, there are now many other 
possible Type I error rates which can be chosen. 
Generalizations have been proposed among others in 
[3, 2, 10, 11]. Refer also to [8] for guidelines on the 
choice among the pletora of available Type I error 
rates. [12, 13] also introduce a Type II error rate, the 
False Non-discovery Rate or False Negatives Rate 
(FNR), defined as the expected ratio of false negatives 
to the number of not rejected hypotheses, if any. 

In this paper we focus on the k -FamilyWise Error 
Rate ( k -FWER), defined as the probability of having k  
or more false positives:  

Pr(N1|0 k).            (2) 

The 1-FWER reduces to the classical FWER. The 
idea behind the use of k > 1  is that by allowing for a 
small (say k 1 ) number of false positives, the number 
of rejected hypotheses can be largely increased with 
respect to requiring that there are no false positives 
(the 1-FWER). 

One of the first proposal for control of the k -FWER 
is in [2], by comparing the j -th p -value with the rank 

dependent cut off k / (m +min(k j, 0)) . This approach 

is improved in [14], who propose refinements which 
anyway are valid only under independence or at least 
under assumptions on the dependence of the test 
statistics. 

A two step procedure is given in [3], which is based 
on the idea of augmentation: control the 1-FWER at 
level  and then add the k 1  most significant not 

rejected hypotheses. In this paper we will compare with 
[3] using the Bonferroni correction at the first step. 

Other methods are proposed in [4, 15], but are 
based on computationally intensive resampling 
approaches. 
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The main drawback of all k -FWER controlling 
procedures is that they are conservative, especially for 
large number of tests; meaning that the error rate is 
controlled at a level well below the nominal, leaving 
room for more rejections and higher power. This will be 
illustrated below with simulations, and is well known 
about augmentation. The main reason behind 
conservativeness of the [3] methods is that 1-FWER 
controlling procedures used at the first step usually get 
more and more conservative as the number of tests 
grows. The fewer hypotheses are rejected at the first 
stage, the fewer at the second. This is the 
consideration that lead [6] to introduce generalized 
augmentation, which is based on uncorrected testing at 
the first step. The number of hypotheses rejected at the 
first step, when uncorrected testing is used, usually 
grows with the number of tests; leading to possibly 
much higher power. The GAUGE procedure will be 
seen to be still controlling the k -FWER at level below 
the nominal , but it is much less conservative than 

the available competitors. 

As we will point out below, the procedures of [3] and 
the one-step version of the procedure proposed in [2] 
can be seen as special cases of our approach. 

2. THE GAUGE PROCEDURE FOR k -FWER 
CONTROL 

The idea of generalized augmentation [6] is as 
follows: at fist, uncorrected testing at level q  is 

performed. If at this first step the level q  was too 

stringent, augmentation can be applied by adding a 
suitable number of rejections chosen among the most 
significant not rejected hypotheses. If the first step was 
too liberal and control of the Type I error measure is 
not guaranteed, a negative augmentation must be 
applied by removing some of the least significant 
rejected hypotheses. 

The number of hypotheses to add/remove, and 
whether to add/remove or not, is determined through a 
probabilistic reasoning. 

This probabilistic reasoning is dependent on the 
Type I error rate which one wants to control using 
generalized augmentation. We now develop the rules 
needed to control the k -FWER. 

Denoting with 1C  the indicator function of condition 

C , we can summarize the generalized augmentation 
procedure we propose as:  

1. Do uncorrected testing at level q . Reject S  

hypotheses. If S = 0 , stop.  

2. Consider the set of positive augmentations 

 

P =

P( ) {0,…, k 1} :
m0=k ,…,m
max

i=max(k P( ),0)

m0

m0

i

qi (1 q)
m0 i

 

If P  is not empty, reject the S + P( ) Pmax P( )  most 

significant hypotheses, and stop.  

3. If P  is empty, consider the set of negative 
augmentations  

 

N = N( ) {1,…,S} :
m0=k ,…,m
max 1{S N ( )>0}  

i=0

m0

j=0

min(N ( ),i )

1{i j k} m0

i

qi (1 q)
m0 i

i

j

m i

N( ) j

m

N( )

< .  

Reject the S N ( ) Nmin N( )  most significant 

hypotheses, if any, and stop.  

A formal proof of k -FWER control is given in next 
theorem:  

Theorem 1 If the test statistics are independent, the 
generalized augmentation procedure provides control 
of k FWER  at level  for any q (0,1) .  

Proof. From [16] we have that under independence 
the number of false positives obtained at the first step 

is Binomial(M 0 ,q) . 

If we augment with P( )  hypotheses, We can 

evaluate the k -FWER as  

Pr(N1|0 k)
i=0

M0

1{i+P( ) k} M 0

i

qi (1 q)
M0 i

 

=
i=k P( )

M0

M 0

i

qi (1 q)
M0 i

  

 

m0=k ,…,m
max

i=k P( )

m0

m0

i

qi (1 q)
m0 i
.  

The max operator at the last step is taken from k  to 

m , since the k -FWER is trivially zero for M 0 < k . The 

last expression is bounded by  at the positive 

augmentation step, when it is possible. 

When a positive (or null) augmentation is not 

possible, let V1  denote the number of false rejections at 
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the first step and W  be the number of hypotheses not 
rejected after negative augmentation that were in fact 
true nulls. That is, W  denotes the number of false 
rejections taken out from the set of rejections after 
uncorrected testing. It is straightforward to check that 

W  is stochastically dominated by W1 , the number of 

false rejections taken out from the set of rejections after 
uncorrected testing if the hypotheses chosen for un-
rejection were chosen at random. In fact, we un-reject 
the least significant hypotheses, which are the less 
likely to be correspondent to true nulls among the 

rejected. We can now bound Pr(W1 j |V1 = i)  as 

follows:  

Pr(W1 j |V1 = i) =
s=i

m

Pr(W1 j |V1 = i,S = s)

Pr(S = s |V1 = i)

 

Pr(W1 j |V1 = i,S = m)
s=i

m

Pr(S = s |V1 = i)  

Pr(W1 j |V1 = i,S = m).  

It is straightforward to see that W1 |V1 = i,S = m  

follows an Hypergeometric distribution with parameters 

(m, i,N( )) . 

We can then finally bound the k -FWER after 
negative augmentation as follows:  

Pr(N1|0 k) =
i j

Pr(N1|0 k |V1 = i,W = j)  

                Pr(W = j |V1 = i)Pr(V1 = i)  

                 

 
m0=k ,…,m
max 1{S N ( )>0}

i=0

m0

j=0

min(N ( ),i )

 

                1{i j k} m0

i

qi (1 q)
m0 i

i

j

m i

N( ) j

m

N( )

 

and the last expression is bounded by  at the 

negative augmentation step.  

We now briefly discuss the rationale behind the 
procedure. The k -FWER of uncorrected testing, 
performed at the first step, can be easily evaluated 
since the number of false positives under 
independence is easily seen [16] to be a binomial with 

parameters M 0  and q . We can then evaluate the 

probability of having exactly i  false positives among 
the S , and bound this probability simply by taking the 

maximum for 
 
M 0 k,…,m  (since the actual number of 

true nulls in unknown). Positive or null (i.e., no 

adjustment to the set of S  rejections) augmentation is 
performed by conservatively assuming that each added 
rejection is a false rejection. This is done also in [3], 
who recognize that a more refined probabilistic 
approach would improve the procedure but is actually 
very hard to formalize. If the k -FWER after the first 
step is seen to be above , a negative augmentation 

is needed. When doing negative augmentation we take 
into account the probability that an hypothesis that is 
taken out is actually true, which leads to use of the 
hypergeometric distribution. We then evaluate the k -
FWER as a sum of the probability of each configuration 
of number of false positives at the first step ( i ) and 
number of false positives removed at the negative 
augmentation step (denoted with j  in the formula). 

More rigorous insights are given in the proof of 
Theorem 1. 

Note that the procedure is easily implemented and 
needs only evaluating the binomial and possibly the 
hypergeometric distribution, at most m  times. The 
approach is then also not computationally intensive. 

By setting q = / m  (hence controlling the 1-FWER 

at the first step) the proposed approach reduces to the 
[3] augmentation procedure. Here we replaced FWER 
control at the first step with uncorrected testing. The 
advantage is that the number of hypotheses rejected at 
the first stage is much higher, leading to more flexibility 
and finally an higher power, especially for large number 
of tests. Note further that setting q = k / m  a null 

augmentation ( P( ) = 0 ) is obtained, which gives back 

the one-step procedure of [2]. 

In our approach q  can be any value on (0,1) , 

provided it is chosen in advance. A natural choice is 
obviously q = . In our experience values in the 

interval ( / m, )  usually lead to higher power, while 

the results are often not very smooth with respect to 
the choice of q . For illustration, in this paper we will set 

q = 0.0005  leading the procedure to coincide with 

augmentation when m =100  (since we fix = 0.05 ), 

and to be less stringent at the first step for m > 100 . 
When m < 100  or the magnitude of the smaller p  

values is expected to be moderate, we suggest using 
larger values of q  in order to have S > 0  at first stage 

with high probability. 

If certain assumptions on the dependence are 
available, the original procedure can be used with no 
need for modification. These results are achieved in 
case of positive or negative association [17, 18], or -

mixing [19]. Conditions on the -mixing sequence of 

coefficients essentially make sure that the dependence 
decreases fast enough as lag between test statistics 
grows. More precisely, refer to conditions (1-6) of 
Theorem 1 of [20], whose results directly extend. Since 
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our procedure is permutation invariant, we only need 
that there exist at least one permutation satisfying the 
condition. Other arguments relate to Poisson 
approximation of dependent indicators. The theoretical 
conditions of [20] are useful for the applications since 
for instance genes spotted in DNA microarrays are 
usually thought to be dependent in blocks, which 
directly implies the conditions. Hence the proposed 
approach can be applied to genomic data, especially 
when the number of genes is large. For a deeper 
discussion on the issue of applicability of asymptotic 
results under dependence and/or Poisson 
approximation results in the area of genomics refer to 
[20] and to [6]. 

3. SIMULATION STUDY 

A brief simulation study is used to illustrate the 
newly proposed procedure. We generate independent 
unit variance normal variates, with sample size n =1 , 
for different values of m . We test null hypotheses of 
the mean being equal to zero against a one-sided 
alternative, assuming known variance. Table 2 
compares 3-FWER controlling procedures when mean 
values for each true alternative hypothesis are sampled 

from a uniform on [0, 5] , and M 0 = m *0.9 . AUG 

stands for augmentation [3], LR for the stepdown [2] 
procedure, GR for the [14] procedure; while GAUGE 
denotes the proposed procedure. Table 3 shows the 
same when mean values for each true alternative 
hypothesis are sampled from a uniform on [0, 2.5] , 

making it much more difficult to distinguish between 
true and false nulls. 

Table 2: FNR and 3-FWER (in Parentheses) for Different 

Procedures at Level  = 0.05, M 0 = 0.9m , 

Data Generated from Independent Standard 
Normals, Alternatives Sampled from a U[0,2.5]. 
The Results are Based on 1000 Iterations 

m AUG LR GAUGE GR 

200 0.0626

(0.001)
 

0.0651

(0.001)
 

0.0633

(0.001)
 

0.0598

(0.006)
 

500 0.0720

(0.000)
 

0.0702

(0.000)
 

0.0657

(0.002)
 

0.0653

(0.003)
 

700 0.0742

(0.002)
 

0.0719

(0.003)
 

0.0666

(0.009)
 

0.0678

(0.007)
 

1000 0.0765

(0.000)
 

0.0736

(0.002)
 

0.0678

(0.009)
 

0.0696

(0.002)
 

 
The comparison is done in terms of average 

observed FNR, which is smaller for more powerful 
procedures. We can then compare the procedures in 
terms of power, and see what happens as the number 

of tests grows. The average observed 3-FWER is 
reported in parentheses, with the only aim to check that 
it is below the nominal level = 0.05 . It also confirms 

that all methods are still conservative and can be 
improved. 

Table 3: FNR and 3-FWER (in Parentheses) for Different 

Procedures at Level  = 0.05, M 0 = 0.9m , 

Data Generated from Independent Standard 
Normals, Alternatives Sampled from a U[0,2.5]. 
The Results are Based on 1000 Iterations 

m AUG LR GAUGE GR 

200 
 
0.0906

(0.004)
   

0.0948

(0.001)
   

0.0895

(0.026)
   

0.0921

(0.006)
  

500 
 
0.0951

(0.000)
   

0.0967

(0.001)
   

0.0941

(0.009)
   

0.0946

(0.002)
 

700 
 
0.0960

(0.001)
  

0.0970

(0.000)
   

0.0944

(0.009)
   

0.0957

(0.006)
  

1000 
 
0.0970

(0.000)
   

0.0975

(0.001)
   

0.0955

(0.009)
   

0.0963

(0.004)
  

 
The new procedure compares well in terms of 

power in these settings. In particular, we can see from 
Table 2 that GAUGE seems to be slightly less powerful 
than GR when the number of tests in moderate, and it 
slightly outperforms GR when the number of tests is 
larger. When the signal is weaker, GAUGE seems to 
be the most powerful procedure for all m . The 
differences are more and more evident as the number 
of tests grows. This feature of generalized 
augmentation is seen also when controlling other error 
measures [6]. Similar results are seen in other settings 

(i.e., changing M 0  and the strenght of the signal) and 

also under different scenarios of dependence 
(simulations not shown). In pratice, with a larger 
number of tests and weaker signal GAUGE seems to 
be preferable. This evidence, provided by the 

simulations, does not change when one changes M 0 . 

4. APPLICATION TO CLASSIFICATION OF COLON 
CANCER 

In order to demonstrate the usefulness of our 
approach on real data, in this section we analyze a 
benchmark high-density microarray data set from [21]. 
The dataset consists of records on 2000 genes from 62 
individuals, 22 safe and 40 ill of colon cancer. There 
are two main goals: first, identification of a subset of 
genes differentially expressed, and hence connected to 
colon cancer. Secondly, to correctly classify new 
individuals as safe or ill on the basis of measurements 
on the selected (small) subset of genes. Hence, a good 
procedure selects few genes which are useful for 
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classification. We do not focus on classification 
methods in this paper, and use the simple 3-Nearest 
Neighbor classifier [22]. We use two-sample t -test 
statistics to test for differential gene expression 
between the two groups for each gene. 

First, we apply the methods to the entire data set, 
obtaining a list of 74 genes with GAUGE, 40 with GR, 
28 with LR and 13 with AUG; when all procedures are 
set to control the 3-FWER at level = 0.05 . 

Secondly, we randomly split the data into a training 
set of 30 samples and a test set of 32 samples. For 
each procedure, we select a subset of statistically 
significant differentially expressed genes on the training 
set, and use the selected genes to classify the tissues 
on the test set. We set k = 3  and = 0.05 . We repeat 

the operation 1000 times and report the average 
number of selected genes and the corresponding 
estimated classification error in Table 4. 

The last column of Table 4 shows, for each 
procedure, the proportion of times it resulted in the 
lowest classification error over the 1000 replications. 
When > 1  procedures achieved the same minimal 

classification error, they received a weight equal to 

1 /  for that iteration. 

Table 4: Average Number of Selected Genes and 

Estimated Classification Error for the [21] Data. 
Pr(Best) is the Proportion of Iterations in which 
the Procedure Achieved the Lowest Error Rate 
in Comparison to the others 

Multiple Testing Selected Classification Pr(Best) 

Procedure Genes Error  

GAUGE 26.90 0.139 0.391 

AUG 8.34 0.161 0.196 

LR 10.61 0.226 0.172 

GR 16.94 0.157 0.242 

 
We can see that the proposed procedure leads to 

an higher number of selected genes and a smaller 
classification error for this data set. The difference 
between classification errors is not substantial, but 
steady over replications, and likely due to the higher 
number of selected genes. 

We stress that procedures leading to an higher 
number rejected hypotheses are of interest when the 
focus is on gene discovery in this application. The set 
of genes corresponding to rejected null hypotheses are 
considered for confirmatory methods, like Polymerase 
Chain Reaction, and a larger list results in a wider 
choice for validation and in an higher likelihood of 
inclusion of biologically significant genes. In this 
application our approach lead to an higher number of 

selected genes than the other methods, but this 
number is still reasonable for the screening with 
confirmatory methods. 

5. DISCUSSION 

We proposed a new multiple testing procedure, 
based on the idea of augmentation: at first, a certain 
number of hypotheses is rejected through a one-step 
method; then this number is adjusted to achieve control 
of the k -FWER. We not that our procedure cannot be 
deemed to be stepwise, so that a formal comparison, 
e.g., along the lines of [23], may be hard to perform. 

The procedure was seen to be competitive with 
other k -FWER controlling procedures, especially when 
the number of tests is large. As illustrated by 
simulations, generalized augmentation may allow for a 
higher power when the number of tests is large, but it 
still is conservative, leaving room for improvement by a 
tighter control of the k -FWER. 

It has been argued that the proposed approach is 
applicable in common genomics applications and its 
usefulness has been illustrated on a benchmark data 
set on colon cancer. Further, the approach is easy to 
implement and it is not computationally intensive. 
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