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Abstract: Longitudinal data with true zero values, known as longitudinal semi-continuous data, frequently occur in 
medical, environmental and biological studies. To model longitudinal semi-continuous data, two-part modelling 

approaches have been widely used in literature. In the first part of the two-part model, binary logistic regression is 
commonly used after converting the semi-continuous responses to binary responses. In the second part, the semi-
continuous data are converted to positive continuous data after removing the true zero values from the responses. 

Although positive continuous or non-zero values tend to show a positively skewed distribution pattern, in the literature 
the normal distribution is commonly used to model them. Also, in longitudinal studies, data often suffer individual 
dropouts as they are collected overtime. In this paper, we propose a two-part pattern-mixture model to analyze 

longitudinal semi-continuous data with dropouts. In the proposed approach, we use pattern-mixture binary mixed models 
for the first part and positively continuous pattern-mixture gamma mixed models for the second part. Our approach can 
accommodate both subject- and time-specific correlation as well as dropout pattern. We also incorporate a 

computationally efficient estimation method for our models using a penalize quasi-likelihood approach. The proposed 
method is illustrated with an application to the longitudinal incomplete toenail data. 
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1. INTRODUCTION 

1.1. Motivating Example 

In the past few decades, medical science has 

received greater attention than many other disciplines. 

In medical research, one of the main concentrations is 

to develop and compare the effectiveness as well as 

the safety of the drugs for treating various diseases. 

This work is motivated by the toenail onychomycosis 

study, where the main interest is to compare the 

efficiency of two antifungal compounds. Toenail 

onychomycosis is a very common (6-8% among adult 

persons) toenail disease, which causes almost half of 

all toenail related abnormalities. Usually antifungal 

compounds were used as treatment of this kind of 

toenail disease. Terbinafine (also known as Lamisil) 

and Itraconazole (two antifungal compounds) have 

reduced the duration of treatments to 3 months as 

compared to other treatments [1]. The aim of the study 

was to compare the efficacy and safety features of 

these two antifungal compounds. Patients with the 

toenail disease of age 18 or older were included in the 

study. Three hundred and seventy eight patients were 

randomized and received a box of study medications. 

Each daily dose contained either a 250 mg Terbinafine 

tablet (250 mg/day dose) and placebo capsules or two 

100 mg Itraconazole capsules (200 mg/day dose) and  
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a placebo tablet. Patients under study were asked to 

take two capsules and a tablet daily after dinner for 3 

months. One target nail was selected for each study 

patient at the beginning of the study and the sample 

was taken from that nail. For every study patient, the 

follow-up records were obtained in 0, 1, 2, 3, 6, 9 and 

12 months. Measurements of unaffected nail lengths 

were considered responses, which were taken at the 

baseline and every follow-up visit. The response zero 

indicates that the length of the unaffected part of the 

nail is zero (i.e. fully affected nail) and the non-zero 

response indicates the length of unaffected part of nail. 

Toenail data is longitudinal semi-continuous data as 

the responses include the exact zeros and positive 

non-zero values. The toenail data was first analyzed by 

Backer et al. [1] by using the Mantel-Haenzel test, 

Breslow-Day test, two-sample binomial test and some 

exploratory analysis. Komáreck and Lesaffre [2] used a 

general linear mixed model to analyze toenail data 

considering the normal distribution assumption for the 

responses with one random effect. Toenail data was 

also analyzed by using various simple statistical tools 

[3-5]. 

1.2. Background of the Study 

To analyze longitudinal semi-continuous data, two-

part mixed model approaches have been proposed by 

various authors [6-8]. Most of these approaches use a 

combination of a binary mixed model and a Gaussian 

mixed model to analyze the zero and non-zero parts of 

the responses respectively. Our explanatory analysis of 
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the toenail data shows the positive skewed nature for 

the non-zero part (Figures 1 and 2) and hence using a 

Gaussian mixed model may not be appropriate to 

analyze this data set [9]. Toenail data set also suffer by 

the individual dropouts which commonly occur in the 

longitudinal studies, as the responses are collected 

repeatedly over time. So far, to the best of our 

knowledge, accommodating a dropout mechanism for 

longitudinal semi-continuous data has received little 

attention in the literature. 

 

Figure 1: Response frequency plot for complete toenail data. 

 

 

Figure 2: Response frequency plot for non-zero part of the 
toenail data. 

1.3. Proposed Method 

In this paper, we introduce a two-part model to 
analyze semi-continuous incomplete toenail data. In 

the first part of the two-part model, we use the pattern-
mixture mixed effect logistic regression model after 
converting the semi-continuous responses to binary 
responses. In the second part, unlike other 
approaches, we will use pattern-mixture gamma mixed 
models to model the non-zero parts of the data. Our 
proposed approach will be able to accommodate 
subject-specific and time-specific variations. Our 
pattern-mixture approach will also be able to 
incorporate the dropout pattern of the toenail data. We 
introduce the proposed two-part pattern-mixture mixed 
model in Section 2 and their moment structures in 
Section 3. We discuss a penalized quasi-likelihood 
approach for parameter estimation in Section 4. The 
analysis of the toenail data is presented in Section 5. 

2. TWO-PART PATTERN-MIXTURE MIXED MODEL 

In this section, we discuss a two-part pattern-
mixture mixed model for incomplete longitudinal semi-

continuous data. Let Yij  represents the semi-

continuous response i.e. the length of unaffected part 

of toenail for the i th (i =1, 2, ...,m)  subject at jth 

( j =1, 2, ...,ni )  occasion. In the next subsection, we first 

discuss the pattern-mixture binary logistic regression 
model. 

2.1. Pattern-Mixture Mixed Effect Logistic 
Regression Model 

In the first part, we rearrange semi-continuous 

responses Yij  to the binary responses Yij
*  where Yij

*  = 

1 if Yij = 0  or 0 otherwise. Then the binary response 

vector can be expressed as 

Y * = (Y11
* , ...,Y1n1

* , ...,Ym1
* , ...,Ymnm

* )' . Let Ui
*  be the subject-

specific random effect for the response of the i th 

subject and Vij
*  be the time-specific random effect at 

the j th time point of the i th subject. These random 

effects Ui
*  and Vij

*  will be able to incorporate subject-

specific and time-specific variations in the binary 
responses, respectively. Our mixed effect logistic 
regression model is developed under the following four 
assumptions: 

Assumption 1: Subject-specific random effects 

U1
*, ...,Ui

*, ...,Um
*  are independently and identically 

distributed as normal with mean zero and variance 

u*
2 , i.e. Ui

* ~ N(0,
u*
2 )  

Assumption 2: Time-specific random effects 

V11
* , ...,V1n1

* , ...,Vm1
* , ...,Vmnm

*  are independently and 

identically distributed as normal with mean zero and 

variance 
v*
2 , i.e. Vij

* ~ N(0,
v*
2 ) . 
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Assumption 3: The random effects Ui
*  and Vij

*  are 

independent. 

Assumption 4: Conditional on the random effects 

U *= (U1
*, ...,Ui

*, ...,Um
* )'  and V *= (V11

* , ...,V1n1
* , ...,Vm1

* , ...,Vmnm
* )' , 

the response Yij
*  independently follows a Bernoulli 

distribution with parameter ij , i.e. 

Yij
* |U* ,V* ~ Bernoulli( ij ) where ij = Pr(Yij

* = 1).        (1) 

In (1), the logit of ij  can be expressed using the 

following link function as 

logit( ij ) = 0 + 1Tij
*
+ 2 (Tij

* )2 + 3Gij
*
+

l=1

6

3+lZijl +Ui
*
+Vij

*,   (2) 

where = ( 0 , 1,…, 9 )
'  represents the vector of the 

regression parameters. In (2), Tij
* , (Tij

* )2  represents the 

linear and the quadratic evolution of time respectively 

and Gij
*  is the treatment group indicator variable for the 

i th subject at j th occasion. Note that in toenail data, 

Gij
* = 1  indicates treatment group A, i.e. patients taking 

Terbinafine and Gij
* = 0  indicates treatment group B, 

i.e. patients taking Itraconazole. In (2), Zijl  (for 

l =1, 2,…, 6 ) indicates the dummy variables for the 

dropout pattern, which can be expressed as in Table 1 
[10]. The model discussed in this section will be used in 
Section 4 to analyze the binary part of the two-part 
model. 

2.2. Pattern-Mixture Mixed Effect Gamma 
Regression Model 

In this section we will discuss the second part of the 
model using a positively skewed pattern-mixture 
gamma mixed model. To do that we first discuss the 
gamma regression model in Section 2.2.1. In Section 

2.2.2, we will discuss the pattern-mixture gamma mixed 
models. 

2.2.1. Gamma Regression Model 

Recall that to model the non-zero responses of the 
two-part model, the Gaussian distribution is commonly 
used in literature. In Figure 2, we showed that the non-
zero responses are positively skewed. As argued by 
Anderson et. al. [9] the gamma distribution is a more 
logical choice for skewed and non-negative responses. 
Therefore, in the second part, we use gamma 
regression to model the response variable. Note that 
the gamma distribution is a positively skewed 
continuous distribution which is formed by using two 

parameters: a shape parameter 1  and scale 

parameter 2  (known as Gamma ( 1 , 2 )). The 

density function of Gamma ( 1 , 2 ) can be expressed 

as 

f (y) =
1

1 2
1
y 1 1

exp( y / 2 ); y > 0.  

with E(Y ) = 1 2  and var(Y ) = 1 2
2
. In Figure 3, we 

present some examples of gamma distributions plotted 

for various values of 1  and 2 . To do that, we 

consider 1 = 2.5  and 2 = 0.3, 0.5  and 0.8. Note that in 

this paper, we use a gamma regression model where 
the mean of the responses is a link function of the 
covariates and corresponding unknown parameters. In 
the next section, we will discuss the gamma regression 
model for the semi-continuous longitudinal incomplete 
data. 

2.2.2. Pattern-Mixture Mixed Effect Gamma 
Regression Model 

In the second part of the model, we reorganize the 

semi-continuous responses Yij  to the positive 

continuous responses Yij
**  by ignoring the exact zero 

responses. Let Yij
**  represents the positive continuous 

Table 1: Dummy Codes by Pattern of Dropout 

Weeks of follow ups  Dummy Variables  Pattern 
Groups  0  4 8 12 24 36  48  Zij1  Zij2 Zij3 Zij4 Zij5  Zij6  

1  O  D D D D D  D  1  0 0 0 0  0  

2  O  O D D D D  D  0  1 0 0 0  0  

3  O  O O D D D  D  0  0 1 0 0  0  

4  O  O O O D D  D  0  0 0 1 0  0  

5  O  O O O O D  D  0  0 0 0 1  0  

6  O  O O O O O  D  0  0 0 0 0  1  

7  O  O O O O O  O  0  0 0 0 0  0  

D: Dropout; O: Observed. 
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response at the j th ( j =1, 2, ...,hi )  time point of the i th 

(i =1, 2, ...,m)  independent subject. Note that, hi , the 

repeated number of responses for the i th subject 
under the gamma mixed model, is less than or equal to 

the total number repeated responses ni . So, the 

response vector can be expressed as 

Y **= (Y11
**, ...,Y1h1

** , ...,Ym1
**, ...,Ymhm

** )' . Similar to mixed effect 

logistic regression, Ui
**  is the subject-specific random 

effect for the response of the i th subject and Vij
**  is the 

time-specific random effect at the j th time point of the 

i th subject. The gamma regression model is 
developed under the following four assumptions: 

Assumption 1. Subject-specific random effects 

U1
**, ...,Ui

**, ...,Um
**  are independently and identically 

distributed as normal with mean zero and variance 

u**
2 , i.e. Ui

** ~ N(0,
u**
2 ) . 

Assumption 2. Time-specific random effects 

V11
**, ...,V1h1

** , ...,Vm1
**, ...,Vmhm

**  are independently and 

identically distributed as normal with mean zero and 

variance 
v**
2 , i.e. Vij

** ~ N(0,
v**
2 ) . 

Assumption 3. The random effects Ui
**  and Vij

**  are 

independent. 

Assumption 4. Conditional on the random effects 

U**= (U1
**, ...,Ui

**, ...,Um
** )'  and V**= (V11

**, ...,V1h1
** , ...,Vm1

**, ...,Vmhm
** )'  

the response Yij
**  independently follows a Gamma 

distribution with parameters  and ij  i.e., 

Yij
** |U** ,V**~ Gamma( , ij ),          (3) 

where  and ij , represents the shape and the scale 

parameters respectively. The conditional mean of Yij
**  

given the random effects, can be expressed as 

μij = ij , where μij  can be defined using various link 

functions. The link functions we use in this paper are as 
follows 

Inverse link, g(μij ) =
1

ij

= 0 + 1Tij
**
+ 2 (Tij

** )2 + 3Gij
**

+
l=1

6

3+lZijl +Ui
**
+Vij

**

 

Log link, g(μij ) = log( ij ) = 0 + 1Tij
**
+ 2 (Tij

** )2 + 3Gij
**

+
l=1

6

3+lZijl +Ui
**
+Vij

**
 

Identity link, g(μij ) = ij = 0 + 1Tij
**
+ 2 (Tij

** )2 + 3Gij
**

+
l=1

6

3+lZijl +Ui
**
+Vij

**
 

By using the inverse link function, ij  can written as 

ij
1 = 0 + 1Tij

**
+ 2 (Tij

** )2 + 3Gij
**

+

l=1

6

3+lZijl +Ui
**
+Vij

**,
         (4) 

where 
 
= ( 0 , 1,…, 9 )

'  represents the vector of the 

regression parameters under pattern-mixture gamma 

mixed model. Similar to logistic mixed models, Tij
** , 

 

Figure 3: Likelihood plot for Gamma distribution for various 1  and 2 . 
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(Tij
** )2  and Gij

**  represents the covariates for the i th 

subject at j th occasion. In (4), Zijl  (for l =1, 2,…, 6 ) 

indicates the dummy variables for the dropout pattern 
as discussed in Section 2.1. In the next section we will 
discuss estimation of the model parameters. 

3. MOMENT STRUCTURE 

In this section we will discuss the moment structure 
of the mixed effect logistic and gamma regression 
models discussed in the previous section. First we 
briefly present the mixed effect logistic regression 

models. Let Xij
* = (1,Tij

*, (Tij
* )2 ,Gij

* ,Zij1,…,Zij6 )
'  and 

= ( 0 , 1,…, 9 )
' . The unconditional expectation of the 

response Yij
*  can be expressed as 

E(Yij
* ) = EE(Yij

* |U* ,V* ) = E( ij )

where ij =
exp( Xij

*'
+Ui

*
+Vij

* )

1+ exp(X ij
*'

+Ui
*
+Vij

* )
.
        (5) 

The unconditional variance of the response Yij
*  has 

the form 

var(Yij
* ) = E[var(Yij

* |U* ,V * )]+var[E(Yij
* |U* ,V * )]

= E[ ij (1 ij )]+var( ij ).
       (6) 

Similarly the unconditional covariance of the 

responses Yij
*  and Y

i' j'
*  can be expressed as 

cov(Yij
*,Y

i' j'
* ) =

cov(Yij
*,Y

ij'
* ) if i = i' and j j'

0 otherwise
.        (7) 

After some algebra, it is possible to show that 

cov(Yij
*,Y

ij'
* ) =cov( ij , ij'

) . It is cumbersome to evaluate 

the exact mathematical expression of the correlation 
structures. To get an approximate idea about the 
correlation structure between response variables 

corr(Yij
*,Y

ij'
* ) , we will find the correlation 

corr(Ui
*
+Vij

*,Ui
*
+V

ij'
* ) , as corr(Ui

*
+Vij

*,Ui
*
+V

ij'
* )  is a 

function of corr(Yij
*,Y

ij'
* ) . This will help us understand 

the correlation structure within each subject. The 

correlation, corr(Ui
*
+Vij

*,Ui
*
+V

ij'
* )  can be written as 

corr(Ui
*
+Vij

*,Ui
*
+V

ij'
* ) =

cov(Ui
*
+Vij

*,Ui
*
+V

ij'
* )

var(Ui
*
+Vij

* ) var(Ui
*
+V

ij'
* )
,  

where cov(Ui
*
+Vij

*,Ui
*
+V

ij'
* ) =

u*
2  and var(Ui

*
+Vij

* ) =
u*
2
+

v*
2 , 

which implies 

corr(Ui
*
+Vij

*,Ui
*
+V

ij'
* ) = u*

2

u*
2
+

v*
2 .         (8) 

So, we could assume that for the same subject, 
correlation between different time points approximately 
follows an exchangeable correlation structure. A similar 
exchangeable correlation structure also appears for the 
responses under the mixed effect gamma regression 
models which are not presented in this paper. 

4. ESTIMATION OF PARAMETERS 

To estimate the regression and random effect 
parameters, we use the penalized quasi-likelihood 
technique [11] by maximizing the joint densities. For 
the mixed effect logistic regression model, the 
conditional density of the response given the random 
effects is 

f (Yij
* |U * ,V * , ) ~ Bernoulli( ij ).          (9) 

The marginal likelihood function can be evaluated 
by integrating the joint likelihood, which can be written 
as 

L1( , U*
2 ,

V*
2 ) = f (Yij

*,U * ,V * ; ,
U*
2 ,

V*
2 )dU *dV *.    (10) 

To estimate the regression and random effect 
parameters, one needs to solve the following 
estimating equations simultaneously: 

L1( , U*
2 ,

V*
2 )
= 0;

L1( , U*
2 ,

V*
2 )

U*
2 = 0

and
L1( , U*

2 ,
V*
2 )

V*
2 = 0.

     (11) 

Similarly, for the mixed effect gamma regression 
model, the conditional density of the response given 
the random effects is 

f (Yij
** |U ** ,V ** , ) ~Gamma( , ij ),       (12) 

and the marginal likelihood function can be written as 

L2 ( , U**
2 ,

V**
2 ) = f (Yij

**,U ** ,V ** ; ,
U**
2 ,

V**
2 )dU **dV **.    (13) 

Similar to the binary logistic regression model, we 
estimate the regression and random effect parameters 
for the gamma regression model by solving the 
following estimating equations simultaneously: 

L2 ( , U**
2 ,

V**
2 )

= 0;
L2 ( , U**

2 ,
V**
2 )

U**
2 = 0

and
L2 ( , U**

2 ,
V**
2 )

V**
2 = 0.

     (14) 
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It is highly cumbersome to evaluate (11) and (14). 
We have used the glmmPQL  function of the MASS  

package in the statistical software R  to estimate the 
regression and random effect parameters of the model. 

5. DATA ANALYSIS  

In this section, we analyze the semi-continuous 
toenail data by using the proposed two-part pattern-
mixture models. As mentioned earlier toenail data were 
first analyzed by Backer et al. [1], where the response 
variable indicates the length of unaffected part of the 
nail. Unaffected nail length is measured from the nail 
bed to the infected part of the nail. The data only 
include patients for whom the measurements were 
taken from any one of the two big toenails. This 
constraint reduces the data to 150 subjects in group A 
(patients taking Terbinafine) and 148 subjects in group 
B (patients taking Itraconazole). We took the 
measurement of unaffected nail lengths as the 
response variable, and time, quadratic evolution of time 
(timesq) and treatment as covariates. At first, we show 
the overall picture of the dropout situation of the toenail 
data in Table 2 which presents the visit wise dropout 
counts. We analyze the toenail data using the pattern-
mixture mixed effect logistic and gamma regression 
model for the first and second part respectively. Our 
initial analysis using a binary logistic mixed model 
shows that the dropout patterns are insignificant. Our 
mixed effect gamma regression models using log, 

identity and inverse link functions, also show similar 
conclusions about the dropout patterns. Then we 
reanalyzed the toenail data by simultaneously 
removing the pattern groups from the data set as they 
have found to be insignificant. 

In the first part, we apply the mixed effect logistic 
regression model presented in section 2.1 without 
considering the pattern groups. This will reduces the 

logit in (2) to logit( ij ) = 0 + 1Tij
*
+ 2 (Tij

* )2 + 3Gij
*
+Ui

*
+Vij

* . 

Our data analysis results, presented in Table 3, show 
that both covariates, time and quadratic evolution of 
time (timesq) are significant. From the results, we find 
that the covariate time has negative significant effect, 
which means fully affected nail lengths (zero response) 
would decrease as time increases. Although our results 
also show that the covariate timesq has positive 
significant effect, this indicates the fully affected nail 
lengths would increase at a lower rate, in comparison 
with less affected nail lengths. The result of our data 
analysis also suggests that the two treatments have no 
significant difference in effectiveness. In the mixed 
effect logistic regression part of the model, we found 
that after considering the covariates, the remaining 
grouping or clustering effects at the time level is larger 

than that of the subject level as the estimates of 
u*
2  

and 
v*
2  are 2.4849 and 4.8686, respectively. These 

subject- and time-specific variations indicate that there 
is still a large amount of variation left beyond that which 
can be captured by the model. As the time-specific 

Table 2: Observed Number of Dropouts at Various Visit of the Study 

Months  Treat A(1)  Treat B(0)  Total  Dropout  

0  150  148  298  - 

1  149  142  291  7  

2  146  138  284  7  

3  140  131  271  13  

6  131  124  255  16  

9  120  109  229  26  

12  118  108  226  3  

Table 3: Mixed Effect Logistic Regression Model Results 

Variable Name  Estimate  Std. Error  t value  P-Value  

Intercept  -0.3554  0.1713  -2.0748 0.0381  

Time  -1.0829  0.0487  -22.2022 0.0000  

Timesq  0.0769  0.0040   19.0453  0.0000  

Treatment  -0.1733  0.2118  -0.8183  0.4138  

2

u   2.4849     

2

v* 4.8686     
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variation is larger than the subject-specific variation, 
one can argue that the time-specific random effect is 
important for consideration in the model and the 
improvement of the completely affected nails varies by 
the duration of treatment used. 

In the second part of the model, we use the mixed 
effect gamma regression model discussed in Section 
2.2. To do that we have used identity, inverse and log 
links. As the results are similar for all three links, we 
only report the result for the log link in Table 4. For the 
second part of the model, we have considered the non-
zero responses of all the persons with available 
number of occasions as data. By using the mixed effect 
gamma regression model we found both covariates, 
time and the quadratic evolution of time (timesq) are 
significant at the 5% level. The results we have found 
in our analyses show that the less affected nail lengths 
will increase as time increases and the less affected 
nail lengths will decrease as quadratic evolution of time 
increases. Note that as in the binary part of the 
analysis, the fully affected nail lengths would increase 
at a lower rate, in comparison with less affected nail 
lengths. Moreover, as in the first part of the model, the 
second part of the model shows that the two treatments 
have no significant difference in effectiveness as the 
indicator variable for the treatments was found 
insignificant. We also found that after considering the 
covariates, the remaining grouping or clustering effects 

at the subject level and the time level estimates of 
u**
2  

and 
v**
2  are 0.2457 and 0.1849 respectively. The 

small values of 
u**
2  and 

v**
2  indicate that we can 

capture most of the subject- and time-specific 
variations by the model.  

6. CONCLUSION 

We have proposed a two-part pattern-mixture mixed 
model to analyze longitudinal semi-continuous toenail 
data. Two-part models facilitate the separate analysis 
for the zero and non-zero parts of the data set. In each 
part of the two-part models we incorporated the 
subject-specific as well as the time-specific random 
effects which help us describe the variability that arose 

from the subjects and the occasions respectively. The 
pattern-mixture approach to each part of the two-part 
models also helps us recognize the effects and impacts 
of dropout in the data set. 

As mentioned earlier, the toenail data was first 
analyzed by Backer et al. [1] by using the Mantel-
Haenzel test, Breslow-Day test, two-sample binomial 
test and some exploratory analysis. The main purpose 
of their study was to compare the two antifungal 
compounds, Terbinafine and Itraconazole, and they 
found Terbinafine showed better performance than 
Itraconazole [1]. But our results indicate that there is no 
significant difference between the effectiveness of the 
two compounds. Verbeke and Molenberghs [12] 
incorporated the dropout patterns in the mixed effect 
model to analyze the toenail data. In their models they 
considered only subject-specific random effects and 
unstructured correlation between outcomes within 
subjects. They also assumed the normal distribution 
assumption for the responses. These studies [1, 12] did 
not point out one of the important characteristics of the 
toenail data: this data set is positively skewed with 
excessive number of zeros. Considering both treatment 
groups and all occasions, 17.5296% zeros are 
available in the data set as response. Consideration of 
these extra zeros may affect the distributional 
assumption of the response variable of the data set. 

Though we obtained similar results as Verbeke and 
Molenberghs [12], we have applied a different modeling 
aspect than others. We have dealt with extra zero 
features of the data by using the two part models. In 
our analysis, we have considered exchangeable 
correlation structure between outcomes within subjects 
and indicator variable for the treatment groups. That 
means the pairwise correlation between the responses 
is the same for various time points. Moreover, our 
analysis captured the subject-specific as well as the 
time-specific random effects for the mixed effect model. 
We have also managed the dropout patterns of the 
data by using the pattern-mixture approach to each 
part of the two part models. These extra features help 
our model to be more appropriate for the toenail data. 

Table 4: Mixed Effect Gamma Regression Model Results for Log Link 

Variable Name Estimate Std. Error t value P-Value 

Intercept 0.7715 0.0519 14.8401 0.0000 

Time 0.2679 0.0122 21.8702 0.0000 

Timesq -0.0138 0.0009 -14.1302 0.0000 

Treatment 0.0493 0.0644 0.7648 0.4450 

2

u  0.2457    

2

v  0.1849    
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