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Abstract: A fundamental question in quantitative genetics is whether observed variation in the phenotypic values of a 
particular trait is due to environmental or to biological factors. Proportion of variations attributed to genetic factors is 
known as heritability of the trait. Heritability is a concept that summarizes how much of the variation in a trait is due to 
variation in genetic factors. Often, this term is used in reference to the resemblance between parents and their offspring. 
In this context, high heritability implies a strong resemblance between parents and offspring with regard to a specific trait, 
while low heritability implies a low level of resemblance. While many applications measure the offspring resemblance to 
their parents using the mid-parental value of a quantitative trait of interest as an input parameter, others focus on 
estimating maternal and paternal heritability. In this paper we address the problem of estimating parental heritability 
using the nuclear family as a unit of analysis. We derive moment and maximum likelihood estimators of parental 
heritability, and test their equality using the likelihood ratio test, the delta method. We also use Fieller’s interval on the 
ratio of parental heritability to address the question of bioequivalence. The methods are illustrated on published arterial 
blood pressures data collected from nuclear families. 

Keywords: Genetic epidemiology, Familial correlations, Heritability, Linear Mixed normal models, Maximum 
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INTRODUCTION 

A heritable quantitative trait is a measurable 
phenotype that depends on the cumulative actions of 
many genes. These traits can differ among individuals, 
to produce a continuous distribution of phenotypes 
such as height, weight, blood pressures, high- and 
low-density cholesterol levels [1]. Quantitative traits 
also include molecular phenotypes such as gene 
expression levels [2].  

Heritability analysis has been used for years to 
evaluate whether a given phenotype is influenced by 
genetic factors and how strong that influence is 
comparative to nongenetic risk factors. The general 
belief behind heritability analysis is that individuals who 
are more genetically related to each other should be 
more similar to each other for the phenotypes of 
interest [3].  

The variation that exists in a quantitative trait can be 
divided into genetic and environmental components, 
and the genetic component can be additionally 
subdivided into additive dominance, and epistatic 
variances [4]. Estimation of the components of 
variance for a quantitative trait permits one to evaluate  
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both the degree to which genetics influences the trait 
and the trait’s underlying genetic style [5]. The most 
relevant applications of heritability studies are those 
concerned with the heritability of components of 
Metabolic Syndrome (MS). The conclusions were, the 
genetic correlations seemed to vary under different 
conditions [6,7].  

There is an increasing interest in the parental effect 
on their children with respect to Body Mass Index (BMI) 
and Blood Pressure (BP) levels, as the leading risk 
factors of heart diseases. Studying the heritability of 
components of metabolic syndrome has attracted the 
attention of genetic epidemiologists. A recent UK 
cohort study found that familial influence on BMI 
among middle-aged women appeared to be stronger 
from mothers than fathers [8]. A Canadian study 
reported that the prevalence of overweight and obesity 
among children and adults has risen in Canada. 
Studies suggest that parent obesity is a risk factor for 
overweight and obesity in children. This analysis 
examined associations between biological parent and 
child body mass index (BMI) in a nationally 
representative sample of Canadian children [9]. The 
study concluded that biological parent and child BMI 
were significantly correlated.  

While the aim of the above studies was to establish 
parent offspring correlation, the issue of heritability has 
not been adequately addressed. For example, the 
sampling unit in the Canadian study [9] consisted of a 
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parent and a child only, and ignored other siblings in 
the same family. Under this restricted sampling design, 
we cannot estimate the genetic components of the 
heritable trait of interest. 

The fundamental aim of our paper is to establish 
statistical model-based approach to estimate 
heritability as defined in Laird and Lange [10]. 
Specifically, we will establish formal statistical 
methodologies to compare the paternal to maternal 
heritability, when the sampling unit is a cluster of 
nuclear families consisting of parents scores as well as 
their offspring scores for the same measured 
quantitative traits. The paper is structured as follows: 

In section 2, we provide guidelines to the strategy of 
sampling nuclear families. We derive a formula for the 
optimal combination of the number of nuclear families 
and the optimal average sibship size needed to 
efficiently estimate parent heritability. In Section 3 we 
set up a regression model and identify the critical 
parameters that define parental heritability. We also 
derive moment estimators for heritability, the standard 
errors of the estimators, and construct confidence 
intervals on the ratio of parental heritability. We use the 
bootstrap methods to examine the distributional 
characteristics of the ratio estimator. In Section 4, and 
under the assumption of multivariate normality, we 
estimate the parent heritability and use the likelihood 
ratio test to evaluate the significance of the difference 
between maternal and paternal heritability. In Section 5, 
we illustrate the methodologies on published arterial 
blood pressures data. In Section 6 we present a 
general discussion 

2. NUCLEAR FAMILY SAMPLING STRATEGY: 
ISSUES OF COST CONSTRAINS 

From the above studies, and because of the 
adopted study designs, it is impossible to account for 
the within siblings’ correlation in estimating the 
correlation between parent and single offspring 
sampled at random from within the family. It is argued, 
as an example in the work by Kempthorne and Tandon 
[11] that one way to estimate parent heritability is done 
by using the regression of offspring trait on the parental 
trail, when the unit of study is the entire sibship. To 
estimate the required sample size (number of nuclear 
families and the average number of siblings within the 
family), we start with a model in which offspring scores 
is regressed on the one parent score (say the mother 
score). 

Let Yij  denote the score on the !!! offspring in the 
!!! family, and Xi , the score of the !!! parent, where
j =1, 2, ..., ni , i =1, 2, ..., k , and ni  is the number of 

offspring in the !!! family and k is the total number of 

families. We assume that the regression of Y on X is 
given by: 

Yij =�y +�Xi !�x( )+Eij       (2.1) 

where �y = E Yij( ) , �X = E Xi( ) , β is the regression 

coefficient of Y on X, and Eij  is the deviation of the 
!!! offspring of the !!! parent. We further assume that  

 Cov !!" ,!!" =
!!!! ! ≠ !
!! ! = !

 

The most widely used estimator for β is given by the 
usual estimator: 

b =
ni

i=1

k
! yi " y( ) xi " x( )

ni xi " x( )2
i=1

k
!

  

where y = niyi! N , x = nixi! N , and 
N = n1 + n2 +...nk , 

yi = yij ni
j
! . 

From [11] we have  

! ! =
!! 1 − !! !! 1 + !!!! !! − ! !

!! !! − ! ! !  

To analyze clustered data, one must therefore 
model both the regression of Y on X and the within 
cluster dependence. If the responses are independent 
of each other, then ordinary least squares can be used, 
which produces regression estimators that are identical 
to the maximum likelihood in the case of normally 
distributed responses. 

An important question that we need to answer at 
this stage is; what is the optimal number of sibships in 
order to efficiently estimate b. An important factor that 
needs to be considered is the cost of sampling nuclear 
families. To simplify our presentation, we shall assume 
that the variability among sibship sizes is relatively 
constant and that we can safely replace !!  by its 
average size, say n. In this case !(!) reduces to: 

  ! ! = !  (1 + !!!)/nk      (2.2) 

where ! = !!(1 − !!)/!!!, and !!! = (!!!
!=1 − !)/! 

Shoukri et al. [12] addressed the issue of obtaining 
the combinations (n, k) that minimize the variance of a 
specific estimator subject to cost constraints. In their 
attempt to construct a flexible cost function, they 
adhered to the general guidelines outlined by Flynn et 
al. [13]. First, one has to identify approximately the 
sampling costs and overhead costs. The sampling cost 
depends primarily on the size of the sample, and 
includes data collection costs, travel costs, 
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management and other staff costs. On the other hand, 
overhead costs remain fixed regardless of sample size, 
including, for example, the cost of setting the data 
collection form. Following Sukhatme et al. [14] it is 
assumed that the overall cost function is given as: 

C = c0 + kc1 + nkc2 ,     (2.3) 

where c0 is the fixed cost, c1 the cost of recruiting an 
entire sibship, and c2 is the cost of making a single 
observation within the sibship. Using the method of 
Lagrange multipliers [15], the objective function to be 
minimized G is given as 

! = !"#( !) + !(! − !! − !!! − !"!!),   (2.4) 

where !"#( !) is given by equation (2.2), and λ is the 
Lagrange multiplier. The necessary conditions for the 
minimization of G are !G !n = 0 , !G !k = 0  and 
!G !! = 0 , with the sufficient condition for G to have 
constrained relative minimum given by a theorem in 
Rao [15]. Differentiating G with respect to n, k, and λ, 
equating to zero and solving for !, we obtain 

  ! = !/!!       (2.5) 

and 

k = (C !c0 ) (c1 + nc2 ) , where ! = !!
!!

 

For the sibship size to meaningful, it is assumed 
that !

!!
> 1.  

The interpretation of (2.5) is that we select larger 
sibships when R is large, that is when the cost of 
sampling an individual within a family is lower than 
sampling the entire sibship.  

3. REGRESSION MODELS TO ESTIMATE 
MATERNAL AND PATERNAL HERITABILITY  

Let the trait values of the ith family, of size !! , be 
!!", !!" , !!!, !!!,⋯ , !!"! . The joint distribution of these 

random variables is characterized by the following 
parameters: 

! !!" = !! var !!" = !!!

! !!" = !! var !!" = !!!

! !!" = !!
cov !!", !!" = !!!!!!!
cov !!" , !!" = !!!!!!!

cov !!" , !!" = !!!!!

cov !!", !!" = !"!!! ,

var !!" = !!!

! = 1,… , !
! = 1,… , !!

! ≠ !

           (2.6) 

Here !!"  is the ith mother score, !!"  is the ith 
father score and !!" is the score of the jth offspring in 
the ith family. Moreover, we assume,  

0 = cov !!", !!" = cov !!" , !!" = cov !!" , !!" =
ov !!",!!"                                     (2.7) 

for all ! ≠ !. Following Mak and Ng [16] and Shoukri 
and Ward [17] we assume that model (2.6) has the 
following representation: 

!!" = !! + !!!!" + !!!!" + !!"                                  (2.8) 

where 

!! = !! − !!!! − !!!! 

and !!"  will have a mean zero and a covariance 
structure of intraclass correlation so that  

cov !!" , !!" =
!!!!! ! ≠ !

!!! ! = 1 ! = 1… !
!, ! = 1… !!

 

and cov !!" , !!" = 0, ! ≠ !. It is also assumed that !!" 
is not correlated with either !!" or !!" . 

Using the definition of familial correlations provided 
by model (2.8) we can show that: 

!!! = !!! ! = !!!!!! + !!!!!! + 2!!!!!!!!! + !!!     (2.9) 

!!! = !!! ! = !!!! + !!!!! !!             (2.10) 

!!! = !!! ! = !!!! + !!!!! !!              (2.11) 

!! = !! ! = !!!!!! + !!!!!! + 2!!!!!!!!! + !!!!! !!!(2.12) 

Conversely, equations (2.9-2.12) give: 

!! =
!! !!!!!!!!
!! !!!!

          (2.13) 

!! =
!! !!!!!!!!

!! !!!!
      (2.14) 

!!! = !!! 1 −
!!!
! !!!!

! !!!!!!!!!
!!!!

     (2.15) 

Equations (2.13-2.14) give ensemble estimators of 
the regression of offspring on their parental values, and 
equation (2.15) provide the estimator of the error term. 

3.1. The Genetic Model 

To describe the model that has both environmental 
and genetic components we assume a base population 
that is characterized by presence of additive genetic 
variance, and random environmental component. To 
simplify the estimation of heritability, we further assume 
that the interaction between genes and environment is 
negligible. 

Therefore, the measured trait for the jth offspring in 
the ith family is such that 

!!" =   µμ + 1/2(!! − µμ!) + 1/2(!! − µμ!) + !!" + !!"  (3.1) 

In equation (3.1), !! is the breeding value of the ith 
mother, !! is the breeding value of the ith father, and 
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!!"  is an individual deviation due to genetic 
segregation, and !!"  is a random environmental 
deviation. Furthermore, we assume that: 

E(!!) = µμ!, E(!!) = µμ! 

Var(!!) = Var(!!) = !!! 

E(!!") = E(!!") = 0 

Var(!!") = !!!- !!!, with the restriction Var(!!") = ½ !!! 

Note that the parental breeding values are not 
observable but may be estimated from the 
corresponding phenotype of the respective parent. This 
can be done under the assumptions: 

!! − µμ!= ℎ!!  (!!" − µμ!) + !!",  

and        (3.2) 

!! − µμ!= ℎ!! (!!" − µμ!) + !!" 

Under the additivity of genetic effects, we can then 
use equation (3.2) to define the heritability in the 
narrow sense [10] as: 

ℎ!! = !!!/!!2    , is the maternal heritability, and 
ℎ!! = !!!/!!2 is the paternal heritability, as defined in 
the seminal work of Jacquard [18]. To obtain consistent 
estimators of (ℎ!! , ℎ!!) we assume that (!!", !!") are 
uncorrelated with the displacements (!!"  ,!!"). 

Inserting (3.2) into (3.1) we get: 

!!" =   µμ + !1(!!" − µμ!) + !2(!!" − µμ!) + !!"  

where  

!!" = (!!" + !!")/2 + !!" + !!"  

It can now be easily shown that  

!!! = (ℎ!! !!! + ℎ!!!!!) /2 

!!! = !!! − 1/4(ℎ!! !!! + ℎ!!!!!) - 1/2 ℎ!!  ℎ!! !!!!!  
        (3.4)  

!!!!!  = !"#(!!" ,  !!") = !!!!! -1/4(ℎ!! !!! + ℎ!!!!!) - 1/2 
ℎ!!  ℎ!! !!!!! 

The first order approximation of the variances and 
the covariance of the estimators of the regression 
parameters are: 

!!=  var !! ≃
!!!

Δ
!! !!

!

!!!

!! !! !!"!
!

!!!

− !! !! !!"

!

!!!

!

 

!!=  var !! ≃
!!!

Δ
!! !!

!

!!!

!! !! !!"!
!

!!!

− !! !! !!"

!

!!!

!

 

!!"  !  cov !!,!! ≃
!!!

Δ
!! !! !!"

!

!!!

!! !! !!"

!

!!!

− !! !!

!

!!!

!! !! !!"!!"

!

!!!

 

where 

∆= Σ!! !! Σ!! !! !!"! Σ!! !! !!"!

− Σ!! !! !!"!!"
!

− Σ!! !! !!" ! Σ!! !! !!"!  

− 2Σ!! !! !!" Σ!! !! !!" Σ!! !! !!"!!"
− Σ!! !! !!"

!
Σ!! !! !!"! . 

and  

!! = !! 1 + !! − 1 !! !! 

4. TESTING THE HYPOTHESIS !!: !!! = !!
! 

This is equivalent to testing the equality of the 
regression parameters !!,!!. This hypothesis will be 
tested using: 

1. The delta method (DM) [19] 

2. The Fieller’s interval (FI) [20] 

3. Bootstrap interval; (BI) [21] 

4. The likelihood ratio test (LRT) [22] 

We use the DM and FI to test the hypothesis 
!!:  R=!!/!!=1, while we use the LRT to equivalently 
test !!:  !! − !! = 0. 

4.1. The Delta Method 

From [19] the asymptotic variance of the ratio of two 
random variables is given by: 

var ! = !!
!!!

!
!! +

!!
!!!

!
!! +2!!"  

!!
!!!

!!
!!!

   (4.1) 

Equation (4.1) gives the first order of approximation 
of the variance of the ratio estimator !: 

var ! = !! + !!!! − 2!!!"   /!!! 

We can therefore construct 95% confidence limits of 
the ratio ! so that: 
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Lower 95 % confidence limit =! −1.96 var !  

Upper 95% confidence limit = ! + 1.96 var !  

It is well-known that the point estimator of the ratio 
parameter is biased. Using the DM, we have, to the first 
order of approximation: 

Bias (!) = ½ [ !!!
!!!!

!! +
!!!
!!!!

!! +2!!"  
!!!

!!!!!!
] 

= 1/!!! [  !  !! −   !!"  ]      (4.2) 

4.2. Fieller’s Interval 

Let b1 and b2 denote respectively the moment 
estimators of !!,!!. 

Let ! = !! − !!!! 

Var ! = !! + !!!!! − 2!!!!" 

From [20], we assume that the rejection region of 
the hypothesis, with size ! is such that:  

! = Pr
!! − !!  !! !

! !
≽ !! !

!  

From which, 

!!! !!! − !!!! !
! − 2!! !!!! − !!"!! !

! + !!! − !!!! !
! ≽ 0 

!!

=

2 !!!! − !!"!! !
! ±

4 !!!! − !!"!! !
! ! − 4 !!! − !!!! !

! !!! − !!!! !
!

2 !!! − !!!! !
!  

Simplifying we get 

!!

=
!!!!−!!"!! !

! ± !!!! − !! !
! !!"

! − !!! − !! !
! !! !!! − !! !

! !!
!
!

!!! − !!!! !
!  

= ! ± ! 

where  

! =
!!!! − !!"!! !

!

!!! − !!!! !
!  

!

=
!!!! − !! !

! !!"
!
− !!! − !! !

! !! !!! − !! !
! !!

!
!

!!! − !!!! !
!  

If the 100 1 − ! 2 % Fieller confidence set for the 
ratio ! = !!

!!
 is finite, then it is given by ! = ! − !,! +

! . 

The confidence set is an interval if !!! − !!!! !
! > 0 

and !  is contained in !!, !!!! ,  that is if Fieller’s 
confidence interval is included in the equivalence range. 
Usually !! = 0.80 ⇒ !!!! = 1.25.  Hence the 
equivalence range is 0.8, 1.25 .  These limits are 
shown in Figure 1. 

 
Figure 1: Limits of the Fieller’s interval. 

5. MAXIMUM LIKELIHOOD ESTIMATION: THE 
NORMAL LINEAR MIXED MODEL.  

Let ! = !!; !! !   ≡ !!", !!"; !!!,… , !!"!
!
, ! =

1, 2,… , !  be a random sample of k families. The 
likelihood function under model (2.2) will be given by 

! = ! Φ, !! , !! = !! Φ! , !! !! Φ!, !! !!   (5.1) 

Where 

Φ = L!; L! ! = !!, !! ,!!! ,!!!, !;!!,!!,!!, !! ,!!!
!
. 

!! = 2!!!! !! ! 1

− !! ! !!! ! 1
!

!!!
+ !!
− 1 !! !! ! exp −

!!
2!!! 1 − !!

, (5.2) 

With  

!! = !!! + 1 − !! !!! ,! = !!

!

!

 

!!! = !!" − !!
!

!!

!

,
!

!

  !! =
1
!!

!!"

!!

!

 

!!! =
!

!

!! − (µμ + !! !!" − µμ! + !! !!" − µμ! )
!
 

The relevant part of the global likelihood function is 
given by (5.2) and will be used to test the null 
hypothesis !!:  !! = !!  =   !  against all possible 
alternatives. We denote the maximized likelihood 
function under the alternative hypothesis by !!, and 
under the null hypothesis by !!.  Note that the part of 
the likelihood function that is affected by the restriction 
on the null hypothesis is !!!. Under the null we write 
!!! as shown in (5.3):  
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!!!(0) = !
! !! − µμ − !( !!" − !! + !!" − !! )

! (5.3) 

The null hypothesis is rejected when !!"  = 
2[log( !!) - log( !!)] exceeds !!,!!  , the upper cut-off 
value of a one degree of freedom chi-square 
distribution at α level of significance.  

6. DATA ANALYSES 

The methodologies presented thus fare are quite 
general. They are applicable to quantitative traits 
believed to be heritable and the study sample are 
nuclear families that include parents and their 
biological offspring. We illustrate the methodologies on 
data sets described below. 

6.1. Example: Mial and Oldham’s Blood Pressures 
Family Data 

The data used for illustration here are obtained from 
a survey that aimed at assessing the levels of similarity 
in systolic and diastolic blood pressure among family 
members living within 25 miles of Rhonda Fach Valley 
in South Wales. The data were published by Miall and 
Oldham [23]. Observations were made on parents and 
their offspring, with each observation consisting of 

systolic and diastolic blood pressures measured to the 
nearest 5mm Hg. However, among 250 sampled 
families, only 204 contained information on brothers 
and sisters, whose age is above 18 years and live in 
the same household. Because of the impossibly low 
systolic blood pressure (15mm Hg) for one daughter, 
another family was omitted leaving 203 families for the 
analysis that had data on both parents and their 
offspring. The average number of siblings per family 
was 4 and the standard deviation was 1.92. 

Before that data analysis we used R packages to 
produce pairwise correlations for parents and siblings 
blood pressure levels. Figure 2 shows the correlations 
and the histograms of each of the measured traits. This 
is quite informative since, in addition to the magnitude 
and the direction of correlations we can graphically 
detect the level of skewness of the measured traits. All 
the needed summary statistics are given in Table 1. 

In Table 2 we summarize the results of both the 
delta and Fieller’s method. The delta method did not 
detect significance difference between the paternal and 
the maternal heritability for both types of blood 
pressures,  since the interval includes unity. However, 

 
Figure 2: Pairwise correlations for familial blood pressures. 

“This figure is quite informative as it displays the pair-wise correlations between pairs of variables measured at both offspring and 
parental levels”. 



Estimation of Parent-Sib Correlations for Quantitative Traits International Journal of Statistics in Medical Research, 2020, Vol. 9  65 

Table 1: Summary Statistics Including Correlations Based on the 2.9-2.15 Equations 

Parameter estimates Systolic Blood pressure Diastolic blood pressure 

!! 
 !!" 
!!" 

 γ 
	
   !! 
 !! 

16.19 
0.367 
0.307 
0.163 
34.24 

22.954 

10.448 
0.272 
0.114 
0.029 

13.153 
11.558 

 
 
 

Genetic parameters 
Environmental component 

Sib-sib correlation 

!! = 0.179   0.025    
  !! = 0.154 (.016) 

Cov (!!,!!) =-.00004 
  !!! = 291.00 

 !!! =223.13 
  !!= 0.566 

!! = 0.096   . 034    
  !! =0 .214 (.028) 

 Cov (!!,!!) =-.0004 
!!! = 45.195 

!!! =90.526 
!!= 0.333 

 

Table 2: Inference on the Ratio of Parental Heritability Using the Delta, Feiller’s, and Bootstrap Resampling 
Technique 

Method Systolic Blood pressure (SBP) Diastolic blood pressure (DBP) 

1. Delta method R=1.17 
95% lower limit= .597 
95% upper limit= 1.81 

R= .448 
95% lower limit= .245 

85% upper limit= 2.688 

2. Fieller’s interval 
  

Bias of ratio estimator  

95% lower limit= 0.606 
95% upper limit= 1.268 

0.0185 

95% lower limit= .125 
95% upper limit= .917 

0.0319 

3. Bootstrap results R=1.17(0.217) 
Q0.025 = 0.607 
Q0.975= 1.143 

Bootstrap Bias = 0.026 

R=0.448 (0.0896) 
Q0.025= 0.066 
Q0.975= 1.223 

Bootstrap Bias= 0.039 

 

the Fieller’s interval showed that for DBP the paternal 
heritability is significantly higher than the maternal 
heritability. 

In order to verify the validity of the above methods 
(Delta and Fieller) we used the Bootstrap Resampling 
(BTR) to investigate the empirical characteristics of the 
ratio estimators. From Table 2 we see that the 
bootstrap method is in agreement with the other for the 
SBP, however based on the bootstrap interval, the 
hypotheses of equality of parental heritability was 
supported for the DBP, and this is in contrast to the 
conclusion by the Fieller’s method. According to [21] 
one should trust the bootstrap results because it is 
completely non-parametric and does not require any 
distributional assumptions for the data. In Figures 3 
and 5 we show the histogram of the bootstrap values of 
the ratios for SBP and DBP. As can be seen the 
distribution is quite skewed. This skewness is seen in 
Figures 4 and 6 as the plot of the empirical quantiles 
depart markedly from the quantiles of the normal 
distribution. 

 
Figure 3: Histogram of the bootstrap distribution of Ratio for 
parental heritability for SBP. 

Table 3 gives the results of the maximum likelihood 
estimation and the log-likelihood under the null and the 
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alternative hypotheses. The likelihood-based approach 
has desirable asymptotic properties. The estimators 
are asymptotically normally distributed and 
asymptotically unbiased. For both blood pressure 
levels, the LRT detected significant difference between 
the maternal and the paternal heritability. The residual 
plots given in Figures 7 and 8 show that there are no 
outliers and they are almost normally distributed.  

 
Figure 6: (Q-Q) plot for the ratio of Diastolic blood pressures. 

We should not compare between the LRT and the 
other methods presented. This because the delta and 
the Fieller’s methods test the significance of the 
departure of the ratios from unity. The LRT does not 
examine the ratio, rather it tests the significance of the 
difference from zero. Although, conceptually the two 
approaches are similar, the theoretical justifications are 
not the same.  

Table 3: Likelihood Ratio Test on the Null Hypothesis. 

Mixed Likelihood analysis of 
SBP 

Mixed Likelihood analysis of 
DBP  

 !! = .0.1649 (00099) 
  !! = 0.1269 (.0310) 
 Log (La)= -11940.75 

  !!! = 260.1869 

!!! = 173.08 

 !! = .0.1123  (.0098) 
  !! = 0.2208 (.0498) 
 Log (La)= -10980.22 

  !!! = 247.885 

!!! = 76.894 

Analysis under the null 
hypothesis: 

Analysis under the null 
hypothesis: 

Ho :!! = !!=!  
! = 0.1193 (.0275) 
Log (Lo)= -11290.30 

LRT= 1300> 3.84 

Ho :!! = !!=!  
! = 0.1133  

Log (Lo)= -11934.18 
LRT= 1908> 3.84 

 

 
Figure 7: Residual plot under the linear mixed model for SBP 
data. 

 
Figure 4: Graphical test of normality (Q-Q plot) of ratio of 
parental heritability for SBP. 

 
Figure 5: Histogram of the bootstrap distribution of the ratio 
of parental heritability for DBP. 
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Figure 8: Residual plot under the linear mixed model for DBP 
data. 

6. DISCUSSION 

A recent study from China [25] on the familial 
aggregation of overweight (obesity) and high BP 
existed in rural areas and low-income families in China, 
respectively, suggesting both social and familial 
environments, alongside the impact of genetic, are 
important factors for non-communicable disease (NCD) 
risk factors. Furthermore, within two generations, 
considering offspring with highest BMI and BP were 
found to live with parents both having higher than 
normal BMI and BP, and strong father-offspring and 
mother-offspring correlations of BMI existed without 
substantial differences, both mother and father are 
indicated to play important roles in primary prevention 
strategies, and there might be great potential of 
family-based intervention against obesity. The salient 
fact is that “Non-communicable diseases (NCDs) are 
the leading cause of death and ill health and account 
for seven of ten deaths worldwide”. This study is quite 
important because the sampling units were nuclear 
families. However, the data analysis was descriptive 
and did not explicitly model the genetic components of 
variations.  

A recent article appeared in the Lancet [26] outlined 
the WHO Sustainable Development Goal (SDG) target 
which is to reduce premature mortality from 
non-communicable diseases (NCDs) by a third by 2030 
relative to 2015 levels. Among NCDs, heart disease is 
responsible for the highest risk of premature death in 
more than half of all countries for women, and more 
than three-quarters for men. Needless to say that 
elevated blood pressures levels are risk factors for 
heart diseases and examining the possibility of 
horizontal transmission from parents to their offspring 

is an issue of public health at the family level. 
Estimation and inference procedures on the heritability 
of quantitative traits has been of interest to geneticists 
and genetic epidemiologists, medical geneticists, and 
genetic counselors. The questions of interests are; 
does a quantitative trait cluster with families; and does 
maternal heritability is higher or lower than parental 
heritability. We developed several inferential 
procedures to address both questions. All the 
suggested procedures, except the likelihood-based 
inference indicate that there are no significant 
differences in parental heritability for SBP, but 
differences exist for the DBP. The methods presented 
in this paper are quite general and are applicable to 
quantitative traits collected from nuclear families, and 
are applicable to molecular data as well. As we 
indicated in the introduction if a quantitative trait, such 
as blood pressure levels, BMI or wait-to-hip 
circumference are proven heritable, then the population 
risk of transmission of these traits from parents to their 
offspring may be reduced by genetic counselling 
through premarital screening strategy.  
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APPENDIX: R CODE FOR BOOTSTRAPPING THE 
RATIO OF PARENTAL HERITABILITY. 

names(data) 

str(data) 

head(data) 

data=data.frame(na.omit(data)) 

attach(data) 

summary(data) 

B=1000 

n=nrow(data) 

n 

Ratio=numeric(B) 

##BOOTSTRAP ESTIMATE OF STANDARD ERROR 
of Ratio 

for (b in 1:B){ 

#randomly select the indices 

i<- sample(1:n, size=n, replace=TRUE) 

F<-data$FSBP_CENT[i] 

M<-data$MSBP_CENT[i] 

S<-data$SIBSBP[i] 

f=sd(F) 

m=sd(M) 
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gam=cor(F,M) 

rfs=cor(F,S) 

rms=cor(M,S) 

original_ratio<-(f/m)*((rms-gam*rfs)/(rfs-gam*rms)) 

Ratio[b]=(f/m)*((rms-gam*rfs)/(rfs-gam*rms)) 

} 

print(se.Ratio<-sd(Ratio)) 

hist(Ratio, prob=TRUE) 

mean(Ratio) 

bias_ratio<-mean(Ratio-original_ratio) 
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