International Journal of Statistics in Medical Research, 2023, 12, 97-108 97

Relaxed Adaptive Lasso for Classification on High-Dimensional

Sparse Data with Multicollinearity

Narumol Sudjai’, Monthira Duangsaphon®” and Chandhanarat Chandhanayingyong”

1Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok

10700, Thailand

’Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University,

Pathum Thani 12120, Thailand

Abstract: High-dimensional sparse data with multicollinearity is frequently found in medical data. This problem can lead
to poor predictive accuracy when applied to a new data set. The Least Absolute Shrinkage and Selection Operator
(Lasso) is a popular machine-learning algorithm for variable selection and parameter estimation. Additionally, the
adaptive Lasso method was developed using the adaptive weight on the /--norm penalty. This adaptive weight is related
to the power order of the estimators. Thus, we focus on 1) the power of adaptive weight on the penalty function, and 2)
the two-stage variable selection method. This study aimed to propose the relaxed adaptive Lasso sparse logistic
regression. Moreover, we compared the performances of the different penalty functions by using the mean of the
predicted mean squared error (MPMSE) for the simulation study and the accuracy of classification for a real-data
application. The results showed that the proposed method performed best on high-dimensional sparse data with
multicollinearity. Along with, for classifier with the support vector machine, this proposed method was also the best

option for the variable selection process.

Keywords: High-dimensional sparse data, machine learning, multicollinearity, penalized logistic regression,

variable selection method.

INTRODUCTION

Presently, advances in technology are growing
rapidly, which have resulted in computers being able to
store huge amounts of data effectively. With such
enormous volumes of data, we require tools that can
extract useful information. Particularly needed are
predictive modeling techniques that can provide
accurate results to help decision-making. Logistic
regression is one of the techniques that is widely
employed in data analysis and machine learning
communities [1-4]. This predictive modeling technique
describes the relationships between independent and
outcome variables and predicts the outcome variables’
future values [5, 6]. For a binary outcome variable, the
classical method used to estimate coefficients in the
logistic regression algorithm is maximum likelihood
estimation (MLE). However, the MLE is only stable
when the volume of data is large enough and there is
no multicollinearity problem [5-7]. A critical problem that
commonly arises in model building is high-dimensional
data. High-dimensional data refers to a data set in
which the number of independent variables ( p) is large
compared with the number of observations (7). This
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condition can lead to model overfitting [8]. Furthermore,
it can result in the development of complex models that
may be difficult to interpret. Another problem in model
construction is the presence of multicollinearity.
Multicollinearity refers to some of the independent
variables are highly correlated. When n is substantially
smaller than p, multicollinearity occurs [9]. This
situation can inflate the variance of the maximum
likelihood estimators in the logistic regression model [5,
6]. The hybrid of the two above problems can also lead
to instabilities in a predictive model [7-9]. Therefore, the
MLE wused for coefficient estimation in logistic
regression is inappropriate  for  constructing
classification models [10].

To solve the problems of high-dimensional data with
multicollinearity, the penalized method can be applied
in the logistic regression model. This method proposes
to reduce variance in parameter estimation and help
mitigate model overfitting [11, 12]. Currently, popular
penalty function methods are ridge regression, Lasso,
and elastic net [13-15]. The choice of penalty function
is part of the model constructing procedure, bearing in
mind that the performance of each method is not the
same for each data item. In previous studies, several
researchers concentrated on developing an adaptive
weight for the penalty function. For example, Zou [16]
proposed adaptive Lasso in 2006, which enjoyed
oracle properties and led to stable estimation. Next,
Meinshausen [17] proposed a relaxed Lasso for linear
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regression in 2007. In 2009, Zou and Zhang [18]
proposed an adaptive elastic net; it has oracle
properties and superior performance to the elastic net.
However, no studies have compared the performances
of penalized methods in logistic regression, focusing on
1) the power of adaptive weight on the penalty function
under the scenario of sparse data with multicollinearity,
and 2) the two-stage Lasso methods for classification.
“Sparse” data indicate that the logistic regression
model has several nonsignificant predictors whose
coefficients are zero [19].

Hence, this study focused on 1) the power of
adaptive weight on the penalty function, and 2) the two-
stage variable selection method. The aim was to
propose the relaxed adaptive Lasso sparse logistic
regression. Additionally, the performances of six
methods (i.e., ridge, Lasso, elastic net, adaptive Lasso,
adaptive elastic net, and relaxed adaptive Lasso) were
compared with the mean of the predicted mean
squared errors (MPMSE) value obtained from Monte
Carlo simulations. Along with this, in a real-data
application, classification accuracy was used to assess
the performances of each method.

MATERIALS AND METHODS

Logistic regression is a commonly used statistical
method for classification. We let the dependent (or
called outcome) variable be a dichotomous variable
(i.e., 0 = negative class or 1 = positive class). Thus,

yie{o,l}, which is a nx1 vector where n is the
sample of size. X is a nx(p+1) data matrix of p
variables denotes the

independent when X,

independent variables for the i” row of X. The
dependent variable (Y;) is a binary outcome that has a

Bernoulli distribution (Y ~ Bernoulli(xr,)). The random
error (¢,) is assumed to follow a distribution with a

mean of zero and a variance of ”i(l‘”i)- Therefore,
the binary logistic regression model is the following [6]:

exp{/}0+§xijﬁj}
1+exp{/30 +§x,,~/3,}

Jj=123,..,p (1)

]

1

, i=1,23,..,n and

where 7, denotes a probability that an observation is
in a specified category of the binary outcome variable.

Thus, y, represents the value of a dichotomous

outcome variable. For y =0, the conditional probability

that y =0, given as X, «can be written as

-7, =P(Y, =0|x,). In this case, x,=P(¥,=1|x,) is the

conditional probability that y, =1, given as X, .

Logistic regression is the logit transformation, which
is represented as

1H(L)=ﬁo+§xgﬁj : (2)

l-m =t
=

1

The left term of equation (2) is called the logit
function. A vector composed of logistic regression

coefficients is S =(B,, B, ﬁz,...,/a’p)T. The log-likelihood
function for equation (2) can be written as:

£(§)=2 yl,(ﬁo+§xy,[3’j)—ln(l+exp(ﬁo+§xij/3’j)J . (3)

The estimated parameters of equation (3) can be
estimated by using the classical method, which is given
below.

@MLE =argm§1x(2[y[ ln(ni)+(1—yi)1n(1—ni)]) (4)

i=1

where B, is a (p+1)x1 vector of the maximum

MLE

likelihood estimator. Although this method has good
performance, it has some limitations [6, 7]. Thus, the
penalized logistic regression model is applied as an
alternative to the classical method (see Appendix). The
principle of this technique is given below.

Penalized Logistic Regression Analysis

The purpose of penalized logistic regression
analysis is to estimate logistic regression coefficients
when the data are high dimensional and
multicollinearity is present. Penalized logistic
regression coefficients are determined as follows:

n

éPLR =arg mﬂm ( - {2
()

Equation (5) is similar to equation (4), but a different
term is the penalty function (£, (f)). 4 is the tuning

y; In(r,) +

(1_yi)ln(1—ﬂ[):|}+e‘([3)) > A=z0.

parameter, which is more than or equal to zero. If A is
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large, then the effect of the penalty term on the
coefficient estimation increases. Selecting the value of
A is important because it can affect the balance
between variance and bias [20]. To select the optimal
value of A, cross-validation is commonly used, which
depends on the real data [21].

The Proposed Method: Relaxed Adaptive Lasso

Definition

Relaxed Lasso was originally designed to solve the
disadvantage of Lasso in a linear regression model
[17]. In this study, we proposed the relaxed adaptive
Lasso sparse logistic regression, which was developed
based on the work of Meinshausen [17]. We defined

the relaxed adaptive Lasso estimator ( 3**) on the set

MMC{IJ,&.--,;?} when p is the number of nonzero
variables selected into the ultimate model. The novel
procedure of variable selection and shrinkage of /~§ are
controlled by two constraints (i.e., A and ¢) and the

weight vector (w) to the penalty term. The relaxed
adaptive Lasso estimator in logistic regression is
defined as follows:

e
-y =

5 . i=1 2
@R‘ilaxxa =argrr}31n _ln(1+exp(ﬁo+2xy{ﬁj 'lMA.u}J] (6)
p g
D
+¢)»Ew/.‘/3,.‘
j=l
where 1Mw is an indicator function
Aw
{1 M} = 0, k&M , for all ke{1,2,3,...,p};
M L, ke M™

¢ €[0,1]; define the weight vector w, =‘/§f‘77, y>0.7is

the power of the adaptive weight. For A and ¢, the

cross-validation is used to evaluate the optimal value of
the tuning parameters [16, 17]. In the case of A=0 or

$=0., By =B - Additionally, the adaptive Lasso
and relaxed adaptive Lasso are the same when ¢ =1
(see Appendix).

Algorithm

The algorithm for the relaxed adaptive Lasso is as
follows:

to construct the

MLE

Step 1. Let y>0, we use §

weight in an adaptive Lasso based on the work of Zou
[16], bearing in mind that this initial weight can be

determined by using f,,. unless collinearity is a
concern, in which case we can use /S’n_dge from the best

ridge logistic regression fit, because it is more stable
than g, [16].

MLE

Step 2. Define X:=X//v?{i,j=l,2,3,...,p, when

AL -v

ridge
w. = .
J ﬂ/

Step 3. The procedure of relaxed adaptive lasso
estimation is based on solving the relaxed lasso

solutions in Meinshausen [17]. First, we compute @
which is determined as

Yi (ﬁo +

{1 |
) : (7)
_ln[l + exp(/y’o + Ex; {ﬁj 1 }))

j=1

n

B =arg mﬁin

03B

Step 4. Then, the resulting estimates in step 3 to
compute the relaxed adaptive lasso estimators. The
solution of the relaxed adaptive Lasso can be defined

as follows: Bewe =B /v, j=1,2,3,..p.
Monte Carlo Simulation

The key factors affecting the accuracy of a
predictive model are the number of predictors (p), the
sample size (n), and the high correlation between the
independent variables. In this study, we considered two
scenarios in a simulation study:

1) High-dimensional sparse data [19]. Let p > n.
Under the sparsity assumption on the true
coefficients (), we assumed that the number of

significant predictors is equal to ¢ when ¢ < p.

X =(x. x.) with gcm=(xi1,xi2,xi3,...,xiq)rERq and

T
eRM. Hence,

Xp = (xl-(qﬂ)’x,»(q+z)’xi(q+3)9---’x,p)
)~(=()~cA,)~cB)TER”X”iS the matrix of all independent

variables when 3, =(x0m1,,) ER™

~id>" " wnA

and x,= (x . )T c Rnx(p-‘l) .

~iB>"""?~nB

2) The independent variables are correlated using
the Toeplitz correlation structure, which is given
below [22].
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where &k is a positive integer (the number of

independent variables) and 0<p=<1.

The Monte Carlo simulations were performed using
25, 50, and 100 independent variables (p). The

sample size (n) equaled 30 and 40. The independent
variables were generated from the multivariate normal
distribution with a mean of zero and covariance

S(X~N0,3)). The dependent variables were
generated from the Bernoulli distribution with
parameter , ( Y, ~ Bernoulli(m,) ). The degree of

correlation (p) was set to 0.75, 0.85, and 0.95. The
number of significant predictors (g ) equaled 15. The

logistic regression coefficients were set the constant
values as f3 . After generating the data set, we split the

data into two subsets: 80% of the learning data set,
and 20% of the testing data set. The simulation study
compared the performances of the six penalized
methods (ridge, Lasso, elastic net, adaptive Lasso,
adaptive elastic net, and relaxed adaptive Lasso) in
terms of the mean of the predicted mean square errors
(PMSE). The estimated PMSE was determined from:

PMSE = EM (9)

i=1 n

th

where y and p, were the i" actual and predicted

values of the dependent variables, respectively. For the
tuning parameter ( A ), we found the optimal value of A

using a tenfold cross-validation strategy [12, 15, 23]. In
this study, the experiment was repeated 1000 times to
obtain a stationary result. Therefore, the MPMSE was
calculated from the average of 1000 estimates of
PMSE;.

1000
1

EPMSE/ . (10)

MPMSE = ——
1000 &

The methods providing the lowest MPMSE were
considered the best option for high-dimensional sparse
data with multicollinearity. The flowchart of the
simulation process is illustrated in Figure 1.

Regarding the real-data application, the workflow
diagram of the machine-learning process with different
penalized methods is presented in Figure 2. The
classification accuracy was used to assess the

performance of each method. This accuracy value was
evaluated from:

TP + TN

Accuracy (%) = x
TP +FP + FN + TN

100 (11)

When the true positive (TP) indicates that the
prediction is correct, the predicted value is positive, and
the actual value is positive. A true negative (TN) shows
that the prediction is correct: the predicted value is
negative, and the actual value is negative. False
positive (FP) indicates that the prediction is wrong (also
called a type | error): the predicted value is positive, but
the actual value is negative. A false negative (FN)
indicates that the prediction is wrong (also called a type
Il error): the predicted value is negative, but the actual
value is positive.

Software

All simulations and analyses were carried out in R
version 4.2.1 (R Foundation for Statistical Computing,
Vienna, Austria). We used the package ‘gimnet’ to fit
models using all the above penalized methods. The
tuning parameters were selected tenfold cross-
validation and the experiment was repeated 1000 times
to obtain a stationary result. For support vector
machine (SVM), the package ‘e1071 was used to
construct the models [24].

RESULTS
Simulation Study

Table 1 lists the MPMSE values for the six methods
for different p when p =25, 50, and 100 and n = 30
and 40. When p was increased while holding » and
p fixed, the MPMSE values of the methods increased.

With an increase in n, the MPMSE values of the
methods decreased. In the cases of p = 50 and 100,

we found that the MPMSE values of the relaxed
adaptive Lasso method were the smallest compared
with the other methods. However, for p = 25, the

adaptive Lasso method was preferred.

Real-Data Applications

In this section, the application of the six penalized
methods with a real-data set with high-dimensional
sparse data and multicollinearity is presented to
compare their classification performances.

The tumor data set was compiled from the medical
records of 40 patients with soft-tissue tumors (20
intramuscular lipomas and 20 well-differentiated
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Figure 1: Flowchart of the simulation process.
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Figure 2: Workflow diagram of the machine-learning process used to appraise the classification performance of the penalized
logistic regression models with six penalized methods with application on real data. The penalized methods were ridge, Least
Absolute Shrinkage and Selection Operator (Lasso), elastic net, adaptive Lasso, adaptive elastic net, and relaxed adaptive
Lasso. The initial data set was split into two subsets: one set with 80% of the learning data, and the other set with 20% of the
testing data. Next, the learning data set underwent a tenfold cross-validation strategy as follows: (1) the training sets were used
to select variables (the “variable selection step,” using the six penalized methods) and (2) the validation sets were used to
evaluate the classification performance of each model (the “model building step,” in which we applied the penalized logistic
regression and support vector machine over selected variables). The best model for each method was selected. These models

were subsequently appraised on the testing data set.

liposarcomas). The patients had been treated at our
institution between 2010 and 2020. Their data were
retrieved after receiving approval from the Ethics
Committee of our institute. The patients were
diagnosed using their final pathological examinations,
and all underwent magnetic resonance imaging
examinations and total excision surgery. For our case
study, the outcome of interest was an intramuscular
lipoma or a well-differentiated liposarcoma as a
dichotomous variable. The predictors of interest were
50 radiomic features as continuous variables; these
were extracted from preoperative T1-weighted
magnetic resonance images. The correlations between
all predictors of the tumor data set are depicted in

Figure 3. The correlation matrix shows different
shades. The dark shade signifies that the predictors
have a high correlation, whereas the light shade
represents a low correlation between the predictors. It
is apparent that the multicollinearity problem was
present in this sample data set.

In Table 2, we evaluated the classification
performances of the six penalized methods in
differentiating between intramuscular lipomas and well-
differentiated liposarcomas. When looking at the
accuracy of their classifications, the highest accuracy
values were obtained with the relaxed adaptive Lasso
while the lowest accuracy values were obtained with
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Table 1: MPMSE Values for Different Methods

p n P Ridge Lasso Elastic net Adaptive Lasso | Adaptive elastic |Relaxed adaptive
net Lasso
25 30 0.75 0.230 0.190 0.192 0.185* 0.191 0.190
0.85 0.233 0.195 0.198 0.190* 0.198 0.200
0.95 0.233 0.198 0.201 0.194* 0.201 0.204
40 0.75 0.203 0.189 0.190 0.185* 0.191 0.190
0.85 0.208 0.191 0.196 0.188* 0.194 0.195
0.95 0.213 0.196 0.198 0.194* 0.197 0.199
50 30 0.75 0.225 0.191 0.192 0.190 0.192 0.184*
0.85 0.227 0.194 0.197 0.196 0.198 0.189*
0.95 0.228 0.195 0.199 0.204 0.199 0.191*
40 0.75 0.229 0.187 0.192 0.183 0.191 0.179*
0.85 0.230 0.193 0.196 0.188 0.194 0.183*
0.95 0.232 0.193 0.198 0.198 0.197 0.188*
100 30 0.75 0.220 0.188 0.192 0.180 0.188 0.175*
0.85 0.221 0.190 0.194 0.185 0.193 0.178*
0.95 0.227 0.196 0.199 0.194 0.196 0.187*
40 0.75 0.217 0.184 0.187 0.178 0.181 0.168*
0.85 0.219 0.188 0.189 0.182 0.187 0.176*
0.95 0.225 0.194 0.198 0.193 0.195 0.183*

MPMSE, mean of the predicted mean square errors; Lasso, Least Absolute Shrinkage and Selection Operator; *The penalized methods providing the smallest
MPMSE.
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Figure 3: Correlation matrix of 50 radiomic features in 40 patients, showing the different shades. The dark shade indicates that
the features have a high correlation. In contrast, the light shade represents a low correlation.
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Table 2: Accuracy of Machine-Learning Algorithms for Differentiating between Intramuscular Lipomas and Well-
Differentiated Liposarcomas under 50 Radiomic Features in 40 Patients

Variable selection method Ridge Lasso Elastic net | Adaptive Lasso | Adaptive elastic net | Relaxed adaptive Lasso

Classifier with penalized logistic regression

Accuracy (%) ‘ 81.0 ‘ 88.0 ‘ 87.0 ‘ 91.0 ‘ 92.0 ‘ 93.5*

Classifier with support vector machine

89.8

Accuracy (%) ‘ 86.3

90.0 ‘ 93.0 ‘ 91.0 ‘ 94.0*

Lasso, Least Absolute Shrinkage and Selection Operator; *The penalized methods providing the highest accuracy.

the ridge method. Regarding the classifier with support be biased towards zero. To remedy this disadvantage,
vector machine, the relaxed adaptive Lasso was also two-stage Lasso methods have been proposed (i.e.,
preferred. the adaptive Lasso [16] and the relaxed Lasso [17]).
For the relaxed Lasso (known as the Lasso twice), the
concept in the first stage of this method is to use cross-

From the simulated results in Table 1, it can be validation to estimate the initial penalty parameter for
seen that the important factors influencing the MPMSE ~ the Lasso. Subsequently, in the second stage, we

DISCUSSION

values were the correlated independent variables (i.e., ~ Perform Lasso again on the selected set of predictors
correlation coefficient level (p)), the penalty function, obtained from the first stage. Since this second stage
and the sample size (). An increase in the correlation has less competition from noise variables, cross-
coefficient level lends to an increase in the MPMSE validation may tend to pick a smaller value for the
values for all methods when holding p and n fixed. tuning parameter A [17, 23]. Consequently, their

The worst case was obtained when the correlation coefficients will shrink less than those in the initial
coefficient level was very high (p = 0.95). In the case estimate, which can solve the above disadvantage and

of the power of the adaptive weight on the /;-norm can help mitigate the slow convergence of the Lasso in
penalty, choosing the relaxed adaptive Lasso is  the case of high-dimensional data. However, the
preferred for p > n while the adaptive Lasso for relaxed adaptive Lasso methods provides better

p < n.We can see that an increase in the sample size performance, compared with fitting Lasso twice [23]

(n) affects a decrease in the MPMSE values for all because these methods will be used in the second
methods while holding p and p fixed. stage with weights imposed on the important measures

(i.e., assigning a smaller weight to large coefficients
Regarding the results of the real-data applications in ~ and a higher weight to small coefficients). Thus, these
Table 2, it is obvious that the relaxed adaptive Lasso methods can reduce the bias problems of the Lasso.
method showed a better performance than the other
methods for the classification of the high-dimensional
sparse data with multicollinearity. This finding
corresponds to the results of the simulation study.
Along with, for classifier with the support vector
machine, the relaxed adaptive Lasso method was also
the best option for the variable selection process.

An alternative approach for reducing those biases,
the Lasso can be considered using for the variable
selection step followed by an advanced machine
learning technique. This approach was used in clinical
research, which has provided good classification
performance results in classifying tumors into lipomas
and atypical lipomatous tumors [4]. For our

The limitations of the classical method can be comparisons, the variable selection procedures with

overcome with penalized logistic regression. However, our proposed method can be used with advanced
the performance of penalized logistic regression machine learning techniques as a classifier, which also
depends on the penalty function method used. showed a good performance.

Therefore, the performance of each method is not the
same for each data item. Table 3 compares the
advantages, disadvantages, limitations, and
appropriateness of each penalty function in the
penalized logistic regression model.

CONCLUSION

The relaxed adaptive Lasso methods can be used
to (1) reduce overfitting, (2) enable machine-learning
algorithms to train faster, (3) improve the accuracy of

Regarding the Lasso method, the shrinkage of the the predictive model, and (4) alleviate the complexity of
Lasso causes the estimation of non-zero coefficients to ~ the model.
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Table 3: Comparison of the Advantages, Disadvantages/Limitations, and Appropriateness of each Method

Method Advantages Disadvantages/limitations Appropriateness of application

Ridge - Able to solve the multicollinearity - Lacks selection of variables - The data are low- or high-dimensional.
problem.
- Able to deal with low-dimensional data - When the number of independent - All independent variables relate to the
(p < n)and high-dimensional data ( p > |variables increases, it may be difficult to [ dependent variable.
n) interpret the obtained model.
- The estimated parameters g are stable. - Multicollinearity is present.

Lasso - Able to select the independent variables | When p > n, Lasso selects at most n |- The data are high-dimensional.

coupled with their computation.

variables before it saturates.

selected.

- If there is a high pairwise correlation
between independent variables in the data Jow/medium collinearity.
set, Lasso selects only one variable or a
few of them among a group of correlated
variables, and it does not care which one is

- The independent variables have

- When n > p and the independent

variables have high collinearity, Lasso is
dominated by ridge regression.

- Lacks oracle properties

Elastic net |- Able to enforce sparsity.

- Lacks oracle properties

- The data are high-dimensional.

- No limitation on the number of selected
variables.

- Multicollinearity is present.

- Able to deal with multicollinearity.

Adaptive | The estimated parameters § using the |-

Lasso .
adaptive Lasso are stable and have

superior performance to Lasso.

- The data are high-dimensional.

- The estimators have oracle properties.

- The independent variables are highly
correlated.

Adaptive | The estimators have oracle properties.

- The data are high-dimensional.

elastic net
- The adaptive elastic net has superior -
performance to the elastic net.

- The independent variables are highly
correlated.

Relaxed | The estimated parameters § usingthe
adaptive . -
Lasso relaxed adaptive Lasso are stable and

have superior performance to the other
methods.

- The data are high-dimensional.

- Able to alleviate the slow convergence of
the Lasso in the case of high-dimensional
data

- The independent variables are highly
correlated.

- The estimators have oracle properties.

Lasso, Least Absolute Shrinkage and Selection Operator.
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APPENDIX

Binary logistic regression can be written as [25]:

Y=m+¢e,i=123,.,n (A1)

where the dependent variable (Y,) represents a binary

outcome that has a Bernoulli distribution with the
5B
parameter x, =

7 & is the random error that has
1+e™
a distribution with zero mean and a variance equal to
m,(1-m,) [6]. x; is the independent variables for the "
row of X. X is a nx(p+1) data matrix with p

independent variables and sample size n. f

represents an (p+1)x1 unknown coefficient vector.

The transformation of s, is a central of logistic

regression model that is called the logit function, which
is as follows:

ln( P )=ﬁo+ixuﬁf’ i=1,23,...n and j=1,23..p.(A2)

-7

The classical method used for coefficient estimation
in the binary logistic regression is the MLE. Y be
coded as 0 or 1. The conditional probability that ¥ =0,
given as x, can be written as 1-m,=P(¥,=0]x,). On
the other hand, =&, =P(Y, =1|x)
probability that Y =1, given as x,. For a set of

is the conditional

observations (y,.x,), if y, =0, then the contribution to
the likelihood function is 1-, as well, as if y =1, then

the contribution to the likelihood function is 7T, Hence,

the contribution to the likelihood function for the set of
observations (y,,x,) can be written as:

a'(l-z )™  ,y =01

P(Y, =y)= (A.3)

, otherwise.

The likelihood function can be obtained from the
terms of (A.3) as follows:

L(B) = Hni% (1-m)™ . (A.4)

i=1

From equation (A.4), we can be expressed by
taking the log as:

ﬁ wli(l=g)™ ]

i=1

1n[L(@)] = In

n

UB) = Y[y, In(x)+(1-y)In(1-7)].

i=1

(A5)

Thus, the log-likelihood function of the logit
transformation of equation (A.2) can be written as:

n

UB) = D[y In(x)+(1-y)n(1-7)]

i=1

y,(ﬁo +§xij[3j)— ln(1+exp([30 +ixl_jﬁj

n

-3

i=1

. (AB)

The estimated parameters of equation (A.6) can be
estimated by using the MLE, which is given below.

n

@MLE = argml?x (E[yl_ In(,)+(1-y,)In(1 —JT’.):IJ (A7)

i=1

where B, is a (p+l)x1 vector of the maximum

likelihood estimator. However, this method has some
limitations. Therefore, the penalized logistic regression
is employed as an alternative to the MLE.

From equation (A.6), we can be written in the form
of penalized function as follows [26]:

C(B) = - UB) + B(B) (A.8)

where A is the tuning parameter and P, (f) is the
penalty function.



Relaxed Adaptive Lasso for Classification on High-Dimensional Sparse Data

International Journal of Statistics in Medical Research, 2023, Vol. 12 107

Regarding the penalized logistic regression
coefficients, the estimated parameters @PLR is obtained

by minimizing equation (A.8), which can be determined
as follows:

B = argmﬁin(—{i[yi In(z,)+ (1=, )In(1- ni)]}Jr a(@))
1 [ﬁ,ﬁi%ﬂ,)
=argm@in - E o

»
- —ln[l+exp[/50 + Ex”ﬁ/.)
=1

(A.9)
+B(p)

For the penalty function, adaptive Lasso [16] is one
of the techniques employed in data analysis. The
concept of this technique is a different weight for each
parameter in the /;-norm penalty. The adaptive Lasso
penalty is defined as follows:

B (B) = Aj wj‘/a’j‘ . (A.10)

Hence, the estimation of pB using the adaptive

Lasso penalty is as follows:

n

é/ilmso = argn};}in{_{z[yi ln(ﬂi)‘i' (1 - yl)ll’l(l — n‘)]}_'_ aAlz:,y;v(;(@))

i=1

1, [ﬁuixf,ﬁ/]

=argmﬂin - E , +}Li wj|/3’/|
) - —ln(1+exp[ )] "

(A.11)
Byt 25,

where a vector composed of w is w=(w],w2,w3,...,wp)r

and wj=|/3’/.‘_y; y>0. y is the power of the adaptive
weight.

Regarding the proposed method, we defined the
relaxed adaptive Lasso estimator on the set

M C {1,2,3,---,]9} , where p is the number of nonzero
variables selected into the ultimate model. The
procedure of variable selection and shrinkage of/§’ are

controlled by two constraints (A and ¢ ) and the weight

vector (w) to the penalty term. Thus, the relaxed
adaptive Lasso estimator is defined as follows:

»
lreseton)
~ 1 /=I
@RA[;L\'\O = argm@m - ; N
—In|1+ exp

+¢A§ w|B|
BO +Ex4/{ﬁ/ .lM" " })) "

(A12)

where 1Mw is an indicator function
Aw

{1MM} _ OkEM , for all ke{1,2,3,...,p};
K I, ke M™”

pefo1]. w, =|/3’/_‘_y, y>0.
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