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Abstract: High-dimensional sparse data with multicollinearity is frequently found in medical data. This problem can lead 
to poor predictive accuracy when applied to a new data set. The Least Absolute Shrinkage and Selection Operator 
(Lasso) is a popular machine-learning algorithm for variable selection and parameter estimation. Additionally, the 
adaptive Lasso method was developed using the adaptive weight on the l1-norm penalty. This adaptive weight is related 
to the power order of the estimators. Thus, we focus on 1) the power of adaptive weight on the penalty function, and 2) 
the two-stage variable selection method. This study aimed to propose the relaxed adaptive Lasso sparse logistic 
regression. Moreover, we compared the performances of the different penalty functions by using the mean of the 
predicted mean squared error (MPMSE) for the simulation study and the accuracy of classification for a real-data 
application. The results showed that the proposed method performed best on high-dimensional sparse data with 
multicollinearity. Along with, for classifier with the support vector machine, this proposed method was also the best 
option for the variable selection process. 

Keywords: High-dimensional sparse data, machine learning, multicollinearity, penalized logistic regression, 
variable selection method. 

INTRODUCTION 

Presently, advances in technology are growing 
rapidly, which have resulted in computers being able to 
store huge amounts of data effectively. With such 
enormous volumes of data, we require tools that can 
extract useful information. Particularly needed are 
predictive modeling techniques that can provide 
accurate results to help decision-making. Logistic 
regression is one of the techniques that is widely 
employed in data analysis and machine learning 
communities [1-4]. This predictive modeling technique 
describes the relationships between independent and 
outcome variables and predicts the outcome variables’ 
future values [5, 6]. For a binary outcome variable, the 
classical method used to estimate coefficients in the 
logistic regression algorithm is maximum likelihood 
estimation (MLE). However, the MLE is only stable 
when the volume of data is large enough and there is 
no multicollinearity problem [5-7]. A critical problem that 
commonly arises in model building is high-dimensional 
data. High-dimensional data refers to a data set in 
which the number of independent variables ( p ) is large 
compared with the number of observations ( n ). This  
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condition can lead to model overfitting [8]. Furthermore, 
it can result in the development of complex models that 
may be difficult to interpret. Another problem in model 
construction is the presence of multicollinearity. 
Multicollinearity refers to some of the independent 
variables are highly correlated. When n  is substantially 
smaller than p , multicollinearity occurs [9]. This 
situation can inflate the variance of the maximum 
likelihood estimators in the logistic regression model [5, 
6]. The hybrid of the two above problems can also lead 
to instabilities in a predictive model [7-9]. Therefore, the 
MLE used for coefficient estimation in logistic 
regression is inappropriate for constructing 
classification models [10]. 

To solve the problems of high-dimensional data with 
multicollinearity, the penalized method can be applied 
in the logistic regression model. This method proposes 
to reduce variance in parameter estimation and help 
mitigate model overfitting [11, 12]. Currently, popular 
penalty function methods are ridge regression, Lasso, 
and elastic net [13-15]. The choice of penalty function 
is part of the model constructing procedure, bearing in 
mind that the performance of each method is not the 
same for each data item. In previous studies, several 
researchers concentrated on developing an adaptive 
weight for the penalty function. For example, Zou [16] 
proposed adaptive Lasso in 2006, which enjoyed 
oracle properties and led to stable estimation. Next, 
Meinshausen [17] proposed a relaxed Lasso for linear 
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regression in 2007. In 2009, Zou and Zhang [18] 
proposed an adaptive elastic net; it has oracle 
properties and superior performance to the elastic net. 
However, no studies have compared the performances 
of penalized methods in logistic regression, focusing on 
1) the power of adaptive weight on the penalty function 
under the scenario of sparse data with multicollinearity, 
and 2) the two-stage Lasso methods for classification. 
“Sparse” data indicate that the logistic regression 
model has several nonsignificant predictors whose 
coefficients are zero [19].  

Hence, this study focused on 1) the power of 
adaptive weight on the penalty function, and 2) the two-
stage variable selection method. The aim was to 
propose the relaxed adaptive Lasso sparse logistic 
regression. Additionally, the performances of six 
methods (i.e., ridge, Lasso, elastic net, adaptive Lasso, 
adaptive elastic net, and relaxed adaptive Lasso) were 
compared with the mean of the predicted mean 
squared errors (MPMSE) value obtained from Monte 
Carlo simulations. Along with this, in a real-data 
application, classification accuracy was used to assess 
the performances of each method. 

MATERIALS AND METHODS  

Logistic regression is a commonly used statistical 
method for classification. We let the dependent (or 
called outcome) variable be a dichotomous variable 
(i.e., 0 = negative class or 1 = positive class). Thus, 

  
yi ! 0,1{ } , which is a   n!1  vector where n  is the 

sample of size. X  is a   n! ( p+1)  data matrix of p  

independent variables when   !
xi  denotes the 

independent variables for the ith  row of X . The 
dependent variable ( Yi ) is a binary outcome that has a 

Bernoulli distribution (   Yi ! Bernoulli(! i ) ). The random 

error ( ! i ) is assumed to follow a distribution with a 

mean of zero and a variance of 
  
! i 1"! i( ) . Therefore, 

the binary logistic regression model is the following [6]:  
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,   i =1,2,3,...,n  and 

  j =1,2,3,..., p              (1) 

where  ! i  denotes a probability that an observation is 
in a specified category of the binary outcome variable. 

Thus,  yi  represents the value of a dichotomous 

outcome variable. For   yi = 0 , the conditional probability 

that   yi = 0 , given as   !
xi  can be written as 

   1!" i = P(Yi = 0 |
!
xi ) . In this case, 

   ! i = P(Yi =1|
!
xi )  is the 

conditional probability that   yi =1 , given as   !
xi . 

Logistic regression is the logit transformation, which 
is represented as 
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The left term of equation (2) is called the logit 
function. A vector composed of logistic regression 
coefficients is 

   !
! = (!0 ,  !1,  !2 ,...,! p )T . The log-likelihood 

function for equation (2) can be written as: 
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The estimated parameters of equation (3) can be 
estimated by using the classical method, which is given 
below.  

   !
!̂MLE = argmax
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where 
   !
!̂MLE  is a   ( p+1)!1  vector of the maximum 

likelihood estimator. Although this method has good 
performance, it has some limitations [6, 7]. Thus, the 
penalized logistic regression model is applied as an 
alternative to the classical method (see Appendix). The 
principle of this technique is given below. 

Penalized Logistic Regression Analysis 

The purpose of penalized logistic regression 
analysis is to estimate logistic regression coefficients 
when the data are high dimensional and 
multicollinearity is present. Penalized logistic 
regression coefficients are determined as follows: 

1
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Equation (5) is similar to equation (4), but a different 
term is the penalty function (

   
P! (
!
" ) ). !  is the tuning 

parameter, which is more than or equal to zero. If !  is 
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large, then the effect of the penalty term on the 
coefficient estimation increases. Selecting the value of 
!  is important because it can affect the balance 
between variance and bias [20]. To select the optimal 
value of ! , cross-validation is commonly used, which 
depends on the real data [21].  

The Proposed Method: Relaxed Adaptive Lasso  

Definition  

Relaxed Lasso was originally designed to solve the 
disadvantage of Lasso in a linear regression model 
[17]. In this study, we proposed the relaxed adaptive 
Lasso sparse logistic regression, which was developed 
based on the work of Meinshausen [17]. We defined 
the relaxed adaptive Lasso estimator (

   
ˆ
!
!" ,w ) on the set 

  M
! ,w

" 1,2,3,...,p{ }  when p  is the number of nonzero 
variables selected into the ultimate model. The novel 
procedure of variable selection and shrinkage of 

  
ˆ
!
!  are 

controlled by two constraints (i.e., !  and ! ) and the 
weight vector ( w ) to the penalty term. The relaxed 
adaptive Lasso estimator in logistic regression is 
defined as follows:  
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where 
  
1

M ! ,w  is an indicator function 

  

1
M ! ,w{ }

k
=

0,  k " M ! ,w

1,  k # M ! ,w

$
%
&

'&
, for all 

  
k ! 1,2,3,..., p{ } ; 

 
! " 0,1#$ %& ; define the weight vector 

  
wj = !̂ j

"#
, #  > 0 . !  is 

the power of the adaptive weight. For !  and ! , the 
cross-validation is used to evaluate the optimal value of 
the tuning parameters [16, 17]. In the case of  ! = 0  or 

 ! = 0 , 
   
ˆ
!
!RAlasso =

!
!̂MLE . Additionally, the adaptive Lasso 

and relaxed adaptive Lasso are the same when  ! =1  
(see Appendix).  

Algorithm 

The algorithm for the relaxed adaptive Lasso is as 
follows:  

Step 1. Let  !  > 0 , we use 
   
ˆ
!
!MLE  to construct the 

weight in an adaptive Lasso based on the work of Zou 
[16], bearing in mind that this initial weight can be 

determined by using 
 
ˆ
!
!MLE  unless collinearity is a 

concern, in which case we can use 
   
ˆ
!
!ridge  from the best 

ridge logistic regression fit, because it is more stable 
than 

   
ˆ
!
!MLE  [16]. 

Step 2. Define 
  
X j

* = X j / ŵj ,  j =1,2,3,..., p , when 

  
wj = !̂ j

ridge "#
. 

Step 3. The procedure of relaxed adaptive lasso 
estimation is based on solving the relaxed lasso 
solutions in Meinshausen [17]. First, we compute 
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!
! ** , 

which is determined as  
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Step 4. Then, the resulting estimates in step 3 to 
compute the relaxed adaptive lasso estimators. The 
solution of the relaxed adaptive Lasso can be defined 
as follows: 

  
!̂ j

RAlasso = !̂ j
** / ŵj

,   j =1,2,3,..., p . 

Monte Carlo Simulation 

The key factors affecting the accuracy of a 
predictive model are the number of predictors ( p ), the 
sample size ( n ), and the high correlation between the 
independent variables. In this study, we considered two 
scenarios in a simulation study: 

1) High-dimensional sparse data [19]. Let p  > n . 
Under the sparsity assumption on the true 
coefficients (

 !
! ), we assumed that the number of 

significant predictors is equal to q  when q  < p . 

   !
xi = !

xiA,
!
xiB( )  with 

   !
xiA = xi1,xi2 ,xi3,...,xiq( )

T
! "q  and 

   !
xiB = xi q+1( ) ,xi q+2( ) ,xi q+3( ) ,...,xip( )

T

! " p"q . Hence, 

   !
X =

!
xA,
!
xB( )T

! "n"p is the matrix of all independent 

variables when 
   !
xA = !

xiA,...,
!
xnA( )T

! "n"q  

and
   !
xB = !

xiB ,...,
!
xnB( )T

! "n" p#q( ) .  

2) The independent variables are correlated using 
the Toeplitz correlation structure, which is given 
below [22]. 
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where k  is a positive integer (the number of 
independent variables) and  0 ! " !1 . 

The Monte Carlo simulations were performed using 
25, 50, and 100 independent variables ( p ). The 
sample size ( n ) equaled 30 and 40. The independent 
variables were generated from the multivariate normal 
distribution with a mean of zero and covariance 
! (   X ! N (0,!) ). The dependent variables were 
generated from the Bernoulli distribution with 
parameter ! i (   Yi ! Bernoulli(! i ) ). The degree of 
correlation ( ! ) was set to 0.75, 0.85, and 0.95. The 
number of significant predictors ( q ) equaled 15. The 
logistic regression coefficients were set the constant 
values as

 !
! . After generating the data set, we split the 

data into two subsets: 80% of the learning data set, 
and 20% of the testing data set. The simulation study 
compared the performances of the six penalized 
methods (ridge, Lasso, elastic net, adaptive Lasso, 
adaptive elastic net, and relaxed adaptive Lasso) in 
terms of the mean of the predicted mean square errors 
(PMSE). The estimated PMSE was determined from: 

  
PMSE =

( yi ! ŷi )
2

ni=1

n

"            (9) 

where  yi  and   ŷi  were the  ith  actual and predicted 
values of the dependent variables, respectively. For the 
tuning parameter ( ! ), we found the optimal value of !  
using a tenfold cross-validation strategy [12, 15, 23]. In 
this study, the experiment was repeated 1000 times to 
obtain a stationary result. Therefore, the MPMSE was 
calculated from the average of 1000 estimates of 
PMSEj. 

  
MPMSE = 1

1000
PMSE j

j=1

1000

! .       (10) 

The methods providing the lowest MPMSE were 
considered the best option for high-dimensional sparse 
data with multicollinearity. The flowchart of the 
simulation process is illustrated in Figure 1. 

Regarding the real-data application, the workflow 
diagram of the machine-learning process with different 
penalized methods is presented in Figure 2. The 
classification accuracy was used to assess the 

performance of each method. This accuracy value was 
evaluated from: 

Accuracy (%) = 
 

TP + TN
TP + FP + FN + TN

!100 .      (11) 

When the true positive (TP) indicates that the 
prediction is correct, the predicted value is positive, and 
the actual value is positive. A true negative (TN) shows 
that the prediction is correct: the predicted value is 
negative, and the actual value is negative. False 
positive (FP) indicates that the prediction is wrong (also 
called a type I error): the predicted value is positive, but 
the actual value is negative. A false negative (FN) 
indicates that the prediction is wrong (also called a type 
II error): the predicted value is negative, but the actual 
value is positive.  

Software  

All simulations and analyses were carried out in R 
version 4.2.1 (R Foundation for Statistical Computing, 
Vienna, Austria). We used the package ‘glmnet’ to fit 
models using all the above penalized methods. The 
tuning parameters were selected tenfold cross-
validation and the experiment was repeated 1000 times 
to obtain a stationary result. For support vector 
machine (SVM), the package ‘e1071’ was used to 
construct the models [24]. 

RESULTS  

Simulation Study 

Table 1 lists the MPMSE values for the six methods 
for different !  when p  = 25, 50, and 100 and n  = 30 
and 40. When !  was increased while holding n  and 
p  fixed, the MPMSE values of the methods increased. 

With an increase in n , the MPMSE values of the 
methods decreased. In the cases of p  = 50 and 100, 
we found that the MPMSE values of the relaxed 
adaptive Lasso method were the smallest compared 
with the other methods. However, for p  = 25, the 
adaptive Lasso method was preferred.  

Real-Data Applications 

In this section, the application of the six penalized 
methods with a real-data set with high-dimensional 
sparse data and multicollinearity is presented to 
compare their classification performances.  

The tumor data set was compiled from the medical 
records of 40 patients with soft-tissue tumors (20 
intramuscular lipomas and 20 well-differentiated 
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Figure 1: Flowchart of the simulation process. 
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Figure 2: Workflow diagram of the machine-learning process used to appraise the classification performance of the penalized 
logistic regression models with six penalized methods with application on real data. The penalized methods were ridge, Least 
Absolute Shrinkage and Selection Operator (Lasso), elastic net, adaptive Lasso, adaptive elastic net, and relaxed adaptive 
Lasso. The initial data set was split into two subsets: one set with 80% of the learning data, and the other set with 20% of the 
testing data. Next, the learning data set underwent a tenfold cross-validation strategy as follows: (1) the training sets were used 
to select variables (the “variable selection step,” using the six penalized methods) and (2) the validation sets were used to 
evaluate the classification performance of each model (the “model building step,” in which we applied the penalized logistic 
regression and support vector machine over selected variables). The best model for each method was selected. These models 
were subsequently appraised on the testing data set. 

liposarcomas). The patients had been treated at our 
institution between 2010 and 2020. Their data were 
retrieved after receiving approval from the Ethics 
Committee of our institute. The patients were 
diagnosed using their final pathological examinations, 
and all underwent magnetic resonance imaging 
examinations and total excision surgery. For our case 
study, the outcome of interest was an intramuscular 
lipoma or a well-differentiated liposarcoma as a 
dichotomous variable. The predictors of interest were 
50 radiomic features as continuous variables; these 
were extracted from preoperative T1-weighted 
magnetic resonance images. The correlations between 
all predictors of the tumor data set are depicted in 

Figure 3. The correlation matrix shows different 
shades. The dark shade signifies that the predictors 
have a high correlation, whereas the light shade 
represents a low correlation between the predictors. It 
is apparent that the multicollinearity problem was 
present in this sample data set. 

In Table 2, we evaluated the classification 
performances of the six penalized methods in 
differentiating between intramuscular lipomas and well-
differentiated liposarcomas. When looking at the 
accuracy of their classifications, the highest accuracy 
values were obtained with the relaxed adaptive Lasso 
while the lowest accuracy values were obtained with 
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Table 1: MPMSE Values for Different Methods 

p  n  !  Ridge Lasso Elastic net Adaptive Lasso Adaptive elastic 
net 

Relaxed adaptive 
Lasso  

0.75 0.230 0.190 0.192 0.185* 0.191 0.190 

0.85 0.233 0.195 0.198 0.190* 0.198 0.200 

30 

0.95 0.233 0.198 0.201 0.194* 0.201 0.204 

0.75 0.203 0.189 0.190 0.185* 0.191 0.190 

0.85 0.208 0.191 0.196 0.188* 0.194 0.195 

25 

40 

0.95 0.213 0.196 0.198 0.194* 0.197 0.199 

0.75 0.225 0.191 0.192 0.190 0.192 0.184* 

0.85 0.227 0.194 0.197 0.196 0.198 0.189* 

30 

0.95 0.228 0.195 0.199 0.204 0.199 0.191* 

0.75 0.229 0.187 0.192 0.183 0.191 0.179* 

0.85 0.230 0.193 0.196 0.188 0.194 0.183* 

50 

40 

0.95 0.232 0.193 0.198 0.198 0.197 0.188* 

0.75 0.220 0.188 0.192 0.180 0.188 0.175* 

0.85 0.221 0.190 0.194 0.185 0.193 0.178* 

30 

0.95 0.227 0.196 0.199 0.194 0.196 0.187* 

0.75 0.217 0.184 0.187 0.178 0.181 0.168* 

0.85 0.219 0.188 0.189 0.182 0.187 0.176* 

100 

40 

0.95 0.225 0.194 0.198 0.193 0.195 0.183* 

MPMSE, mean of the predicted mean square errors; Lasso, Least Absolute Shrinkage and Selection Operator; *The penalized methods providing the smallest 
MPMSE. 

 

 
Figure 3: Correlation matrix of 50 radiomic features in 40 patients, showing the different shades. The dark shade indicates that 
the features have a high correlation. In contrast, the light shade represents a low correlation.  
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Table 2: Accuracy of Machine-Learning Algorithms for Differentiating between Intramuscular Lipomas and Well-
Differentiated Liposarcomas under 50 Radiomic Features in 40 Patients 

Variable selection method  Ridge Lasso Elastic net Adaptive Lasso Adaptive elastic net Relaxed adaptive Lasso 

Classifier with penalized logistic regression 

 Accuracy (%) 81.0 88.0 87.0 91.0 92.0 93.5* 

Classifier with support vector machine 

 Accuracy (%) 86.3 89.8 90.0 93.0 91.0 94.0* 

Lasso, Least Absolute Shrinkage and Selection Operator; *The penalized methods providing the highest accuracy. 

the ridge method. Regarding the classifier with support 
vector machine, the relaxed adaptive Lasso was also 
preferred.  

DISCUSSION  

From the simulated results in Table 1, it can be 
seen that the important factors influencing the MPMSE 
values were the correlated independent variables (i.e., 
correlation coefficient level ( ! )), the penalty function, 
and the sample size ( n ). An increase in the correlation 
coefficient level lends to an increase in the MPMSE 
values for all methods when holding p  and n  fixed. 
The worst case was obtained when the correlation 
coefficient level was very high ( !  = 0.95). In the case 
of the power of the adaptive weight on the l1-norm 
penalty, choosing the relaxed adaptive Lasso is 
preferred for p  > n  while the adaptive Lasso for  
p  < n . We can see that an increase in the sample size 

( n ) affects a decrease in the MPMSE values for all 
methods while holding !  and p  fixed.  

Regarding the results of the real-data applications in 
Table 2, it is obvious that the relaxed adaptive Lasso 
method showed a better performance than the other 
methods for the classification of the high-dimensional 
sparse data with multicollinearity. This finding 
corresponds to the results of the simulation study. 
Along with, for classifier with the support vector 
machine, the relaxed adaptive Lasso method was also 
the best option for the variable selection process.  

The limitations of the classical method can be 
overcome with penalized logistic regression. However, 
the performance of penalized logistic regression 
depends on the penalty function method used. 
Therefore, the performance of each method is not the 
same for each data item. Table 3 compares the 
advantages, disadvantages, limitations, and 
appropriateness of each penalty function in the 
penalized logistic regression model.  

Regarding the Lasso method, the shrinkage of the 
Lasso causes the estimation of non-zero coefficients to 

be biased towards zero. To remedy this disadvantage, 
two-stage Lasso methods have been proposed (i.e., 
the adaptive Lasso [16] and the relaxed Lasso [17]). 
For the relaxed Lasso (known as the Lasso twice), the 
concept in the first stage of this method is to use cross-
validation to estimate the initial penalty parameter for 
the Lasso. Subsequently, in the second stage, we 
perform Lasso again on the selected set of predictors 
obtained from the first stage. Since this second stage 
has less competition from noise variables, cross-
validation may tend to pick a smaller value for the 
tuning parameter !  [17, 23]. Consequently, their 
coefficients will shrink less than those in the initial 
estimate, which can solve the above disadvantage and 
can help mitigate the slow convergence of the Lasso in 
the case of high-dimensional data. However, the 
relaxed adaptive Lasso methods provides better 
performance, compared with fitting Lasso twice [23] 
because these methods will be used in the second 
stage with weights imposed on the important measures 
(i.e., assigning a smaller weight to large coefficients 
and a higher weight to small coefficients). Thus, these 
methods can reduce the bias problems of the Lasso.  

An alternative approach for reducing those biases, 
the Lasso can be considered using for the variable 
selection step followed by an advanced machine 
learning technique. This approach was used in clinical 
research, which has provided good classification 
performance results in classifying tumors into lipomas 
and atypical lipomatous tumors [4]. For our 
comparisons, the variable selection procedures with 
our proposed method can be used with advanced 
machine learning techniques as a classifier, which also 
showed a good performance. 

CONCLUSION  

The relaxed adaptive Lasso methods can be used 
to (1) reduce overfitting, (2) enable machine-learning 
algorithms to train faster, (3) improve the accuracy of 
the predictive model, and (4) alleviate the complexity of 
the model.  



Relaxed Adaptive Lasso for Classification on High-Dimensional Sparse Data International Journal of Statistics in Medical Research, 2023, Vol. 12      105 

Table 3: Comparison of the Advantages, Disadvantages/Limitations, and Appropriateness of each Method 

Method Advantages Disadvantages/limitations Appropriateness of application 

- Able to solve the multicollinearity 
problem. 

- Lacks selection of variables - The data are low- or high-dimensional. 

- Able to deal with low-dimensional data 
( p  < n ) and high-dimensional data ( p  > 
n ) 

- When the number of independent 
variables increases, it may be difficult to 
interpret the obtained model. 

- All independent variables relate to the 
dependent variable. 

Ridge 

- The estimated parameters 
  
ˆ
!
! are stable.  - Multicollinearity is present. 

- Able to select the independent variables 
coupled with their computation. 

- When p  > n , Lasso selects at most n  
variables before it saturates. 

- The data are high-dimensional. 

 - If there is a high pairwise correlation 
between independent variables in the data 
set, Lasso selects only one variable or a 
few of them among a group of correlated 
variables, and it does not care which one is 
selected. 

- The independent variables have 
low/medium collinearity. 

 - When n  > p  and the independent 
variables have high collinearity, Lasso is 
dominated by ridge regression. 

 

Lasso 

 - Lacks oracle properties  

- Able to enforce sparsity. - Lacks oracle properties - The data are high-dimensional. 

- No limitation on the number of selected 
variables. 

 - Multicollinearity is present. 

Elastic net 

- Able to deal with multicollinearity.   

- The estimated parameters 
  
ˆ
!
!  using the 

adaptive Lasso are stable and have 
superior performance to Lasso. 

- - The data are high-dimensional. Adaptive 
Lasso 

- The estimators have oracle properties.  - The independent variables are highly 
correlated. 

- The estimators have oracle properties.  - The data are high-dimensional. Adaptive 
elastic net 

- The adaptive elastic net has superior 
performance to the elastic net. 

- - The independent variables are highly 
correlated. 

- The estimated parameters 
  
ˆ
!
! using the 

relaxed adaptive Lasso are stable and 
have superior performance to the other 
methods. 

- - The data are high-dimensional. 

- Able to alleviate the slow convergence of 
the Lasso in the case of high-dimensional 
data 

 - The independent variables are highly 
correlated. 

Relaxed 
adaptive 

Lasso 

- The estimators have oracle properties.   

Lasso, Least Absolute Shrinkage and Selection Operator. 
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APPENDIX 

Binary logistic regression can be written as [25]:  

  Yi = ! i +" i ,  i =1,2,3,...,n        (A.1) 

where the dependent variable ( Yi ) represents a binary 
outcome that has a Bernoulli distribution with the 

parameter 
   
! i =

e !xi
!
"

1+ e !xi
!
"

 .  ! i  is the random error that has 

a distribution with zero mean and a variance equal to 

  ! i (1"! i )  [6].   !
xi  is the independent variables for the  ith  

row of  X .  X  is a   n! ( p+1)  data matrix with  p  
independent variables and sample size  n . 

 !
!  

represents an   ( p+1)!1  unknown coefficient vector. 

The transformation of  ! i  is a central of logistic 
regression model that is called the logit function, which 
is as follows: 

  
ln

! i

1"! i

#

$
%%

&

'
((= )0 + xij) j

j=1

p

* ,   i =1,2,3,...,n  and   j =1,2,3,..., p . (A.2) 

The classical method used for coefficient estimation 
in the binary logistic regression is the MLE.  Yi  be 

coded as 0 or 1. The conditional probability that   Yi = 0 , 

given as   !
xi  can be written as    1!" i = P(Yi = 0 |

!
xi ) . On 

the other hand,    ! i = P(Yi =1|
!
xi )  is the conditional 

probability that   Yi =1 , given as   !
xi . For a set of 

observations    ( yi , !
xi ) , if  yi  = 0, then the contribution to 

the likelihood function is   1!" i  as well, as if  yi = 1, then 

the contribution to the likelihood function is  ! i . Hence, 
the contribution to the likelihood function for the set of 
observations    ( yi , !

xi )  can be written as:  

  

P(Yi = yi ) =
! i

yi (1"! i )
1"yi      , yi = 0,1

0                     , otherwise.

#
$
%

&%
    (A.3) 

The likelihood function can be obtained from the 
terms of (A.3) as follows:  

   
L(
!
! ) = " i

yi (1#" i )
1#yi

i=1

n

$  .      (A.4) 

From equation (A.4), we can be expressed by 
taking the log as:  

   

ln L(
!
! )"

#
$
%=  ln & i

yi (1'& i )
1'yi

i=1

n

(
"

#

)
)

$

%

*
*
  

   
 !(
"
! ) =  yi ln(" i )+ (1# yi ) ln(1#" i )$% &'

i=1

n

( .    (A.5)  

Thus, the log-likelihood function of the logit 
transformation of equation (A.2) can be written as:  

   
 !(
"
! ) =  yi ln(" i )+ (1# yi ) ln(1#" i )$% &'

i=1

n

(  

  

=  yi !0 + xij! j
j=1

p

"
#

$
%%

&

'
(() ln 1+exp !0 + xij! j

j=1

p

"
#

$
%%

&

'
((

#

$
%
%

&

'
(
(

*

+
,
,

-

.
/
/i=1

n

" .    (A.6) 

The estimated parameters of equation (A.6) can be 
estimated by using the MLE, which is given below.  

   !
!̂MLE =  argmax

!
!

yi ln(" i )+ (1# yi ) ln(1#" i )$% &'
i=1

n

(
)

*
++

,

-
..     (A.7)  

where 
   !
!̂MLE  is a   ( p+1)!1  vector of the maximum 

likelihood estimator. However, this method has some 
limitations. Therefore, the penalized logistic regression 
is employed as an alternative to the MLE.  

From equation (A.6), we can be written in the form 
of penalized function as follows [26]:  

   
!*(
"
! ) =  "  !(

"
! ) +  P# (

"
! )      (A.8) 

where !  is the tuning parameter and 
   
P! (
!
" )  is the 

penalty function.  
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Regarding the penalized logistic regression 
coefficients, the estimated parameters 

   
ˆ
!
!PLR  is obtained 

by minimizing equation (A.8), which can be determined 
as follows: 

   

ˆ
!
!PLR = argmin

!
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" yi ln(# i )+ (1" yi ) ln(1"# i )$% &'
i=1

n
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.     (A.9) 

For the penalty function, adaptive Lasso [16] is one 
of the techniques employed in data analysis. The 
concept of this technique is a different weight for each 
parameter in the l1-norm penalty. The adaptive Lasso 
penalty is defined as follows:  

   
P!

Alasso(
!
" ) = ! wj " j

j=1

p

# .    (A.10) 

 Hence, the estimation of 
 !
!  using the adaptive 

Lasso penalty is as follows: 

   

ˆ
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!Alasso = argmin
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" yi ln(# i )+ (1" yi ) ln(1"# i )$% &'
i=1
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  (A.11) 

where a vector composed of  w  is 
  
w= (w1,w2 ,w3,...,wp )T  

and 
  
wj = !̂ j

"#
; #  > 0 . !  is the power of the adaptive 

weight.  

Regarding the proposed method, we defined the 
relaxed adaptive Lasso estimator on the set 

  M
! ,w

" 1,2,3,...,p{ } , where p  is the number of nonzero 
variables selected into the ultimate model. The 
procedure of variable selection and shrinkage of

  
ˆ
!
!  are 

controlled by two constraints ( !  and ! ) and the weight 
vector ( w ) to the penalty term. Thus, the relaxed 
adaptive Lasso estimator is defined as follows:  
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!RAlasso = argmin
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where 
  
1

M ! ,w  is an indicator function 

  

1
M ! ,w{ }

k
=

0,  k " M ! ,w

1,  k # M ! ,w

$
%
&

'&
, for all 

  
k ! 1,2,3,..., p{ } ; 

 
! " 0,1#$ %& . 

  
wj = !̂ j

"#
, #  > 0 .  
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