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Abstract: Brain hemorrhage and strokes are serious medical conditions that can have devastating effects on a person's 
overall well-being and are influenced by several factors. We often encounter such scenarios specially in medical field 
where a single variable is associated with several other features. Visualizing such datasets with a higher number of 
features poses a challenge due to their complexity. Additionally, the presence of a strong correlation structure among the 
features makes it hard to determine the impactful variables with the usual statistical procedure. The present paper deals 
with analysing real life wide Modified Rankin Score dataset within a Bayesian framework using a logistic regression 
model by employing Markov chain Monte Carlo simulation. Latterly, multiple covariates in the model are subject to 
testing against zero in order to simplify the model by utilizing a model comparison tool based on Bayes Information 
Criterion. 
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1. INTRODUCTION 

A brain hemorrhage, also known as intracranial 
hemorrhage, refers to bleeding within the brain tissue. 
This particular situation presents substantial health 
hazards and can result in grave outcomes, frequently 
resulting in permanent impairment or possibly even 
death. It may occur due to different factors, such as 
trauma, hypertension, aneurysms, or abnormalities in 
blood vessels. Brain hemorrhages can display various 
symptoms depending on the location and severity of 
the bleeding; however, recognizable signs are usually 
severe headaches, muscle weakness or paralysis, 
impaired speech or comprehension abilities, loss of 
awareness, and occurrences of seizures. In order to 
effectively manage and treat patients with this 
life-threatening condition, it is imperative for medical 
professionals to comprehend the underlying causes, 
symptoms, and treatments. 

Individuals who have experienced a stroke often 
rely on the widely employed Modified Rankin Scale 
(mRS) to evaluate their degree of disability or 
dependence. Generally, there are a total of seven 
categories in the mRS, which range from 0 to 6 and 
represent distinct levels of disability. A lack of any 
symptoms whatsoever is represented by a score of 0, 
whereas a score of 6 signifies death [1]. This mRS may 
vary due to a large number of causes and studying the 
joint impact of these causes might be of interest to the 
medical practitioners.  
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Analysis of such problems which consist numerous 
covariates requires vast demand for data and 
advancement in data collection techniques might be a 
possible solution for this. Such datasets are 
characterized by a multitude of features or variables. 
Researchers frequently seek to establish a connection 
between these characteristics and particular patient 
outcomes. Large feature-rich datasets are hard to 
visualize effectively. When studying low-dimensional 
data, researchers can plot the response variable 
against each explanatory variable to ascertain which 
ones play a crucial role in predicting response, but the 
same becomes tough in the case of high-feature data. 
This is so because the single outcome is affected by 
numerous characteristics and the presence of strong 
correlation among them also increases its complexity. 
Regression models are found to be helpful in handling 
these situations. In problems involving regression with 
numerous predictors, the model is typically presumed 
to possess sparsity, thereby left with a few active 
predictors. When the usual statistical procedure 
struggles with high dimensional setting in procuring 
precise results, there has been a more recent proposal 
of employing Bayesian techniques [2, 3]. By fixing the 
parameter in their assumptions, frequentist methods 
tend to underestimate the variability of the parameter of 
interest. Contrarily, within Bayesian framework, all 
unspecified variables are subject to randomness and 
adhere to particular probability distributions. Needless 
to mention, the natural capability of these methods 
includes automatically quantifying uncertainty of the 
inference by means of the posterior distribution. 

In statistics and data analysis, Bayesian 
methodology holds immense importance in addressing 
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complex issues. It fundamentally applies Bayes 
theorem to update the understanding of a particular 
hypothesis when new information is accessible. The 
improved representation of our updated understanding 
is achieved by incorporating prior information and 
beliefs, thereby obtaining posterior distributions that 
better reflect the problem at hand [4]. Despite this fact, 
the posterior distributions typically do not have 
closed-form solutions and integrating the marginal term 
with respect to the large number of parameters is 
usually tough, which necessitates utilizing 
computational algorithms like Markov chain Monte 
Carlo (MCMC) for approximating the desired 
inferences [5]. This refined approach allows one to 
analyze an extensive array of complicated models 
while systematically accounting for uncertainty and 
variability in our inferences. We record states from the 
Markov chain that allows us to acquire a sample from 
the desired posterior distribution and, thereby, draw the 
sample-based posterior inferences. 

In this article we have considered data on mRS of 
the individuals and the associated factors. For the 
purpose of analysis we have divided mRS of the 
individuals varying from 0-3 as good outcome and 4-6 
as bad outcome thus converting the variable of interest 
into a dichotomous one. A logistic regression model, 
which is considered to be a good choice for data where 
dependent variable is dichotomous, is then used for 
analysis. The analysis of the model is performed 
completely in a Bayesian framework for the reasons 
mentioned above and finally MCMC techniques are 
employed to obtain the results. 

The structure of the paper is mapped out in the 
following manner. The upcoming section supplies the 
necessary modelling formulation for implementing the 
proposed Bayesian approach, assuming a logistic 
regression model. The section also discusses briefly 
the Metropolis algorithm, which is an important and 
flexible MCMC technique. In Section 3, there is an 
exploration of variable selection with an overview of 
Bayes information criterion (BIC), utilized for 
determining significant variables within the model. In 
Section 4, a numerical illustration is given for a real life 
wide mRS dataset. Finally, the last section provides a 
succinct conclusion following the extensive list of the 
references. 

2. BAYESIAN MODEL FORMULATION 

To start with, let us assume a variable ! =
!!, !!, . . . , !!  having !  independent observations 

coming from a Bernoulli family taking binary values 
where 1 denotes the occurrence of the event and 0 
signifying otherwise. Thus, 

  ! ! = !! !! ∝ !!
!! 1 − !! !!!! , !! = 0,1;  0 < !! <

1;  ! = 1,2, . . . , !         (1) 

where !! = !" !! = 1 ;  ! = 1,2, . . . , ! , is the mean of 
Bernoulli distribution. Now, the variable !  is 
associated with several other features that are likely to 
affect it in one or other way. In scenarios like this, the 
logistic regression model seems to be an obvious 
choice where the parameters have a unique 
interpretation in terms of logarithm of odds ratios (see 
[6, 7]) a quantity which is of major interest to medical 
practitioners. By examining the relationship within a 
provided dataset, logistic regression enables the 
classification of data into distinct categories. Not only 
does it gauge the effectiveness of a predictor (based 
on the value of coefficient), but it also signifies its 
direction of association. When working with the logistic 
regression model, there exists a logit link function that 
establishes a connection between !! and explanatory 
features given by 

  !"#
!!

1 − !!
= !! + !!!!! + !!!!!+. . .+!!!!" . 

where β!′  s are the coefficients associated with the 
given features. On solving the above equation for !! 
and putting it in (1), we can write the likelihood function 
as 

  ! = !
!!!"# !!!! !!!

!!! !!"

!!
!
!!!

!"# !!!! !!!
!!! !!"

!!!"# !!!! !!!
!!! !!"

!!!!
  (2) 

The next step involves specifying priors for the 
parameters of the regression model. In the case of 
non-availability of enough a priori information, one can 
consider non-informative or weakly informative priors 
(see, for example, [8, 9]). The main advantage of 
non-informative prior lies with the fact that the 
inferences are data dependent but, simultaneously, 
one shows confidence in Bayesian logic. This paper 
considers normal distributions with large variances as 
the prior distributions for the regression parameters. 
That is 

  !! ∼ ! !! ,!!! ,         (3) 

where !! and !! are the hyperparameters associated 
with the prior of !! , ! = 0,1, . . . , !. Now combining (2) 
and (3) using Bayes’ theorem, one can get the joint 
posterior distribution up to proportionality given as 

! ! !, !, !,! ∝ 

1
1 + !"# −!! − !!!

!!! !!"

!! !"# −!! − !!!
!!! !!"

1 + !"# −!! − !!!
!!! !!"

!!!!!

!!!

 

!"# − !!!!!
!

!!!
!!          (4) 
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In situations where numerous parameters are 
involved, the posterior becomes challenging to handle 
analytically and thus making use of MCMC technique 
becomes an important alternative. In this paper, the 
Metropolis algorithm is employed for obtaining samples 
from the posterior distribution specified up to 
proportionality in (4). A brief description of the same is 
provided below. With the given posterior, say, ! ! ! , 
one can build a Markov chain possessing an 
equilibrium distribution ! ! ! . Given a symmetric 
Markov kernel ! !, !! = ! !!, ! , suppose !  is the 
current realized value of the chain in the state !ℓ, then 
one can propose !!  generated from ! !, !!  as the 
next realized value. The proposed value is, however, 
accepted with the probability 

! !, !! = !"#
! !! !
! ! !

, 1 . 

Otherwise, ! itself is retained as the next realized 
value. For the purpose of implementation, we have 
considered a multivariate normal kernel with an 
appropriately chosen mean and standard deviation !! 
times !, where !! is a scaling constant often taken 
between 0.5 and 1.0 in order to keep the acceptance 
probability reasonably high. One may refer, for 
example, Upadhyay et al., 2001 [10] for further details 
on the algorithm. The algorithm for the Metropolis chain 
is given below. 

1. Choose a possible realization !! randomly from 
the symmetric proposal density ! !! ! . 

2. Determine the acceptance probability for !! by 

! !, !! = !"#
! !! !
! ! !

, 1  

3. !! will be accepted with probability ! !,!!  if 

• ! !! !  ≥ ! ! !  

• In case, ! !! ! < ! ! ! , we randomly 
generate a number from Uniform 0,1  and 
accept !! if the randomly generated quantity 
is less than ! !! !

! ! !
. 

4. If the proposed value is accepted, then 
!!!! = !! otherwise !!!! = ! itself where !!!! 
is the next realized state after !!. 

3. VARIABLE SELECTION AND MODEL 
COMPARISON  

The occurrence of a vast number of covariates 
influencing the response variable often arises in 
regression analysis, resulting in a bigger model 
dimension that becomes too cumbersome to manage. 

Occasionally, circumstances arise wherein certain 
covariates have a diminishing influence on the 
response variable, making it possible to eliminate them 
by testing their corresponding regression coefficients 
against zero. Dropping such covariates effectively 
decreases the dimensionality of the problem, leading to 
a simplified model. The procedure is known as variable 
selection. The variable selection, of course, simplifies a 
model but a further confirmatory assessment can be 
done by comparing the simplified model with the full 
model, possibly using a tool for model comparison. 
Obviously, the model comparison considers comparing 
a model with ! covariates with a model having less 
than ! covariates. If the result of model comparison 
supports a model having less than ! covariates, one 
can comfortably drop the covariates from the full model 
and retain a model with less than !  covariates for 
further inferences. 

There are number of tools available for model 
comparison such as Akaike information criterion (AIC), 
Bayesian information criterion (BIC) and Deviance 
information criterion (DIC) etc. These tools mostly 
consider a trade-off between model complexity and its 
fit to the data and, accordingly, recommend a model. 
AIC is a frequentist criterion whereas both BIC and DIC 
use Bayesian approach for the same. As we are 
working in the Bayesian paradigm, this paper considers 
BIC initially proposed by Schwarz 1978 [11] for the 
purpose of model comparison. One can, of course, 
consider DIC as well but it is avoided here to make the 
approach simpler. The BIC can be defined as 

!"# = −2 ∗ log!! + !log! 

where !  denotes the number of parameters in the 
entertained model and !! is the maximized likelihood 
function evaluated at maximum likelihood (ML) 
estimates of the parameters, although the posterior 
modes are also recommended in the literature, 
especially when the priors are weak (see [12]). The two 
terms in the definition of BIC have their own 
significance in the sense that the first term corresponds 
to model fit whereas the second compensates for the 
model complexity, resulting in encouraging parsimony 
principle. The BIC criterion allows a model to be 
considered as the most appropriate that provides the 
least BIC. 

4. NUMERICAL ILLUSTRATION 

The present section provides a numerical illustration 
of the model proposed in Section 2 based on a real 
dataset pertaining to the mRS score collected from 
individual patients at Sir Sunderlal Hospital, Banaras 
Hindu University. The dataset consists of 285 
observations of a binary variable mRS score where a 
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value 0 indicates a good mRS score and a value 1 
indicates a poor mRS score. It may be noted that a 
poor mRS score is indicative of going against the 
health of patients. Besides, the data set consists of 12 
other explanatory variables that may affect the main 
variable mRS score in some or other way. Table 1 
provides the names of these explanatory variables for a 
ready reference. It may be noted that several other 
explanatory variables could have also been observed, 
but the paper considers only those which are of prime 
importance according to the experts. 

Dev et al., 2022a and Dev et al., 2022b [13, 14] also 
considered this dataset and analyzed the same using 
frequentist approach. They, however, considered 
observing the impact of a single variable named 
antibiotic on happening of the event of types of stroke 
and relied on some simple tools without focussing 
much on the regression setup. The objective here is 
different as well as more elaborative in the sense that 
the paper provides a complete Bayes analysis 
considering a number of explanatory variables in a 
logistic regression framework with the ultimate aim of 
seeing if the explanatory variables have a major role in 
affecting the mRS score. 

Next, the Bayesian model formulation given in 
Section 2 can be applied on the present dataset 
presuming that the subscript ! varies from 1 to 285 
and the subscript !  varies from 1  to 12  in the 
posterior (4) corresponding to considered logistic 
regression model. As discussed, the normal prior in 
each case was considered with mean 0  and a 
presumably large variance 30 . The Metropolis 
algorithm as discussed in Section 2 was then applied 
using multivariate normal kernel with ML estimates of 
the parameters and the corresponding Hessian-based 
approximation as the initial values. The scaling 

constant !!  was assessed to be 0.6 to get a 
reasonably good acceptance probability. A single long 
run of the chain was progressed and the convergence 
based on ergodic averages was monitored through R 
graphics. It was found at about 40! iterations before 
the final sample of size 1000  was chosen at a 
constant gap of 10 to make serial correlation among 
the generating outcomes reasonably small. Some of 
the posterior based inferences based on these finally 
generated samples are shown in Table 2. These 
inferences are shown in the form of estimated posterior 
mean, standard deviation and the highest posterior 
density interval with coverage probability 0.95 (0.95 
HI) in each case. 

It can be seen from Table 2 that the positive values 
of estimated regression coefficients indicate the 
increase in mRS score, a finding that might not be 
appropriate for the overall health of patients. As such, 
the diagnosed heart-attack, diabetes and atrial 
fibrillation at the time of admission, individual’s family 
having history of stroke, location of stroke, midline shift 
in brain, regular consumption of alcohol and creatinine 
levels are significantly affecting mRS score. 

Additionally, it can also be observed that some of 
the covariates such as age, cholesterol, TLC and GCS 
have very narrow 0.95 HI covering a zero and posing 
negligible impact (values of the associated regression 
coefficients are very close to zero) on the outcome 
variable. If one considers the associated coefficients as 
zero, the model will be considerably simplified and the 
resulting inferences are likely to be easier. To examine 
the issue of whether the reduced model is really 
advantageous, it is proposed to compare the full model 
with the reduced model using BIC. The results are 
shown in Table 3. It can be seen that the BIC value for 
the reduced model is smaller than the corresponding 

Table 1: Names of the Associated Explanatory Variables 

Name of the explanatory variable Interpretation 

Age Containing information about Age of the individuals 

 Heartattack-DAA Individuals diagnosed with Heart-attack at the time of admission 

Diabetes-DAA Subjects that are diagnosed with Diabetes at the time of admission 

 Cholesterol Cholesterol level 

 Atrialfibrillation-DAA Individuals diagnosed with Atrial fibrillation at the time of admission 

 Family stroke history Information about incidence of stroke to individual’s family members 

 Location Stroke occurred in left or right part of the brain 

 Midline shift Information about the midline shift occurred in brain 

 Alcohol Alcohol consumption 

 TLC Total Leukocyte count 

 Creatinine Creatinine level of individuals 

 GCS Glasgow Coma Scale 
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value for the full model and, therefore, one can propose 
the reduced model for developing the desired 
inferences. The fact is further strengthened by the fact 
that the explanatory variables age, cholesterol, TLC 
and GCS have negligible impact on the outcome 
variable. 

Table 3: BIC Values for the Full and Simplified Model 

Model BIC value 

Full Model 335.82 

Reduced Model (excluding age, 
cholesterol, TLC and GCS) 302.62 

 

5. CONCLUSION 

In medical studies, a number of explanatory 
variables are often observed. A few among these have 
no or almost negligible impact on the outcome variable. 
The present paper analyses one such dataset on mRS 
scores of neurological patients using a logistic 
regression model. The complete Bayes analysis is 
provided using the Metropolis algorithm and the 
analysis shows that the entire development is not only 
routine but also capable of providing almost every 
inferential aspect that one desires. The results exhibit 
that some of the variables have almost negligible effect 
on the mRS score and, accordingly, a reduced model 
can be proposed, leaving these explanatory variables. 
Finally, the results based on BIC values suggest that 
the reduced model can undoubtedly be used for the 
desired inferential developments. 
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