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Abstract: Predictive models can experience instabilities because of the combination of high-dimensional sparse data
and multicollinearity problems. The adaptive Least Absolute Shrinkage and Selection Operator (adaptive Lasso) and
adaptive elastic net were developed using the adaptive weight on penalty term. These adaptive weights are related to
the power order of the estimators. Therefore, we concentrate on the power of adaptive weight on these penalty
functions. This study purposed to compare the performances of the power of the adaptive Lasso and adaptive elastic net
methods under high-dimensional sparse data with multicollinearity. Moreover, we compared the performances of the
ridge, Lasso, elastic net, adaptive Lasso, and adaptive elastic net in terms of the mean of the predicted mean squared
error (MPMSE) for the simulation study and the classification accuracy for a real-data application. The results of the
simulation and the real-data application showed that the square root of the adaptive elastic net performed best on high-

dimensional sparse data with multicollinearity.
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INTRODUCTION

Lipomatous tumors are a group of the most
common soft-tissue tumors, which can be benign
lipomas or low/high-grade liposarcomas [1]. Lipomas
are benign adipocytic tumors (accounting for
approximately one-third of soft tissue tumors), which
can be treated conservatively with observation only.
Surgical excision is unnecessary except possibly for a
symptomatic patient. Atypical lipomatous tumors/well-
differentiated  liposarcomas  (ALTs/WDLSs) are
adipocytic malignancies, accounting for 40-45% of all
liposarcomas [2]. They recur locally or dedifferentiate to
high-grade sarcoma, but rarely metastasize. Regarding
a diagnostic system before surgery, although magnetic
resonance imaging (MRI) is the most useful diagnostic
tool for lipomatous soft-tissue tumors, identifying
intramuscular (IM) lipomas that are deep-seated, larger
than 5 cm, and symptomatic can be challenging
because of their resemblance to ALTs/WDLSs [2]. With
tumors representing a diagnostic dilemma from MRI
images alone, biopsy is regarded as the reference
standard. However, biopsy sampling errors can occur
[3]. To alleviate diagnostic uncertainty following MRI,
creating a diagnostic system before surgery is
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beneficial for treatment planning help determine the

urgency of surgery, and prevents unnecessary
treatment.
Currently, developments in  machine-learning

algorithms (ML) using MRI-based radiomic features
have revolutionized health sciences in diagnostics. Due
to a large number of radiomic features, we desire
predictive models that can deliver precise outcomes to
help decision-making. Logistic regression models are
widely applied in data analysis [4, 5] and machine-
learning communities [6, 7]. Regarding binary logistic
regression coefficients, maximum likelihood estimation
(MLE) is a widely used approach to estimate
coefficients in the model [8-10]. However, the hybrid of
the high-dimensional data and multicollinearity can lead
to model over-fitting [11, 12] and can inflate the
variance of the maximum likelihood estimators in the
model [8, 9]. Consequently, the MLE used for
coefficient estimation in logistic regression is unstable
for building a classification model [13]. To remedy this
problem, the penalized approach can be employed in
the logistic regression model [14, 15]. Presently, the
elastic net is one of the popular methods for penalty
function [16]. Previous studies focused on developing
an adaptive weight for the penalty term [17, 18].
However, no studies have compared the performances
of penalized logistic regression, focusing on the power
of adaptive weight on the adaptive elastic net under
high-dimensional sparse data with multicollinearity.
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Therefore, this study focused on the power of
adaptive weight on the adaptive Lasso and adaptive
elastic net methods. The aim was to compare the
performance of the power of adaptive weight on the
penalized methods under high-dimensional sparse data
with multicollinearity in a simulation study. Along with
this, the classification performance of these
approaches was compared on a lipomatous tumor data
application.

MATERIALS AND METHODS
Logistic Regression

The logistic regression approach is widely used in
medical diagnostic classifications. With the binary

outcome variable, a dependent variable Y, has a
Bernoulli distribution with the parameter
T, =e'§"§/(l+e'f’§) where x, =(l,x, b

1277220

xip) represents a
vector of independent variables for the i” observation,
i=1,23,.,n and a vector composed of logistic
regression coefficients is g=(g,, B, B,....8,)" when p

is the number of independent variables and » is the
sample size. The binary logistic regression model can
be written as:

Y=m+¢,i=123,.,n (1)

i

where ¢, is the random error, which is assumed to

follow a distribution with a mean of zero and variance
of m(1-m,)).

The transformation of x, is a central of the model

(also called the logit function), which can be
determined as follows:

T L .
ln(l—ni) - xB - p’0+;xijﬁj , i=123,.,n and
J=L23,..p. 2)

The log-likelihood function for the set of
observations (y[,)gi) can be written as:

n

«p) = [y In(x)+(1-y) (-]

i=1

yi(ﬁo.'. N xijﬁj]—ln(Hexp[[g’o+ixl]/3jJ]}. (3)

The estimated parameter of equation (3) can be
determined using the maximum likelihood estimation
(MLE), which is as follows:

n

i=1

/NJ’AMLE = arg mi;lX Z[yi ln(n[_) +(1- yi) In(1- 7, )] (4)

where @ is a (p+1)x1 vector of the maximum

MLE

likelihood estimators. However, this approach has
some limitations about high-dimensional data and
multicollinearity. Consequently, the penalized approach
is applied as an alternative to the MLE.

From equation (3), we can be written in a form of
the penalized approach as follows:

C(B) = - UB) + P(B) (5)

where P(B) is the penalty function and A is the tuning
parameter.

Penalized Logistic Regression

The aim of penalized logistic regression is to
determine logistic regression coefficients when the data
are high correlated and high dimensional. Penalized
logistic regression coefficient is defined as follows:

n

@APLR =arg n}?in [_ {E

v, In(m,)+
(1-y)In(l- )

;A=0 (6)

}+a@>

i=1

where B, =(B,, B, B,...8,)" - F(P) and A are a
penalty term and the tuning parameter, respectively. In
the case of 1=0, B Regrading selecting 4,

PLR ~ /~5MLE :
cross-validation is commonly used to evaluate the
optimal value of this parameter. Currently, the elastic
net and adaptive elastic net are popular approaches for
cancer classification [19, 20], which are described
below.

Elastic Net

Elastic net was developed by Zou and Hastie [16],
which combines the properties of Lasso and ridge

regression. This method comprises the parts of the /, -
norm and /, -norm penalties, which is defined in two

steps. First, the naive elastic net estimators are
determined as follows:

y,ln(ni)+ » . ,
(l—y,)ln(l_ni)}}+k,;ﬁ/+)L2§ﬂ/_] (7)

@Nelastic =arg m/_?,ln [_ {E

i=1

where A,A4,20; A=A +4,; and a=A4,/(4 +4,) wWhen
ae[o,l).

Then, the estimation of f using the elastic net

penalty is determined as
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['?)elasticnet = (1 + )\'2 )@Nelastic . (8)

Regarding shrinkage of /~3’ parameters A and A,

A

control the shrinkage of B

using cross-validation
strategy [21].

Adaptive Elastic Net

The adaptive elastic net method is a hybrid of
adaptive Lasso and ridge regression [18].
Consequently, it enjoys oracle properties and has out-
performance to the elastic net method. The adaptive
elastic net penalty is as follows:

Vi 4

PR URIORAENY ©)
Jj=1 Jj=1
N -y

where @;=‘(§eza.\mm)j ;7v>0. y is the power of

adaptive weight.

Hence, the estimation of /3’ using adaptive elastic
net can be determined as follows:

n
B e = BrgMin [-{E

i=1

v, In(,)+
(1-3)In(1-,)

}+ gﬁj“""(/g’)] . (10)

The tuning parameters (A, and A, ) control the

shrinkage of [§’ by using Bayesian information criterion
cross-validation approach.

Monte Carlo Simulation

The key factors resulting the accuracy of a
predictive/classification model are the number of
predictors ( p), the sample of size (7n), and high

correlation among predictors. In this simulation study,
we considered two scenarios:

1. High-dimensional sparse data [22]. Given p >

n . Under the sparsity assumption on the true

coefficients (f), we defined that the number of

significant predictors equaled ¢, and ¢ < p.
i2277i32 0 g

T
= = q
X = ()SM,)le) when x = (x”,x. X, X, ) eER

and - TeRw. Therefore,

Xip (xf(q+1)’x,-(q+z)»x,v(m)w’x,p)
T

)~(=(%‘A”~CB) eER™ is the matrix of all

independent variables when  -(y . ) er™

and x, = (x X )T eRr".

~iB’""">~nB

2. All independent variables are correlated by using
the Toeplitz correlation structure, which is as
following [23].

1 p o p P
p 1 p p P
E__pz p 1 p - p7 (11
k ps pz 0 1 pk_4
pA'—I pk—Z pk—3 pk—A 1 ot

where number of the independent variables (k)
represents a positive integerand 0<=p=<1.

The Monte Carlo simulations were constructed
using 50 and 100 independent variables. The sample
size equaled 30 and 40. We generated the
independent variables from the multivariate normal
distribution with a mean of zero and covariance

S(X~N(0,))). The dependent variables were
generated from the Bernoulli distribution with
parameter x.. The degree of correlation ( p ) was set to

0.75, 0.85, and 0.95. The number of significant
predictors (¢ ) equaled 15. The logistic regression

coefficients were set the constant values as f.

Subsequently, we split the data into two subsets (80%
of learning dataset, and 20% of testing dataset). The
simulation study compared the performances of the
ridge, Lasso, elastic net, adaptive Lasso, and adaptive
elastic net using the predicted mean square errors
(PMSE). The estimated PMSE was calculated as
following:

S (v -0)
PMSE =E—

i=1

(12)

n

th

where y, and J, were the /" actual and predicted

values of the dependent variables, respectively. We
used a 10-fold cross-validation strategy to estimate the
optimal value of the tuning parameter (A ) [14, 16, 21].
To achieve a stationary result, the experiment was
repeated 1000 times. Hence, the MPMSE was
determined from the average of 1000 estimates of
PMSE;.

1000
1

— N PMSE .. (13)
1000/.21 J

MPMSE =

The penalized method providing the lowest MPMSE
was regarded as the best option. Figure 1 represents
the flowchart of the simulation procedure for this study.
Moreover, in Figure 2 shows the workflow diagram of
the machine-learning procedure for the real-data
application. The classification accuracy of the methods
was evaluated as following:
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TP+TN

Accuracy (%) =
TP+ FP+ FN + TN

%100 . (14)

Where the true positive (TP) shows that the
prediction is correct. A true negative (TN) indicates that
the prediction is correct. False positive (FP) shows that
the prediction is wrong (type | error). A false negative
(FN) presents that the prediction is wrong (type Il
error).

Software

All simulations and analyses were performed using
R wversion 4.3.2 (R Foundation for Statistical
Computing, Vienna, Austria). We used the package
‘gimnet’ to fit models using all above penalized
approaches. Regarding support vector machine (SVM),
the package ‘e1071’ was used to build the models.

I3

Generate independent and
dependendent variables
under vary situations

{

Split the data set into
two subsets (80 : 20)

v
Learning data set Testing data set
(80%) (20%)

:I 10-fold cross-validation

Training set

Variable selection
using ridge, Lasso, elastic net, adaptive Lasso, and
adaptive elastic net

]

Build model
using penalized logistic regression
over select variables

Is 10
replication ?
(Validate)

Validation set

Yes

The best model
of each method

l

Compute the PMSE value

of each method

Is 1000 No

replication ?

Compute the average PMSE value

of each method

Figure 1: Flowchart of the simulation procedure.
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Split the data set into

two subsets
(80 : 20)
Learning data set Testing data set
(80%) (20%)

10-fold cross-validation
Training set Validation set

Variable selection
using
ridge, Lasso, elastic net, adaptive Lasso, and
adaptive elastic net

[

Build model
using
penalized logistic regression and
support vector machine over select variables

'

Validate <

The best model of each method

Evaluation

Figure 2: Workflow diagram of the machine-learning procedure.

RESULTS AND DISCUSSION
Simulation Study

Table 1 presents the MPMSE values for the
penalized methods for different p when p = 50 and

100, and n = 30 and 40. We found the MPMSE values
of the all methods increased when p was increased

while holding p and n fixed. For an increase in n,
the MPMSE values of all methods decreased.

With high-dimensional sparse data (p =50, n =
30, and n =40, and for different p ), we found that the

performance of the adaptive Lasso and adaptive elastic
net methods depended on the power of the adaptive
weight (y). The MPMSE values of the adaptive elastic

net with y= 0.5 were less than those for the other
methods.

In Table 2, when p =100, n = 30 and 40, and for
different p, we found that the smallest MPMSE values

(Accuracy)

were also obtained from the adaptive elastic net
method with ¥ =0.5.

From the simulated results in Tables 1 and 2, it can
be seen that the key factors influencing the MPMSE
values were the power of adaptive weight on penalty
term, the correlated independent variables (or
correlation coefficient level), and the sample size. An
increase in the correlation coefficient level lends to an
increase in the MPMSE values for all methods when
holding p and n fixed. The worst case was obtained

when the correlation coefficient level was very high
(p = 0.95). Additionally, an increase in the sample size

affects a decrease in the MPMSE values for all
methods, while holding p and p fixed.

Real-Data Applications

In this section, we compared the performances of
the penalized methods on a real-data set, which is
given below.
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Table 1: Mean of the Predicted Mean Square Errors (MPMSE) Values for Different Penalized Methods When p =50

Adaptive Lasso Adaptive elastic net
n P Ridge Lasso Elastic net
y=05 y=1 y=2 y=05 y=1 y=2
30 | 0.75 0.227 0.190 0.185 0.184 0.187 0.192 0.183* 0.187 0.191
0.85 0.228 0.193 0.191 0.190 0.192 0.196 0.189* 0.193 0.196
0.95 0.230 0.195 0.198 0.197 0.199 0.198 0.194* 0.195 0.197
40 | 0.75 0.224 0.187 0.182 0.183 0.183 0.191 0.180* 0.182 0.185
0.85 0.227 0.191 0.190 0.188 0.191 0.194 0.185* 0.188 0.192
0.95 0.229 0.193 0.197 0.195 0.199 0.197 0.193* 0.193 0.196

Lasso, Least Absolute Shrinkage and Selection Operator; * The method providing the smallest MPMSE.

Table 2: Mean of the Predicted Mean Square Errors (MPMSE) Values for Different Penalized Methods When p =100

n P Ridge Lasso Adaptive Lasso Elastic net Adaptive elastic net
y=05 y=1 y=2 y=05 y=1 y=2
30 | 0.75 0.221 0.187 0.184 0.182 0.185 0.192 0.180* 0.187 0.191
0.85 0.222 0.190 0.189 0.188 0.192 0.193 0.187* 0.193 0.196
0.95 0.225 0.196 0.196 0.195 0.199 0.198 0.193* 0.195 0.197
40 | 0.75 0.218 0.184 0.183 0.181 0.184 0.187 0.180* 0.182 0.185
0.85 0.220 0.187 0.185 0.184 0.191 0.189 0.182* 0.188 0.192
0.95 0.223 0.194 0.195 0.194 0.198 0.197 0.193* 0.193 0.196

Lasso, Least Absolute Shrinkage and Selection Operator; * The method providing the smallest MPMSE.

Table 3: Percentage Accuracy of Classification of the Machine-Learning Algorithms for Discriminating between
Intramuscular Lipomas and Atypical Lipomatous Tumors/Well Differentiated Liposarcomas

Variable selection method Ridge Lasso Adaptive Lasso Elastic net Adaptive elastic net
y=0.5 y=1 y=2 y=0.5 y=1 y=2
Classifier with penalized logistic 82.0 87.4 90.0 91.2 88.0 86.5 93.0* 91.6 90.1
regression
Classifier with support vector 87.0 89.0 90.8 92.0 89.5 87.0 92.5* 91.5 89.9
machine

Lasso, Least Absolute Shrinkage and Selection Operator; * The machine-learning algorithms providing the highest accuracy.

Lipomatous soft-tissue tumor data set was obtained
from 40 patients (20 IM lipomas and 20 ALTs/WDLSs),
which had been treated at our institution between 2010
and 2020. The patients were diagnosed using their final
pathological findings, and underwent MRI scans and
total excision surgery. For our case study, the binary
outcome of interest was an IM lipoma (benign tumor) or
an ALT/WDLS (malignant tumor). The predictors of
interest were 50 radiomic features as continuous
variables; these features were extracted from
preoperative T1-weighted MRI (Appendix A). We can
see that the number of predictors/independent
variables is large compared with the number of

observations. It is clear that the high-dimensional
problem was presented in this data set. Regarding
Figure 3, the correlation matrix presents different
shades and the Pearson correlation coefficient values.
The light shade (or the Pearson correlation coefficient
value is close to zero) represents that the predictors
have a low correlation, whereas the dark shade (or the
Pearson correlation coefficient value is close to 1 or -1)
presents a high correlation among predictors.
Moreover, the variance inflation factor (or VIF) values
for almost predictors were over 10, which indicates a
problematic amount of collinearity. It is obvious that the
multicollinearity problem was to occur in this data set.



36 International Journal of Statistics in Medical Research, 2024, Vol. 13

Sudjai et al.

1
1 0%

1 098058

1 094095092
1045051045 05

N 01 011027 028 027
4063026011 0.24 0.49 026

4 004096.00707) ©F 085050

1 808 0,07 015 024 048 0.37 043 037

ne 41 08 O -005000011 DA 06T 072 086
50 Pearson 4104505205 01 062006 03 03203503
20 . £ 1 005 055 037 059 016 0.12.0.15 062 0.58 062 050
correlation coefficient 0 003045 02 038 004000139054 022 038 02
' 4 034 08 0 1 006 051 0040020 11 017 O6F 461 085 081
e 4056080 088 024 0.73 045 078 007 01 021 046 055 004 038
20 <10 05 00 05 10 4073079 0.78 078 0.01 061 025 0.45 0.07 001 02 DE7 0.6S 086 085
“ 1 605 063 087 043 BT 007 085 030 057 6 04 004 000077 AT 076 073
Q3 1 085680 011 0,10 044 083 -0 15047 0.11 0.3 002005008 B8 083 085 083
“r 4 068 045 061 053 047 050 0066 085031 0.15 0.26 004-031-0.10 04 028 023020
1 072 DA5 052 068 0.9 0.7 0.76 077 02 033 02 0.28.011.06/0830.33 022 027 022
" 1 0 062 078 077 074 055 045 066 078015032 0.15 028 0.4 011006 051 052 052 052
41078 043 037 08 O6T 064 056 083 05T 73 02 042 020 041 AFE 056 01 053 464 084 084
-] £ 077 077 046 052 053 0.53 0.53 04 046 045 0062048025 006 0.19 66 004000 041 04 029 04
L] 4 088 075075 042 043 052 049 05 031 038 042 0570220 08 9163003 0.13 0.37 0.9 035 0.37
1 683 008 08 077 041 047 052 051 053 037 03 0.98 855015023 0.04 016 888 004 0.18 044 0.43 042 048
18 1 1 OBS008 08 077 041 047 052051 053 037 030038 055015023004 010 068 004 016 044 063 042 044
0s 1 057 DT O8T 009 00 0.78 048 0535 081 042 067 048 034 023 OB 013033014027 057001013 052 051 031 052
1 095 09 09 082004074 082 0.53 05 060084 066 05 056 06 063017027 007 0.21 065009 0.11 049 0.63 048 05

o 1 008 07 001 091 804 08 0.72 043 058 082 0E7 045 065 053 058 08 671-022020 0.1 024 0.43.054 003 04T 0.45 045 046
w2 W012008001 01 01 01 01017035 619 016-006-014878-0185-019-015 01 03 -026.013-072-0.04-034 5385570 48048046
a8 #0508 020 059009 048 871 GF 030048632 034 0.1 00700 0 005068 021 029009000011 0.68-0.150270.14-0.22-021.02
u3 1021023 04 043.048:051.051 0.85.0.86.061 044 011007 03 0.36.041.025.020.024.0.35.031.0.31.0.14 025062 0.37.0.39 047 .54 051053
1 1 088 007 07 02302803303 02 028028.048-0190.00 004 0240.39.038.025.028-023-0.28.034.033.0.15027 0.35.037 041 -05 061.057.058
4039 057038006 022024037 05 05 D4E043-038008034 021 025021 015022 019023 009 -019004 006 005 HE-031 04 £.03-007-002-008

e 043 0.3 0.20 0.26 020 0.18 0.13 0.08 0.03 0.03 .07 0.11 0.06 0.20 067 0.31 0.32 029 0.09 03 026 03 '1.‘70250‘20llﬁﬂl{l"ﬂ#ﬂ.ﬂ)'ﬂ!?ﬂ}l‘ﬂ&?
05103503 0.3 047027 01 01 001 0 0 009 002.0940.15037 022028 ¢ 202049000 02 001 DOSOETOTIOT 0.12.023.0.6.048 04 04209

u“s 40 019 0.05 024 002 0.01-0060065 022021015 01 01 011013 01 028023 033032025053 008 0000.15 0.1 D004 007 0 O25045013 021 017 0.94 0.97
0088 022 000 020 011 0,17-007 0,11 0.14 012 008 002 062 003 004-010019 03 033025018 024 001 © 007 0.3 048-003-009-005-031-048 067 011 007 005 067

1 OF 088025018 O 029001041 050045033 037 038038 04 041 004 DA 032 047 027 018 0.19-003-002008 012 0880 11014013003 046008 0 -008-006-008

“9 4 047 050 051 041 0.3 047 0.3 0.3 007 023 0.06 0.02 -0.06.0.92.0.120.05-0.08.029 0.15 0.3 0.41 026 0.18 0.18 0.07 0.07 0.16 0.08 HL5E.0.15.0.15 0. 130467083 0.15.0.05 0.07-0.07 0.06

ua 4 O.77 060 0S8 051 0,49 0.32 033 0,42 0,34 0.12 044 024 0,19 0.09 007 0.7 0.11 011023023 028 0.4 025 0.11 012 .1 -0.00 0,02 .047089.025.0.24.0 240 28:0.56.0.17-0.14-0.17.-0.47-0.1&

10.024.026-027.02702 0 -011-004027 0.5 003 013 D50 08 aaasasanananqiuwass.
41087 02 021-024-024-029-001-014-007 03 035003 0,13 D404.55-058-055 .

068 0.72 005 0.02 .026.000.0.150.14 0.95 0,54 0,32 055034 ©

56 08 028 8088 0 02 048023042 0.2 -006.0.15 04

55096038064 0 12 048026943022 011 0.1 BIW

ou«u:wu,&nopau.

028033 .03 9.43.001 03 006023063024 .0.23.0.55.0.59.0 56 0.62

ns 1 083082072000 0 004012019028 03 033 04 0.9 024 031 H37042-045.030-030-0.35038 05 -04 -007.005-043.048-0590 35.0.37-0.33.-0,35.0.23-0.38.0.10.0.34-0.28.0 22040 D62 07 085074

100006 087 078005 0 -002-0.13-02 031 032 03 048 044 025 037 030045

7-0.38.058-043-5.0-0 05-0 48 OES BES.

1008 025 029 0.25 078 061 0.56.0.18.0.02.039.011.0.16-009 0 03

4 90 BET 088 041 0.18 0.13 053 0B 045 -038-019-0.38-022-0.34-0.08-0 08 0,02 2.

PEEL P PP ER CEPIL PP PP LR ELI P VORI P PP ORI L O ¢

saou.au.n«mv.osu-nmws:'-u,{amg

=
IH0178.0.6210/60 0,36 0.52.0.46 :04 0450 12.0.19.023.0.36 038005 0.13 0.02 081 002.0.16.0.2.032 -03 0.}

o
4078.0680.72.0.56 0.5 049-048.051-0 17.024.026 04 0310430

.0540.83.00¢.021 04 04103904

0.0 0.44-0.15 /8584084 0 88 5680 630 63040 583043 0183052 05 £55.026.031 -03 04 0350250050170 096 0.13D48-041.041-038

IR ]
TR E O

Figure 3: Correlation matrix of fifty radiomic features in forty patients.

To remedy the two above problems, we applied the
penalized approach (i.e., ridge, Lasso, elastic net,
adaptive Lasso, and adaptive elastic net) on this case
study.

In Table 3, we appraised the classification
performances of the penalized methods in
distinguishing between IM lipomas and ALTs/WDLSs.
We can see that the highest accuracy values were
obtained from the adaptive elastic net method with

-0.5
w. = , while the lowest accuracy values were

~
obtained from the ridge method.

BAelasl[c
J

From the results of the real-data applications in
Table 3, it is apparent that the adaptive elastic net

showed a Dbetter

method  with [clasic

w. =
~J

performance than the other methods for classification
on the high-dimensional sparse data with
multicollinearity. This finding corresponds to the results
of the simulation study.

CONCLUSION

We propose the use of the adaptive elastic net
method with y= 0.5 for classification on high-
dimensional data with multicollinearity. Both the
simulation study and the real-data application, it is clear
that the classification performance of the adaptive
elastic net logistic regression model depends on the
power of adaptive weight on this penalty term. In
practice, if the penalty technique is appropriate, it
results the classification model that has good
performance.
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The radiomic features of interest in our case study comprised 7 first-order features, 17 gray-level co-occurrence
matrix (GLCM), 13 gray-level run length matrix (GLRLM), 10 gray-level size zone matrix (GLSZM), and 3 shape-
based 3D (Table A1). The first-order features were the simplest statistical descriptors that explained the distribution
of their gray-level values in MRI images. Texture-based features (i.e., GLCM, GLRLM, and GLSZM) describe the
spatial arrangement of gray-level pixels in a neighborhood on the images (e.g., homogeneity/heterogeneity/
fineness/coarseness of region of interest (ROI) on the images). Additionally, shape-based 3D features explain the

geometric properties of ROI.

The details of formula and definition for these features were explained according to PyRadiomics’
documentation. (https://pyradiomics.readthedocs.io/en/latest/features.html, accessed on 9 March 2024) (Table A2).

Table A1: List of Fifty Radiomic Features

First-order features

Texture-based features

GLCM

GLRLM

GLSZM

Shape-based features

firstorder_10Percentile
(1)

glem_Autocorrelation (f8)

glrlm_GrayLevelVariance (f25)

glszm_GrayLevelNonUniformity (f38)

shape_MajorAxisLength (f48)

firstorder_90Percentile
(f2)

glem_ClusterTendency (f9)

glrlm_HighGrayLevelRunEmphasis (f26)

glszm_GrayLevelVariance (f39)

shape_SurfaceArea (f49)

firstorder_Energy (f3)

glcm_Contrast (f10)

glrlm_LongRunEmphasis (f27)

glszm_HighGrayLevelZoneEmphasis (f40)

shape_SurfaceVolumeRatio
(f50)

firstorder_Entropy (f4)

glcm_Correlation (f11)

glrlm_LongRunHighGrayLevelEmphasis
(f28)

glszm_LargeAreaEmphasis (f41)

firstorder_Minimum (f5)

glem_DifferenceAverage
(f12)

glrlm_LongRunLowGrayLevelEmphasis (f29)

glszm_LargeAreaHighGrayLevelEmphasis
(f42)

firstorder_Maximum (f6)

glecm_DifferenceEntropy
(f13)

glrlm_LowGrayLevelRunEmphasis (f30)

glszm_LargeArealLowGrayLevelEmphasis
(f43)

firstorder_Skewness
(f7)

glem_DifferenceVariance
(f14)

glrlm_RunEntropy (f31)

glszm_LowGrayLevelZoneEmphasis (f44)

glem_Imc1 (f15)

glrlm_RunLengthNonUniformityNormalized
(f32)

glszm_SizeZoneNonUniformity (f45)

glem_Imc2 (f16)

glrlm_RunPercentage (f33)

glszm_SmallAreaHighGrayLevelEmphasis

glem_InverseVariance (f17)

glrlm_RunVariance (f34)

glszm_ZoneEntropy (f47)

glem_JointAverage (f18)

glrlm_ShortRunEmphasis (f35)

glem_JointEnergy (f19)

glrlm_ShortRunHighGrayLevelEmphasis

glem_JointEntropy (f20)

glrlm_ShortRunLowGrayLevelEmphasis

glem_MaximumProbability

glem_SumAverage (f22)

glem_SumEntropy (f23)

glem_SumSquares (f24)

GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix.
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Table A2: Example of the Formula and Definition of the Radiomic Features

Feature

Feature class name

Feature name

Formula

Definition

Histogram-
based

First order:

When X is set of voxel
intensity within a
segmented region of
interest (ROI).

firstorder_Minimum

Minimum = min ( x)

The minimum value of x

firstorder_Energy

N

p

Energy = E(xi - c)2

i=1

where ¢ is optimal value

which shifts the intensities

to prevent negative values
in x.

Measures the magnitude of
voxel values in an image.

firstorder_Skewness

Skewness =

N
1 ;
N
P izl

Measures the asymmetry of
the distribution of voxel
intensity within a segmented
ROls.

- Negative skewness
indicates that the curve is
extended towards the left

side. (mean < median <
mode)

- Skewness = 0, which
means that the curve is a
normal distribution.

- Positive skewness means
that the curve is extended
towards the right side.
(mode < median < mean)

Texture-
based

Gray-level co-occurrence
matrix (GLCM):
Where is the normalized
co-occurrence matrix
P(oJ) | pfij) is the
2p(i)
co-occurrence matrix for
an arbitrary 5 and 6. N,

plij)=

is the number of discrete
intensity levels in the

image. ¢ is an arbitrarily
small positive number

N

(~22x107) p =3 p(i.j)

be the marginal row
probabilities.

», =Sp(i’j) be the

marginal column
probabilities.

u, Is the mean gray level
intensity of p and defined

> (10 R
the mean gray level
intensity of p and

defined as , =i[(r)‘,)(/)]'

j=1

glem_Autocorrelation

Autocorrelation =

ﬁﬁp(w)ff

EVE

Measures the magnitude of
the fineness and
coarseness of texture.

glem_ClusterTendency

Cluster tendency =

3 (4w, -n, ) i)

i=1 =l

Measures groupings of
voxels with similar gray-
level values.

glcm_Correlation

Correlation =

3 pli i -,

i=l j=1

o.{i)e, ()

Correlation is a value
between 0 (uncorrelated)
and 1 (perfectly correlated)
showing the linear
dependency of gray-level
values to their respective
voxels in the GLCM.

Gray-level run length
matrix (GLRLM):

Where Ng is the number

of discreet intensity

glrim_LowGrayLevelRunEmphasis
(LGLRE)

Measures the distribution of
low gray-level values, with
higher value indicating a
greater concentration of low
gray-level values in the
image.




Adaptive Elastic Net on High-Dimensional Sparse Data with Multicollinearity

International Journal of Statistics in Medical Research, 2024, Vol. 13

39

values in the image N, is

the number of discreet
run lengths in the image.
P(i, ) is the run-length
matrix for an arbitrary
direction 6 , when
i=123,...N, and

j=L23,..,N, . gisan

arbitrarily small positive
nUI’nbel"(,z 22x 10-"') .

glrim_RunEntropy (RE)

RE =

_Eip(i,j‘e)logz (p(i.j]0)+¢)

Measures the
uncertainty/randomness in
the distribution of run
lengths and gray levels. A
higher value indicates more
heterogeneity in the texture
patterns.

glrlm_ShortRunEmphasis (SRE)

Measures the distribution of
short run lengths, with a
greater value indicative of
shorter run lengths and
more fine textural textures.

Gray-level size zone
matrix (GLSZM):

Where N, is the number
of discreet intensity
values in the image. N, is

the number of discreet
zone sizes in the
image. N, is the number of

voxels in the image. N_ is

the number of zones in
the ROI, which is equal to

Nﬂ N, d
an N <N -
EEP(U) 15.’\55\[]

i=1 j=1
P(i, ) is the size zone
matrix, when =123, N,

and j-123,..,N,.cisan

arbitrarily small positive
number ( =22x107°).

glszm_GrayLevelNonUniformity

(GLN)

Measures the variability of
gray-level intensity values in
the image, with a lower
value indicating more
homogeneity in intensity
values.

glszm_SizeZoneNonUniformity

(SZN)

Measures the variability of
size zone volumes in the
image, with a lower value
indicating more
homogeneity in size zone
volumes.

glszm_ZoneEntropy (ZE)

—ﬁ?l}t?p(i,j)logz(p(i,.f)ﬂ)

=

Measures the
uncertainty/randomness in
the distribution of zone
sizes and gray levels. A
higher value indicates more
heterogeneneity in the
texture patterns.

Shape-
based

Shape features (3D)

shape_SurfaceVolumeRatio

Surface area to volume
ratio = 4 ,
v

where =§(%\a,b, xa,q‘) )
ab and qc are edges of
the i triangle in the mesh,
formed by vertices a s
Vs
shape_MeshVolume feature
(i.e., the mesh volume in

mm® of the segmented
ROI).

] where N, is

b and c, .

4((0a (08, x0c))

V=
2

the number of faces
(triangles) defining the
Mesh. For each face i in
the mesh, defined by points
a,, b andc,, the (signed)
volume v, of the tetrahedron

defined by that face and the
origin of the image (o) is
calculated.

In the case of a lower value,
it indicates that there is a
more compact (sphere-like)
shape.
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