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Abstract: Predictive models can experience instabilities because of the combination of high-dimensional sparse data 
and multicollinearity problems. The adaptive Least Absolute Shrinkage and Selection Operator (adaptive Lasso) and 
adaptive elastic net were developed using the adaptive weight on penalty term. These adaptive weights are related to 
the power order of the estimators. Therefore, we concentrate on the power of adaptive weight on these penalty 
functions. This study purposed to compare the performances of the power of the adaptive Lasso and adaptive elastic net 
methods under high-dimensional sparse data with multicollinearity. Moreover, we compared the performances of the 
ridge, Lasso, elastic net, adaptive Lasso, and adaptive elastic net in terms of the mean of the predicted mean squared 
error (MPMSE) for the simulation study and the classification accuracy for a real-data application. The results of the 
simulation and the real-data application showed that the square root of the adaptive elastic net performed best on high-
dimensional sparse data with multicollinearity.  
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INTRODUCTION 

Lipomatous tumors are a group of the most 
common soft-tissue tumors, which can be benign 
lipomas or low/high-grade liposarcomas [1]. Lipomas 
are benign adipocytic tumors (accounting for 
approximately one-third of soft tissue tumors), which 
can be treated conservatively with observation only. 
Surgical excision is unnecessary except possibly for a 
symptomatic patient. Atypical lipomatous tumors/well-
differentiated liposarcomas (ALTs/WDLSs) are 
adipocytic malignancies, accounting for 40-45% of all 
liposarcomas [2]. They recur locally or dedifferentiate to 
high-grade sarcoma, but rarely metastasize. Regarding 
a diagnostic system before surgery, although magnetic 
resonance imaging (MRI) is the most useful diagnostic 
tool for lipomatous soft-tissue tumors, identifying 
intramuscular (IM) lipomas that are deep-seated, larger 
than 5 cm, and symptomatic can be challenging 
because of their resemblance to ALTs/WDLSs [2]. With 
tumors representing a diagnostic dilemma from MRI 
images alone, biopsy is regarded as the reference 
standard. However, biopsy sampling errors can occur 
[3]. To alleviate diagnostic uncertainty following MRI, 
creating a diagnostic system before surgery is 
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beneficial for treatment planning help determine the 
urgency of surgery, and prevents unnecessary 
treatment.  

Currently, developments in machine-learning 
algorithms (ML) using MRI-based radiomic features 
have revolutionized health sciences in diagnostics. Due 
to a large number of radiomic features, we desire 
predictive models that can deliver precise outcomes to 
help decision-making. Logistic regression models are 
widely applied in data analysis [4, 5] and machine-
learning communities [6, 7]. Regarding binary logistic 
regression coefficients, maximum likelihood estimation 
(MLE) is a widely used approach to estimate 
coefficients in the model [8-10]. However, the hybrid of 
the high-dimensional data and multicollinearity can lead 
to model over-fitting [11, 12] and can inflate the 
variance of the maximum likelihood estimators in the 
model [8, 9]. Consequently, the MLE used for 
coefficient estimation in logistic regression is unstable 
for building a classification model [13]. To remedy this 
problem, the penalized approach can be employed in 
the logistic regression model [14, 15]. Presently, the 
elastic net is one of the popular methods for penalty 
function [16]. Previous studies focused on developing 
an adaptive weight for the penalty term [17, 18]. 
However, no studies have compared the performances 
of penalized logistic regression, focusing on the power 
of adaptive weight on the adaptive elastic net under 
high-dimensional sparse data with multicollinearity.  
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Therefore, this study focused on the power of 
adaptive weight on the adaptive Lasso and adaptive 
elastic net methods. The aim was to compare the 
performance of the power of adaptive weight on the 
penalized methods under high-dimensional sparse data 
with multicollinearity in a simulation study. Along with 
this, the classification performance of these 
approaches was compared on a lipomatous tumor data 
application. 

MATERIALS AND METHODS 

Logistic Regression  

The logistic regression approach is widely used in 
medical diagnostic classifications. With the binary 
outcome variable, a dependent variable  Yi  has a 
Bernoulli distribution with the parameter 

   
! i = e !xi

!
" 1+ e !xi

!
"( )  where 

   !
xi = 1, xi1, xi2 ,..., xip( )  represents a 

vector of independent variables for the  ith  observation, 
  i =1,2,3,..., n  and a vector composed of logistic 
regression coefficients is 
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! = (!0 ,  !1,  !2 ,...,! p )T  when  p  

is the number of independent variables and  n  is the 
sample size. The binary logistic regression model can 
be written as: 
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where  !i  is the random error, which is assumed to 
follow a distribution with a mean of zero and variance 
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The estimated parameter of equation (3) can be 
determined using the maximum likelihood estimation 
(MLE), which is as follows:  
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where 
   !
!̂MLE is a   ( p +1)!1 vector of the maximum 

likelihood estimators. However, this approach has 
some limitations about high-dimensional data and 
multicollinearity. Consequently, the penalized approach 
is applied as an alternative to the MLE.  

From equation (3), we can be written in a form of 
the penalized approach as follows: 
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where 
   
P! (
!
")  is the penalty function and !  is the tuning 

parameter. 

Penalized Logistic Regression  

The aim of penalized logistic regression is to 
determine logistic regression coefficients when the data 
are high correlated and high dimensional. Penalized 
logistic regression coefficient is defined as follows: 
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where 
   
ˆ
!
!PLR = (!̂0 ,  !̂1,  !̂2 ,..., !̂ p )T . 
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")  and !  are a 

penalty term and the tuning parameter, respectively. In 
the case of  ! = 0 , 

   
ˆ
!
!PLR =

ˆ
!
!MLE

. Regrading selecting ! , 
cross-validation is commonly used to evaluate the 
optimal value of this parameter. Currently, the elastic 
net and adaptive elastic net are popular approaches for 
cancer classification [19, 20], which are described 
below. 

Elastic Net 

Elastic net was developed by Zou and Hastie [16], 
which combines the properties of Lasso and ridge 
regression. This method comprises the parts of the   !1  -

norm and   !2  -norm penalties, which is defined in two 
steps. First, the naive elastic net estimators are 
determined as follows: 
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where  !1,!2 " 0 ;  ! = !1 + !2
; and 

 ! = "2 ("1 + "2 )  when 

 
! " 0,1#$ ) . 

Then, the estimation of 
 !
!  using the elastic net 

penalty is determined as  
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Regarding shrinkage of 
  
ˆ
!
! , parameters  !1  and  !2  

control the shrinkage of 
  
ˆ
!
!  using cross-validation 

strategy [21]. 

Adaptive Elastic Net 

The adaptive elastic net method is a hybrid of 
adaptive Lasso and ridge regression [18]. 
Consequently, it enjoys oracle properties and has out-
performance to the elastic net method. The adaptive 
elastic net penalty is as follows: 
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Hence, the estimation of 
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net can be determined as follows: 
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The tuning parameters ( !1  and  !2 ) control the 

shrinkage of 
  
ˆ
!
!  by using Bayesian information criterion 

cross-validation approach.  

Monte Carlo Simulation 

The key factors resulting the accuracy of a 
predictive/classification model are the number of 
predictors ( p ), the sample of size ( n ), and high 
correlation among predictors. In this simulation study, 
we considered two scenarios: 

1. High-dimensional sparse data [22]. Given  p  > 
 n . Under the sparsity assumption on the true 
coefficients (

 !
! ), we defined that the number of 

significant predictors equaled  q , and  q  <  p . 
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2. All independent variables are correlated by using 
the Toeplitz correlation structure, which is as 
following [23]. 
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where number of the independent variables ( k ) 
represents a positive integer and  0 ! " !1 . 

The Monte Carlo simulations were constructed 
using 50 and 100 independent variables. The sample 
size equaled 30 and 40. We generated the 
independent variables from the multivariate normal 
distribution with a mean of zero and covariance 
! (   !

X " N (0,!) ). The dependent variables were 
generated from the Bernoulli distribution with 
parameter  ! i . The degree of correlation ( ! ) was set to 
0.75, 0.85, and 0.95. The number of significant 
predictors ( q ) equaled 15. The logistic regression 
coefficients were set the constant values as 

 !
! . 

Subsequently, we split the data into two subsets (80% 
of learning dataset, and 20% of testing dataset). The 
simulation study compared the performances of the 
ridge, Lasso, elastic net, adaptive Lasso, and adaptive 
elastic net using the predicted mean square errors 
(PMSE). The estimated PMSE was calculated as 
following: 

  
PMSE =

( yi ! ŷi )
2

ni=1

n

" .         (12) 

where  yi  and   ŷi  were the  ith  actual and predicted 
values of the dependent variables, respectively. We 
used a 10-fold cross-validation strategy to estimate the 
optimal value of the tuning parameter ( ! ) [14, 16, 21]. 
To achieve a stationary result, the experiment was 
repeated 1000 times. Hence, the MPMSE was 
determined from the average of 1000 estimates of 
PMSEj.    

  
MPMSE =

1
1000

PMSE j
j=1

1000

! .         (13) 

The penalized method providing the lowest MPMSE 
was regarded as the best option. Figure 1 represents 
the flowchart of the simulation procedure for this study. 
Moreover, in Figure 2 shows the workflow diagram of 
the machine-learning procedure for the real-data 
application. The classification accuracy of the methods 
was evaluated as following: 
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Accuracy (%) = 
  

TP+TN
TP+ FP+ FN +TN

!100 .     (14) 

Where the true positive (TP) shows that the 
prediction is correct. A true negative (TN) indicates that 
the prediction is correct. False positive (FP) shows that 
the prediction is wrong (type I error). A false negative 
(FN) presents that the prediction is wrong (type II 
error). 

Software  

All simulations and analyses were performed using 
R version 4.3.2 (R Foundation for Statistical 
Computing, Vienna, Austria). We used the package 
‘glmnet’ to fit models using all above penalized 
approaches. Regarding support vector machine (SVM), 
the package ‘e1071’ was used to build the models. 

 
Figure 1: Flowchart of the simulation procedure. 
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RESULTS AND DISCUSSION 

Simulation Study 

Table 1 presents the MPMSE values for the 
penalized methods for different !  when  p  = 50 and 
100, and  n  = 30 and 40. We found the MPMSE values 
of the all methods increased when !  was increased 
while holding  p  and  n  fixed. For an increase in  n , 
the MPMSE values of all methods decreased.  

With high-dimensional sparse data ( p  = 50,  n  = 
30, and  n  = 40, and for different ! ), we found that the 
performance of the adaptive Lasso and adaptive elastic 
net methods depended on the power of the adaptive 
weight ( ! ). The MPMSE values of the adaptive elastic 
net with ! = 0.5 were less than those for the other 
methods.  

In Table 2, when  p  = 100,  n  = 30 and 40, and for 
different ! , we found that the smallest MPMSE values 

were also obtained from the adaptive elastic net 
method with ! = 0.5. 

From the simulated results in Tables 1 and 2, it can 
be seen that the key factors influencing the MPMSE 
values were the power of adaptive weight on penalty 
term, the correlated independent variables (or 
correlation coefficient level), and the sample size. An 
increase in the correlation coefficient level lends to an 
increase in the MPMSE values for all methods when 
holding  p  and  n  fixed. The worst case was obtained 
when the correlation coefficient level was very high 
( ! = 0.95). Additionally, an increase in the sample size 
affects a decrease in the MPMSE values for all 
methods, while holding !  and  p  fixed.  

Real-Data Applications 

In this section, we compared the performances of 
the penalized methods on a real-data set, which is 
given below.  

 
Figure 2: Workflow diagram of the machine-learning procedure. 
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Table 1: Mean of the Predicted Mean Square Errors (MPMSE) Values for Different Penalized Methods When  p = 50  

Adaptive Lasso Adaptive elastic net 
 n  !  Ridge Lasso 

 ! = 0.5   ! = 1   ! = 2  
Elastic net 

 ! = 0.5   ! = 1   ! = 2  

0.75 0.227 0.190 0.185 0.184 0.187 0.192 0.183* 0.187 0.191 

0.85 0.228 0.193 0.191 0.190 0.192 0.196 0.189* 0.193 0.196 

30 

0.95 0.230 0.195 0.198 0.197 0.199 0.198 0.194* 0.195 0.197 

0.75 0.224 0.187 0.182 0.183 0.183 0.191 0.180* 0.182 0.185 

0.85 0.227 0.191 0.190 0.188 0.191 0.194 0.185* 0.188 0.192 

40 

0.95 0.229 0.193 0.197 0.195 0.199 0.197 0.193* 0.193 0.196 

Lasso, Least Absolute Shrinkage and Selection Operator; * The method providing the smallest MPMSE. 
 

Table 2: Mean of the Predicted Mean Square Errors (MPMSE) Values for Different Penalized Methods When   p =100  

Adaptive Lasso Adaptive elastic net  n  !  Ridge  Lasso 

 ! = 0.5   ! = 1   ! = 2  

Elastic net 

 ! = 0.5   ! = 1   ! = 2  

0.75 0.221 0.187 0.184 0.182 0.185 0.192 0.180* 0.187 0.191 

0.85 0.222 0.190 0.189 0.188 0.192 0.193 0.187* 0.193 0.196 

30 

0.95 0.225 0.196 0.196 0.195 0.199 0.198 0.193* 0.195 0.197 

0.75 0.218 0.184 0.183 0.181 0.184 0.187 0.180* 0.182 0.185 

0.85 0.220 0.187 0.185 0.184 0.191 0.189 0.182* 0.188 0.192 

40 

0.95 0.223 0.194 0.195 0.194 0.198 0.197 0.193* 0.193 0.196 

Lasso, Least Absolute Shrinkage and Selection Operator; * The method providing the smallest MPMSE. 
 

Table 3: Percentage Accuracy of Classification of the Machine-Learning Algorithms for Discriminating between 
Intramuscular Lipomas and Atypical Lipomatous Tumors/Well Differentiated Liposarcomas 

Adaptive Lasso Adaptive elastic net Variable selection method  Ridge  Lasso 

 ! = 0.5   ! = 1   ! = 2  

Elastic net 

 ! = 0.5   ! = 1   ! = 2  

Classifier with penalized logistic 
regression 

82.0 87.4 90.0 91.2 88.0 86.5 93.0* 91.6 
 

90.1 

Classifier with support vector 
machine 

87.0 89.0 90.8 92.0 89.5 87.0 92.5* 91.5 89.9 

Lasso, Least Absolute Shrinkage and Selection Operator; * The machine-learning algorithms providing the highest accuracy. 

Lipomatous soft-tissue tumor data set was obtained 
from 40 patients (20 IM lipomas and 20 ALTs/WDLSs), 
which had been treated at our institution between 2010 
and 2020. The patients were diagnosed using their final 
pathological findings, and underwent MRI scans and 
total excision surgery. For our case study, the binary 
outcome of interest was an IM lipoma (benign tumor) or 
an ALT/WDLS (malignant tumor). The predictors of 
interest were 50 radiomic features as continuous 
variables; these features were extracted from 
preoperative T1-weighted MRI (Appendix A). We can 
see that the number of predictors/independent 
variables is large compared with the number of 

observations. It is clear that the high-dimensional 
problem was presented in this data set. Regarding 
Figure 3, the correlation matrix presents different 
shades and the Pearson correlation coefficient values. 
The light shade (or the Pearson correlation coefficient 
value is close to zero) represents that the predictors 
have a low correlation, whereas the dark shade (or the 
Pearson correlation coefficient value is close to 1 or -1) 
presents a high correlation among predictors. 
Moreover, the variance inflation factor (or VIF) values 
for almost predictors were over 10, which indicates a 
problematic amount of collinearity. It is obvious that the 
multicollinearity problem was to occur in this data set.  
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To remedy the two above problems, we applied the 
penalized approach (i.e., ridge, Lasso, elastic net, 
adaptive Lasso, and adaptive elastic net) on this case 
study.  

In Table 3, we appraised the classification 
performances of the penalized methods in 
distinguishing between IM lipomas and ALTs/WDLSs. 
We can see that the highest accuracy values were 
obtained from the adaptive elastic net method with 

   !
wj = !̂ j

Aelastic "0.5
, while the lowest accuracy values were 

obtained from the ridge method.  

From the results of the real-data applications in 
Table 3, it is apparent that the adaptive elastic net 

method with 
   !
wj = !̂ j

Aelastic "0.5
 showed a better 

performance than the other methods for classification 
on the high-dimensional sparse data with 
multicollinearity. This finding corresponds to the results 
of the simulation study. 

CONCLUSION 

We propose the use of the adaptive elastic net 
method with ! = 0.5 for classification on high-
dimensional data with multicollinearity. Both the 
simulation study and the real-data application, it is clear 
that the classification performance of the adaptive 
elastic net logistic regression model depends on the 
power of adaptive weight on this penalty term. In 
practice, if the penalty technique is appropriate, it 
results the classification model that has good 
performance. 
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Figure 3: Correlation matrix of fifty radiomic features in forty patients.  
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APPENDIX A 

The radiomic features of interest in our case study comprised 7 first-order features, 17 gray-level co-occurrence 
matrix (GLCM), 13 gray-level run length matrix (GLRLM), 10 gray-level size zone matrix (GLSZM), and 3 shape-
based 3D (Table A1). The first-order features were the simplest statistical descriptors that explained the distribution 
of their gray-level values in MRI images. Texture-based features (i.e., GLCM, GLRLM, and GLSZM) describe the 
spatial arrangement of gray-level pixels in a neighborhood on the images (e.g., homogeneity/heterogeneity/ 
fineness/coarseness of region of interest (ROI) on the images). Additionally, shape-based 3D features explain the 
geometric properties of ROI.  

The details of formula and definition for these features were explained according to PyRadiomics’ 
documentation. (https://pyradiomics.readthedocs.io/en/latest/features.html, accessed on 9 March 2024) (Table A2).  

Table A1: List of Fifty Radiomic Features  

Texture-based features First-order features 

GLCM GLRLM GLSZM 

Shape-based features 

firstorder_10Percentile 
(f1) 

glcm_Autocorrelation (f8) glrlm_GrayLevelVariance (f25) glszm_GrayLevelNonUniformity (f38) shape_MajorAxisLength (f48) 

firstorder_90Percentile 
(f2) 

glcm_ClusterTendency (f9) glrlm_HighGrayLevelRunEmphasis (f26) glszm_GrayLevelVariance (f39) shape_SurfaceArea (f49) 

firstorder_Energy (f3) glcm_Contrast (f10) glrlm_LongRunEmphasis (f27) glszm_HighGrayLevelZoneEmphasis (f40) shape_SurfaceVolumeRatio 
(f50) 

firstorder_Entropy (f4) glcm_Correlation (f11) glrlm_LongRunHighGrayLevelEmphasis 
(f28) 

glszm_LargeAreaEmphasis (f41)  

firstorder_Minimum (f5) glcm_DifferenceAverage 
(f12) 

glrlm_LongRunLowGrayLevelEmphasis (f29) glszm_LargeAreaHighGrayLevelEmphasis 
(f42) 

 

firstorder_Maximum (f6) glcm_DifferenceEntropy 
(f13) 

glrlm_LowGrayLevelRunEmphasis (f30) glszm_LargeAreaLowGrayLevelEmphasis 
(f43) 

 

firstorder_Skewness 
(f7) 

glcm_DifferenceVariance 
(f14) 

glrlm_RunEntropy (f31) glszm_LowGrayLevelZoneEmphasis (f44)  

 glcm_Imc1 (f15) glrlm_RunLengthNonUniformityNormalized 
(f32) 

glszm_SizeZoneNonUniformity (f45)  

 glcm_Imc2 (f16) glrlm_RunPercentage (f33) glszm_SmallAreaHighGrayLevelEmphasis 
(f46) 

 

 glcm_InverseVariance (f17) glrlm_RunVariance (f34) glszm_ZoneEntropy (f47)  

 glcm_JointAverage (f18) glrlm_ShortRunEmphasis (f35)   

 glcm_JointEnergy (f19) glrlm_ShortRunHighGrayLevelEmphasis 
(f36) 

  

 glcm_JointEntropy (f20) glrlm_ShortRunLowGrayLevelEmphasis 
(f37) 

  

 glcm_MaximumProbability 
(f21) 

   

 glcm_SumAverage (f22)    

 glcm_SumEntropy (f23)    

 glcm_SumSquares (f24) 
 

   

GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix. 
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Table A2: Example of the Formula and Definition of the Radiomic Features 

Feature Feature class name Feature name Formula Definition 

firstorder_Minimum Minimum = min ( X ) The minimum value of  X  
 

firstorder_Energy 

  

Energy = (xi ! c)2

i=1

N p

"  

where  c  is optimal value 
which shifts the intensities 
to prevent negative values 

in  X .  

Measures the magnitude of 
voxel values in an image. 

Histogram-
based 

First order:  
  

When  X is set of voxel 
intensity within a 

segmented region of 
interest (ROI).  

  
X = x1, x2 , x3,..., xN p{ }  

firstorder_Skewness 

  

Skewness =

1
N p

(xi ! x )3

i=1

N p

"

1
N p

(xi ! x )2

i=1

N p

"
#

$

%
%
%
%

&

'

(
(
(
(

3  

Measures the asymmetry of 
the distribution of voxel 

intensity within a segmented 
ROIs. 

 - Negative skewness 
indicates that the curve is 
extended towards the left 
side. (mean < median < 

mode) 
 - Skewness = 0, which 

means that the curve is a 
normal distribution. 

 - Positive skewness means 
that the curve is extended 

towards the right side. 
(mode < median < mean) 

glcm_Autocorrelation 

  

Autocorrelation =

p i, j( ) ij
j=1

Ng

!
i=1

Ng

!
 Measures the magnitude of 

the fineness and 
coarseness of texture.  

glcm_ClusterTendency 

  

Cluster tendency =

i+ j !µx !µ y( )2
p(i, j)

j=1

Ng

"
i=1

Ng

"
 

Measures groupings of 
voxels with similar gray-

level values. 

Gray-level co-occurrence 
matrix (GLCM):  

Where is the normalized 
co-occurrence matrix 

  

p i, j( ) =
P i, j( )

P i, j( )!

"

#

$
$

%

&

'
'
. 

  
P i, j( )  is the 

co-occurrence matrix for 
an arbitrary !  and ! . 

 
Ng

 

is the number of discrete 
intensity levels in the 

image. ! is an arbitrarily 
small positive number 

 
! 2.2"10#16( ) . 

  
pxi

= p i, j( )
j=1

Ng

!  

be the marginal row 
probabilities. 

  
py j

= p i, j( )
i=1

Ng

!  be the 

marginal column 
probabilities. 

 
µx

is the mean gray level 
intensity of

 px
and defined 

as 
  
µx = pxi

( ) i( )!
"

#
$

i=1

Ng

% .
 
µ y

 is 

the mean gray level 
intensity of 

 
py

 and 

defined as 
  
µ y = py j( ) j( )!

"#
$
%&

j=1

Ng

' . 

glcm_Correlation 

  

Correlation =

p(i, j)ij !µxµ y
j=1

Ng

"
i=1

Ng

"

# x i( )# y j( )

 
Correlation is a value 

between 0 (uncorrelated) 
and 1 (perfectly correlated) 

showing the linear 
dependency of gray-level 
values to their respective 

voxels in the GLCM.  

Texture-
based 

Gray-level run length 
matrix (GLRLM):  

Where 
 
Ng  is the number 

of discreet intensity 

glrlm_LowGrayLevelRunEmphasis 
(LGLRE) 

  
LGLRE =

P(i, j !)

i2
j=1

Nr

"
i=1

Ng

"

Nr !( )
 

Measures the distribution of 
low gray-level values, with 
higher value indicating a 

greater concentration of low 
gray-level values in the 

image.  
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glrlm_RunEntropy (RE) 

( )( )
2

1 1

RE

( , ) log ,
g rN N

i j
p i j p i j

= =

=

! " " + #$$
 Measures the 

uncertainty/randomness in 
the distribution of run 

lengths and gray levels. A 
higher value indicates more 
heterogeneity in the texture 

patterns.  

values in the image 
 Nr is 

the number of discreet 
run lengths in the image. 

  P(i, j)  is the run-length 
matrix for an arbitrary 

direction ! , when 

  
i = 1,2,3,..., Ng  and 

  j = 1,2,3,..., Nr . ! is an 
arbitrarily small positive 

number
 
! 2.2"10#16( ) .   

glrlm_ShortRunEmphasis (SRE) 

  
SRE =

P(i, j !)

j2
j=1

Nr

"
i=1

Ng

"

Nr !( )
 

Measures the distribution of 
short run lengths, with a 

greater value indicative of 
shorter run lengths and 

more fine textural textures.  

glszm_GrayLevelNonUniformity 
(GLN) 

  
GLN =

P(i, j)
j=1

Ns

!
"

#
$
$

%

&
'
'

2

i=1

Ng

!

Nz

 

Measures the variability of 
gray-level intensity values in 

the image, with a lower 
value indicating more 

homogeneity in intensity 
values. 

glszm_SizeZoneNonUniformity 
(SZN) 

  
SZN =

P(i, j)
i=1

Ng

!
"

#

$
$

%

&

'
'

2

j=1

Ns

!

Nz

 

Measures the variability of 
size zone volumes in the 
image, with a lower value 

indicating more 
homogeneity in size zone 

volumes.  

 

Gray-level size zone 
matrix (GLSZM): 

Where 
 
Ng  is the number 

of discreet intensity 
values in the image. 

 Ns  is 
the number of discreet 

zone sizes in the 
image.

 
N p  is the number of 

voxels in the image.
 Nz is 

the number of zones in 
the ROI, which is equal to 

  

P(i, j)

j=1

Ns

!
i=1

Ng

!  and 
  
1! Nz ! N p . 

  P(i, j)  is the size zone 
matrix, when 

  
i = 1,2,3,..., Ng  

and 
  j = 1,2,3,..., Ns . ! is an 

arbitrarily small positive 
number (  ! 2.2"10#16 ). 

glszm_ZoneEntropy (ZE) 

  

ZE =

! p(i, j) log
2

p i, j( ) + "( )
j=1

Ns

#
i=1

Ng

#
 Measures the 

uncertainty/randomness in 
the distribution of zone 
sizes and gray levels. A 

higher value indicates more 
heterogeneneity in the 

texture patterns. 

Shape-
based 

Shape features (3D) shape_SurfaceVolumeRatio Surface area to volume 
ratio = 

 

A
V

,  

where 
  
A = 1

2
aibi ! aici

"

#
$

%

&
'

i=1

N f

( .  

 aibi
 and 

 aici
 are edges of 

the  i
th  triangle in the mesh, 

formed by vertices 
 ai

, 

 bi
and 

 ci
.  V  is 

shape_MeshVolume feature 
(i.e., the mesh volume in 
mm3 of the segmented 

ROI).  

  

V =
Oai Obi !Oci( )( )

6

"

#

$
$

%

&

'
'

i=1

N f

(  , 
 where 

 
N f

is 

the number of faces 
(triangles) defining the 

Mesh. For each face  i  in 
the mesh, defined by points 

 ai
, 

 bi
 and

 ci , the (signed) 
volume 

 
V f

of the tetrahedron 

defined by that face and the 
origin of the image ( O ) is 

calculated. 

In the case of a lower value, 
it indicates that there is a 

more compact (sphere-like) 
shape. 
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