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Abstract: Understanding the survival dynamics of registered patients on a disease control program is a vital issue for 
the success of program objectives. Dropout of registered patients from such a program is a critical issue, hindering the 
effectiveness of the program. This study aimed to identify the risk factors of dropout of patients who were registered on 
the Changing Diabetes in Children (CDiC) program, taking a case of Uganda. Survival analysis was done by integrating 
competing risk of factors associated with attrition from the CDiC program. The data for the study was obtained from 
patients with type 1 diabetes mellitus (T1DM) registered during 2009-2018 at health units with specialized pediatric 
diabetes clinics from various regions in Uganda. The study considered follow-up data of 1132 children with T1DM. Our 
analysis revealed that the Body Mass Index (BMI) significantly influences dropout time, with patients classified as 
underweight showing higher hazards than those with normal BMI. Moreover, when considering competing risks, dropout 
hazards increased. Comparing the Cox model with the Fine and Gray model shows the latter exhibiting a smaller AIC 
value, which indicates its superiority in the time-to-dropout analysis. Thus, utilizing methods that integrate competing 
risks for CDiC dropout analysis is preferable and recommended for related studies. These findings provide actionable 
insights for enhancing CDiC program efficacy. 

Keywords: Competing risks, Time to dropout, CDiC program, Subdistribution hazard, Fine-Gray model, Cox 
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1. INTRODUCTION 

A great amount of investment has been made in the 
health systems to prolong the lives of patients with 
non-communicable chronic diseases. The 
non-communicable chronic diseases (NCDs), including 
diabetes, are the leading causes of death worldwide 
and represent an emerging global health burden [1]. 
According to the International Diabetic Federation (IDF), 
537 million people had diabetes globally in 2021, and 
the number is expected to grow to 643 million by 2030, 
and 783 million by 2045 [2]. Unfortunately, the majority 
of these diabetes patients are living in low-and 
middle-income countries, and 1.5 million deaths are 
directly attributed to diabetes each year [3]. There is an 
increasing trend in the prevalence and incidence of 
both type 1 and type 2 diabetes globally. Type 1 
diabetes mellitus (T1DM), once known as juvenile 
diabetes or insulin-dependent diabetes, is a chronic 
condition in which the pancreas produces little or no 
insulin by itself. Of the total population with T1DM in 
2022, 1.52 million (17.0%) were younger than 20 years 
[4]. There is no prevention or cure for type 1 diabetes, 
and as such, it is a lifelong condition that requires daily 
management and care, as well as a high level of 
patient knowledge. 

The increased prevalence and incidences of T1DM, 
especially among children and adolescents, has led to 
specialized T1DM Clinics in some developing countries. 
A number of programs have been undertaken to follow 
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up with patients to control or help cure the disease in 
different countries. The Changing Diabetes in Children 
(CDiC) program is one example of such program. The 
CDiC is a global initiative led by Novo Nordisk to 
address childhood diabetes worldwide [5]. Novo 
Nordisk is a Danish multinational pharmaceutical 
company headquartered in Bagsværd with production 
facilities in nine countries and affiliates or offices in five 
countries. Currently, the CDiC program is implemented 
in 14 African and Southeast Asian countries. In this 
program, all children with diabetes below 18 years of 
age are encouraged to enroll in the program by 
attending the nearest established Type1 Diabetes 
Mellitus (T1DM) clinic. In Uganda, for example, such a 
program started in the year 2009. For optimal program 
benefits, patients must remain engaged for the 
expected duration. Unfortunately, some patients either 
drop out or become inactive, failing to attend scheduled 
appointments with CDiC program [6]. Therefore, 
understanding the dropout dynamics of T1DM patients 
and assessing the survival time from treatment 
initiation to dropout, as well as the risk factors for 
dropout, are essential for designing time-relevant 
intervention strategies and thus improving the 
effectiveness of the program. 

In survival analysis, various methods are available 
to examine data sets defined in terms of the time from 
a well-defined time origin to the occurrence of a 
particular event, depending on different risks and the 
survival time [7]. The risk measure of interest could be 
the survival time, the time lapse between the 
registration on the program, time to dropout, time to 
lost to follow up and the event such as death, 
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recurrence, or treatment failure. For example, an event 
of specific interest to this study is the dropping out of a 
T1DM patient from the CDiC program. In survival 
analysis, subjects who do not experience the event of 
interest during the follow-up period are considered 
censored data. For example, to estimate the survival 
time for patients with T1DM, patients are followed from 
a baseline date (such as the date of diagnosis or 
registration) until the date of death or study closing 
date, a patient who dies during the follow-up period or 
lost to follow-up would be considered censored data. In 
this domain, the Kaplan-Meier method and Cox 
proportional hazards models are two widely utilized 
statistical techniques, each offering distinct advantages 
in analyzing survival data. The Kaplan-Meier is a 
nonparametric estimator used to estimate the survival 
function, whereas the Cox proportional hazards model 
is a semi-parametric regression model used to assess 
the association between covariates and the hazard rate. 
Moreover, the log-rank test is often conducted before 
employing the Cox proportional hazards model. 
Renowned for its simplicity and capability to discern 
differences in survival trends among groups, this test is 
instrumental in uncovering factors influencing survival 
duration. When applying the Kaplan-Meier method or 
Cox model, it is assumed that censoring occurs 
independently of other factors. This means that a 
patient's survival time is presumed to be unaffected by 
the reasons for censoring [8]. However, in reality, 
patients may encounter various outcomes that prevent 
the occurrence of the event of interest. Consequently, 
the assumption of independent censoring is violated. 
For instance, when studying mortality associated with 
T1DM, patients who die from a different cause will not 
die due to T1DM. Such events that prevent the event of 
interest from occurring are known as competing risk 
events. When competing risks are present, the 
Kaplan-Meier, log-rank test, and Cox proportional 
hazard model aren't suitable. Ignoring these competing 
risks can result in an overestimation of cumulative 
incidence and predicted risk [9-11].  

The determinants of time to dropout from CDiC 
program can be examined by considering death event 
as a censored observation in survival analysis. 
However, T1DM patients admitted to the CDiC 
program are followed to achieve the desired result and 
death appears as a competing risk event when dropout 
is the primary event. In this situation, standard survival 
methods such as KM method or Cox model are 
inadequate to analyze survival data in the presence of 
competing risk [12,13]. Death from any cause in T1DM 
patients precludes observation of dropout from 
treatment and thus a competing of dropout. A major 
limitation of modeling time-to-event data in the 
presence of competing events is that when estimating 

regression parameters under a specific cause, 
individuals failing from causes other than the cause of 
interest are considered censored observations. In the 
presence of competing risks, the cumulative incidence 
function (CIF) is the most widely used technique, which 
estimates the marginal probability for each competing 
event [14]. We utilize the CIF to calculate the total 
occurrence of the event of interest. The CIF for a 
specific event indicates the probability of experiencing 
that event before a certain time and before the 
occurrence of another type of event. In survival 
analysis, when there are no competing risks, the 
hazard function is a fundamental concept. It indicates 
the instantaneous rate at which the event of interest 
occurs in individuals who remain at risk of the event. 
While the regression coefficient of the Cox model 
explains the proportional impact of covariates on the 
event's hazard, this relationship also holds in the 
absence of competing risks [13]: 

! ! =   !! ! exp  (!!!)  

where S(t) represents the survival function for an 
individual with a given set of covariates, X, and S₀(t) 
signifies the baseline survival function (i.e., the survival 
function for individuals with covariates equal to zero). 
Consequently, the impact of a covariate on the event's 
hazard is equivalent to its impact on the natural 
logarithm of the survival function [13,15]. In scenarios 
where competing risks are present, two distinct types of 
hazard functions emerge: the cause-specific hazard 
function and the subdistribution hazard function. The 
cause-specific hazard function reflects the 
instantaneous rate at which the event of interest occurs 
among individuals who have not encountered any other 
type of event. On the other hand, the subdistribution 
hazard function indicates the instantaneous risk of 
experiencing the event of interest among individuals 
who have not yet encountered such an event. Notably, 
this risk set encompasses individuals who are currently 
free from any events as well as those who have 
previously experienced a competing event [15]. By 
modeling both hazard functions, competing risks are 
appropriately accounted for. However, modeling the 
subdistribution hazard function explicitly establishes 
the relationship between the subdistribution hazard and 
its impact on the incidence of an event. Consequently, 
this approach enables the estimation of the effect of 
covariates on the Cumulative Incidence Function (CIF) 
for the event of interest [15]. Therefore, when 
addressing prognostic inquiries in the presence of 
competing risks, the subdistribution hazard model, also 
known as the Fine and Gray model, is employed. 

In recent studies, researchers have shown interest 
in pinpointing factors linked to patient attrition or loss to 
follow-up. Some have employed conventional analyses 
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[16-18], while others have explored competing risk 
analyses [19,20]. To investigate factors affecting 
participation duration in the CDiC program in Uganda, 
Wesonga et al. (2023) utilized the Kaplan-Meier 
method to estimate survival duration within the 
program. Additionally, they employed the Cox model to 
identify contributing factors. However, it's important to 
note that patients who pass away during the follow-up 
period are considered dropouts, thus violating the 
assumption of independent censoring. It's essential to 
recognize that patients who drop out and those who 
pass away do not experience the same likelihood of 
censoring [21]. Therefore, incorporating competing risk 
methods becomes crucial, as it accounts for varying 
probabilities of censoring and ensures accurate 
estimation by considering the weights associated with 
different outcomes. 

In this study, firstly, we sought to investigate the 
factors influencing the duration of participation in the 
CDiC program, considering both traditional survival 
analysis methods and competing risk analysis. 
Secondly, we examined how various factors, including 
demographic characteristics and disease severity, 
affect the time until dropout from the CDiC program, 
and how this relationship changes when accounting for 
competing risks such as mortality. Lastly, we 
determined a better statistical approach between the 
traditional survival analysis methods and the competing 
risk analysis that could offer the most accurate and 
interpretable analysis of time to dropout from the CDiC 
program. Through these inquiries, we generated 
insights that can enhance decision-making processes 
and ultimately improve the effectiveness of the CDiC 
program in Uganda, and wherever it may be 
implemented. The specific objectives of the study were 
to: 

1. Analyze the time-to-dropout from the CDiC 
program among patients with T1DM, considering 
both methods; with and without competing risks, 
such as death. 

2. Identify and assess the factors influencing the 
dropout time of the CDiC program. 

3. Estimate the impact of the identified factors on 
the dropout rates, accounting for both the 
absence and presence of competing risks. 

4. Evaluate and determine the most appropriate 
approach for analyzing dropout time of the CDiC 
program, considering factors such as statistical 
robustness and interpretability.  

In brief, this research holds importance as it 
addresses a critical problem in the analysis of CDiC 

program data and offers insights that could lead to 
more accurate, informed decision-making and 
ultimately improve the effectiveness of the CDiC 
program.  

2. MATERIALS AND METHODS 

2.1. Study Design  

The data used in this study were derived from 
patients with T1DM registered at health units with 
specialized pediatric diabetes clinics from various 
regions in Uganda, which are supported by the CDiC 
project [6]. Two main hospitals, Nsambya and Mulago, 
were used as key focal patient tracking health centers. 
All patients registered during the period beginning from 
January 2009 to the end of June 2018 were included in 
the study. Patients who had been seen once in the 
clinic and had no single HbA1C recorded were 
excluded. Additionally, patients with a program survival 
time exceeding nine years were considered outliers 
and were therefore removed from the dataset. The 
Total dataset after cleaning was 1132 patients. Each 
patient was categorized as "Active," "Inactive," "Lost to 
Follow-up," "Drop Out," or "Dead." An "Inactive" status 
indicates that a patient missed two consecutive 
appointments but was still alive. A patient labeled as 
"Lost to Follow-up" meant that they could not be 
located, and their vital status was uncertain. For our 
analysis, we treated patients with "Inactive" or "Lost to 
Follow-up" status as dropouts from the program, 
considering it an event of interest. At the same time, 
death was regarded as a competing event. To evaluate 
the influence of covariates on the time to dropout from 
the program, variables such as place of residence, 
gender, body mass index, and hypertension level were 
included in the analysis. 

 
Figure 1: Conceptual framework for the study. 

2.2. Statistical Analysis 

In this study, we initially determined the median 
dropout time. When competing risks are not considered, 
individuals who dropped out, became inactive, passed 
away, or were lost to follow-up were all classified as 
dropouts, and the median for the dropout time was 
calculated accordingly. However, when competing 
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risks were considered, patients who dropped out, 
became inactive, or were lost to follow-up were 
considered as dropouts, and their median time was 
calculated. To identify factors affecting dropout time, 
we utilized univariable methods. In the absence of 
competing risks, we employed the log-rank test to 
identify the significant factors, whereas in the presence 
of competing risks, we used the Gray test. 
Subsequently, significant factors were integrated into 
multivariable regression models to estimate their 
impact on dropout time. While the Cox proportional 
hazard model examines the effect on the hazard rate in 
the absence of competing risks, the subdistribution 
hazard model assesses the effect of factors on dropout 
incidence when competing risks are present. We 
compared the two models using the Akaike Information 
Criterion (AIC). The model with the smaller value 
indicates a more suitable model. Finally, we assessed 
the assumptions of both models. For the Cox 
proportional model, we verified the assumption of 
proportional hazard (PH) by contrasting the PH model 
for each predictor with an alternative model, allowing 
the predictor's regression coefficient to vary smoothly 
over time [21]. Conversely, we examined the 
assumption of proportionality of the hazard of the 
Cumulative Incidence Function (CIF) by plotting 
log(-log(1-CIF)) against log(time) [12]. This assumption 
is deemed valid when the two graphs do not intersect. 
All statistical analyses were conducted using R [22].  

The log-rank test provides a nonparametric 
hypothesis test statistic, which was utilized to compare 
survival distributions between two groups. Essentially, 
the log rank test compares the actual number of events 
observed in each group with the expected number 
under the assumption of identical survival curves.  

H!: The two survival curves are identical, or (!!:  !1! =
  !2!) 

H!: The two survival curves are not identical at least for 
one time point, or (!!:  !1! ≠   !2!) 

At a significance level of α=0.05, the test statistic for 
the log-rank test is approximately distributed as a 
chi-square test statistic and is calculated as the 
summation of the differences between observed and 
expected event counts squared over all event times, 
divided by the sum of the expected event counts 
squared. This test statistic has degrees of freedom 
equal to the number of comparison groups minus one 
(k-1), where k represents the number of comparison 
groups. The log-rank test statistic is approximated as 
follows [23]: 

   !!!!! !

!!! ~!!!!!         (1) 

Where the O!  is the total number of observed 
events in groups I, respectively, and E!   is the total 
number of expected events. 

One of the most popular regression techniques for 
survival outcomes is the Cox proportional hazards 
regression model. It was used to investigate the 
association between the survival time of individuals 
and predictor variables or covariates. The Cox 
proportional hazards regression model can be written 
as follows: 

  ℎ ! =   ℎ! ! exp !!!          (2) 

where h(t) is the expected hazard at time t, h0(t) is the 
baseline hazard and represents the hazard when there 
are no predictors or all of the predictors (or 
independent variables) X1, X2 , Xp are equal to zero, ! 
is a vector of unknown regression parameters. For 
each !!, the risk set !! immediately before time !! is 
the set of patients who are still active (been 
right-censored), which represents the candidate set of 
patients for whom a dropout was observed at time !!. 
Conditionally, on that some patient in this risk set !! 
dropped out at time !! , the probability that it is a 
particular patient !! ∈ !! is : 

   !!(!!)
!!(!!)!∈!!

         (3) 

This is also referred to as the instantaneous rate of 
dropout for patient !!  to the sum of rates for all 
candidate patients [24]. Under the proportional hazard 
model, that is : 

  
!! !!   !"#  (!!!!)

!! !!   !"#  (!!!!)!∈!!
        (4) 

Notice that this quantity does not depend on the 
baseline ℎ! !!  since they cancel. By taking the 
product of expression (4) over all observed dropout 
times, we obtain the partial likelihood function as 
defined by Cox [25]:  

  ! ! =    !"#  (!!!!)
  !"#  (!!!!)!∈!!

!
!!!        (5) 

For making inference about the coefficients !, Cox 
recommended treating equation (5) as an ordinary 
likelihood. The likelihood function in equation (5) can 
be expressed as:  

  ! ! = !"#  (!!!!)
!"#  (!!!!)!∈!!

!!
!
!!!        (6) 

where !! = 1  if the event (dropout) occurred and 0 if 
censored. The values of ! can be estimated using the 
maximum likelihood method, by taking the log of the 
equation (6), and then differentiating with respect to 
each !, after setting the equation equal to zero.  
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2.3. Competing Risks Model for Patients in the 
CDiC Program 

Let T represent failure time as the time from 
registration in the CDiC program to the time of exiting 
the program. We considered two causes for exiting the 
program (K={1,2}), drop out from the program and 
death. For competing risks data, the observed 
follow-up time of patient !  is defined by !!" =
min !!" ,!!"  which represents failure time and 
censoring time for patient ! with k cause of failure. 
When competing risks are not present, one compares 
the survival functions of groups using the log-rank test 
to identify the significant factors. However, when 
competing risks are present, the cumulative incidence 
functions are compared using Gray’s test statistic [26]. 
This test is a modified chi-square test, an alternative to 
the log-rank test. It compares the weighted averages of 
the hazard of the subdistribution functions for the event 
of interest. The general form of the score group ! is: 

  !! = !! !   !! ! −   !! !   !"!
!        (7) 

where ! is the maximum time observed in both groups, 
!!  is a weight function, !!(!)  is the hazard of the 
subdistribution for group ! and !!(t) is the hazard of 
the subdistribution for all groups together. To estimate 
the effect of covariates on the absolute risk of dropping 
out, the Fine and Gray model was used (15), which can 
be presented as: 

  !! !  ;! =   !!! !   exp  (!!!!)       (8) 

where !! !  ;!  is the sub-distribution hazard function, 
!!! !    is the baseline sub-distribution hazard for a 
patient with all covariates equal to zero, !!  is the 
vector of regression coefficients of the variables !. For 
event 1, the sub-distribution hazard function (SDH) is 
the probability of exiting from the program from cause 1 
(dropping out) in a small-time interval Δ!, given that no 
other event than 1 occurred for a subject before time t 
[13].  

  !! ! =    lim!!→!
! !!!!!!∆!,!!!     !!!  ∪ !!!∩!!! )

∆!
     (9) 

Note that patients who did not drop out and died 
before time t are in the risk set for all future failure times. 
The SDH rates for the included covariates are 
assumed to be proportional. The most important 
feature of this function is that it can be directly linked to 
CIF as follows: 

!! !;! = 1 − exp −!! !;! = 1 − exp − !! !;!   !"!
!     (10) 

To estimate the parameters in the Fine and Gray 
model, the partial likelihood approach is used [12] 

  ! ! =    !"#  (!!!!)
!!"  !"#  (!!!!)!  !  !(!!)

!
!!!      (11) 

where !!" is the weight of the patient ! in the event of 
interest and defined as  

  !!" =   
!(!!)

!(!"# !!,,!! )
      (12) 

where !(!!) is the estimate of survival function from 
survival time ! patient, !(min !!,, !! ) is the estimation 
of the survival function from the minimum value 
between the survival time of the patient !  and the 
patient on the event 1 or event of interest (18). We can 
see that equation (5) and equation (11) are similar 
except that equation (11) includes weight. 

3. RESULTS 

Out of 1132 patients considered in the study, almost 
half (49.6%) of them were male, and two-third (65%) 
were from urban areas. Every 2 out of 5 (41.3%) 
children with T1DM were underweight, and another 
39.5% had high blood pressure. Among the 1132 
registered T1DM patients, 20 (1.8%) of them dropped 
from the program, 43(3.8%) died, and 1069 (94.4%) 
were active. According to the findings presented in 
Table 1, individuals residing in urban areas 
demonstrated a slightly higher rate of active 
participation in the program in comparison to those in 
rural areas (95% versus 93.4%). Conversely, 
individuals residing in rural areas exhibited a slightly 
lower dropout rate (1.3%) in contrast to their urban 
counterparts (2%). Additionally, mortality rates were 
observed to be higher among individuals in rural 
settings (5.3%) as opposed to those in urban settings 
(3%). The results also indicated similar levels of 
participation in the program among both males and 
females. However, males had a slightly higher dropout 
rate (2.3%) compared to females (1.2%), while females 
showed a slightly higher mortality rate (4.8%) 
compared to males (2.9%). According to the BMI 
variable, individuals classified as overweight 
demonstrated the highest level of program 
engagement (96.9%), closely trailed by those with a 
normal BMI (96.1%). Conversely, underweight patients 
exhibited the highest mortality rates (5.4%) and 
dropout rates (3%). Furthermore, it was observed that 
individuals with high blood pressure showed the 
highest level of program engagement (97%). In 
comparison, those with low blood pressure exhibited 
the lowest program participation rate (92.5%). Although 
mortality rates were highest among patients with low 
blood pressure (6.7%), dropout rates were highest 
among those with high blood pressure (2%), followed 
by individuals with normal blood pressure (1.8%). 

In the absence of competing risks, the average 
duration until dropout from the program was 471 days, 
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whereas when accounting for competing risks, the 
average duration until dropout extended to 522.5 days. 
Estimating the CIFs for dropout from the program and 
death events, results in Figure 2 showed that after 9 
years from follow-up, the probability of dropping out is 
about 12.5%, and the probability of death is about 20%. 
To explore the factors influencing dropout time, we 
initially employed univariable methods. In scenarios 
without competing risks, we utilized the log-rank test, 
while in situations involving competing risks, we used 
the Gray test. 

 
Figure 2: Cumulative incidence function for event 1 (dropout) 
and event 2 (death). 

Table 2 presents the statistical test results for 
examining the association between various factors and 
dropouts from the program. Testing the influence of the 
residence variable on dropout time, both tests 
generated non-significant p-values (0.6 for the 
Log-rank test and 0.085 for the Gray test), indicating no 
notable association between residence and dropout 
time when competing risk is ignored, while residence 
has marginally significant (p<0.10) effect on dropout 
when competing risk is accounted for. Similarly, the 
gender of the patients showed no significant 
association with dropout, with p-values of 0.8 for the 
Log-rank test and 0.12 for the Gray test. Conversely, 

the BMI variable exhibited highly significant results in 
both tests, with p-values of 0.0002 for the Log-rank test 
and 0.009 for the Gray test. This underscores a strong 
association between BMI and dropout from the 
program. 

Figure 3 shows that patients with underweight had a 
higher estimated probability of dropping out than 
patients with category normal and overweight BMI. 
Regarding the Hypertension variable, while the 
Log-rank test yielded a p-value of 0.2, indicating 
non-significance, the Gray test showed a p-value of 
0.22, suggesting no significant association between 
hypertension and dropout. The results highlight strong 
correlation between BMI and dropout from the program. 
It is worth noting that even when there are small 
number (<5) of events in some categories, the log-rank 
test and the Gray test can still be applied [27].  

To assess the impact of the variable on dropout 
duration, we utilized the Cox regression model for 
scenarios without competing risks, while for situations 
involving competing risks, the Fine and Gray model 
was employed. Results presented in Table 3 revealed 
that in the absence of competing risks, the hazard of 
dropout for underweight patients was 3.088 times 
higher compared to normal-weight patients. However, 
when accounting for competing risks, it was observed 
that the hazard of dropout for underweight patients 
increased to 3.43 times that of patients with normal 
weight. Our findings are in agreement with [32] whose 
systematic review determined that whereas 
underweight group was shown to have a 3.4 times 
greater risk of mortality than the normal-weight group, 
there was no significant difference in mortality risk 
between normal weight group and overweight group. 
Although, it is not so clear the reason for this difference, 
some studies, such as [33, 34] have associated this 
difference with increased impairments in insulin 
secretion, undernutrition, and epigenetic alterations to 

Table 1: Distribution of Variables Based on the Patients CDiC Program Status 

Factor  Category  Active, 
n (%) 

Dropout, 
n (%) 

Died, 
n (%) 

Total 
n=1132 

Residence Rural 370 (93.4) 5 (1.3) 21 (5.3) 396 

Urban 699 (95.0) 15 (2.0) 22 (3.0) 736 

Gender Female 537 (94.0) 7 (1.2.0) 27 (4.8) 571 

Male 532 (94.8) 13 (2.3) 16 (2.9) 561 

BMI Normal 394 (96.1) 5 (1.2) 11 (2.7) 410 

Overweight 247 (96.9) 1 (0.4) 7 (2.7) 255 

Underweight 428 (91.6) 14 (3.0) 25 (5.4) 467 

Hypertension Normal 525 (92.7) 10 (1.8) 31 (5.5) 566 

High BP 434 (97.0) 9 (2.0) 4 (1.0) 447 

Low BP 110 (92.5) 1 (0.8) 8 (6.7) 119 
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the genome in the underweight as compaired to the 
overweight BMI among patients. 

Despite the smaller standard error observed for the 
estimated coefficients in the Cox model, there was a 
significant decrease in the AIC value from 689 to 218 
upon utilizing the Fine and Gray model, indicating 
better fitting of data by Fine and Gray model than Cox 
model. 

To assess the proportional hazard assumption, 
which is a fundamental assumption of the Cox 
regression model, the “cox.zph” function from the 
survival package is used. Based on the p-value results 
in Table 4, there was no strong evidence to suggest a 
violation of the proportional hazard assumption for any 
of the variables. The global p-value of 0.71 also 
indicates no strong evidence of violating the 
assumption for any of the variables in the Cox model. 
Unfortunately, R lacks a direct function for assessing 
the proportionality assumption regarding the Fine and 

Gray model. To investigate the proportionality 
assumption for the FG model, log(-log(1-F)) can be 
plotted against log(time) [12], where F is the CIF for the 
event dropping out. If the curves do not cross, we can 
say that the assumption is not violated. Figure 3 shows 
that the assumption was violated for hypertension and 
residence variables. For the BMI variable, we can see 
that the curve for the overweight BMI was horizontal, 
which crosses the other curves. This may be because 
there is only one event in this group. Ignoring this group, 
we could say that the variable BMI does not violate the 
assumption. Regarding the gender variable, the curves 
show no evidence of violating the assumption. 

4. DISCUSSION 

Exploring factors contributing to dropouts from the 
CDiC program for T1DM patients is crucial for 
enhancing the program's efficacy in addressing specific 
challenges. This study employs both non-competing 
risk methods and competing risk methods to assess 

Table 2: Nonparametric Tests for Significance of Variables with and without Competing Risks 

Variable Log-rank test P-value Gray test P-value 

Residence 0.5 0.6 2.97 0.085 

Gender 0.1 0.8 2.38 0.12 

BMI 16.7 0.0002 9.34 0.009 

Hypertension 3 0.2 10.2 0.22 

 

 
Figure 3: Cumulative incidence function for BMI. 

Table 3: Regression Models for the Effect of BMI on Patient Time to Drop Out  

 Cox Model FG Model 

 ! (SE) exp (!) P-value ! (SE) exp (!) P-value 

BMI Normal - - - - - - 

 Overweight 0.35(0.43) 1.417 0.421 -0.62(1.1) 0.54 0.57 

 Underweight 1.12(0.30) 3.088 0.000 1.23(0.51) 3.43 0.015 

Log-L -342.5 -107 

AIC 689 218 
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the average time to dropout, identify factors influencing 
dropout time, and estimate the effect of significant 
variables. Additionally, our aim is to compare the two 
methods to determine the preferred approach for 
analyzing the time to dropout. 

From the results, we found that the average time for 
dropping out of the program was 471 days. When 
accounting for competing risks, the average dropout 
time increased by 51.5 days, indicating that 
considering death as a dropout event led to an 
underestimation of dropout time. It's worth noting that 
while our focus aligns with [16] regarding analyzing 
CDiC program data in Uganda to investigate the 
reasons behind dropping out of the program, our 
methodology differs. Wesonga et al. [16] treated 
"Active" as the event of interest, and therefore, patients 
who dropped out were considered censored data. 
While we considered dropout as the event of interest 
and death as a competing event. Consequently, our 
study exhibited a higher percentage of censoring 
compared to theirs (94%). Nonetheless, our study 

shares similarities with the work of Fufa et al. (2023), 
where their percentage of censoring was 81%.  

When pinpointing factors influencing the dropout 
time, both non-competing methods and competing 
methods indicated that the BMI variable had a 
significant effect on dropout time, while residence 
showed a marginal significant (p<0.10) effect on 
dropout. Gender , and hypertension variables showed 
no influence on dropout time. In contrast, [16] reported 
that gender and residence variables were significant 
factors. However, it is noteworthy that their analysis 
focused on survival time in the program, whereas ours 
focused on dropout time. Therefore, it is not 
necessarily expected that a factor influencing survival 
time would also affect dropout time. Conversely, BMI 
was found to be a significant factor influencing both 
survival time and dropout time. 

To estimate the effect of factors affecting dropout 
time, multivariable models were used. In the absence 
of competing risks, we employed the Cox proportional 
hazard model, and the BMI variable was included. It 

Table 4: Checking the Assumption of Proportionality for the Cox Model 

 Chisq df P-value 

BMI 1.993 2 0.37 

Gender 0.383 1 0.54 

Residence 0.463 1 0.50 

Hypertension 1.040 2 0.59 

GLOBAL 3.728 0 0.71 

 

 

 
Figure 4: Checking the assumption of proportionality for the FG model. 
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was found that the hazard of dropping out for patients 
with underweight BMI is three times that for patients 
with normal BMI. However, when considering 
competing risks, the results of the Fine and Gray model 
indicated that the hazard of dropping out for patients 
with underweight is 3.43 times that for those with 
normal BMI. This enhancement can be attributed to the 
inclusion of weight in the Fine and Gray model formula, 
allowing for a more comprehensive assessment of the 
factor's impact on the outcome. Furthermore, it was 
determined that the AIC value for the Fine and Gray 
model (218) was lower than that of the Cox model 
(689), indicating that the Fine and Gray model is more 
suitable for analyzing time to dropout. These 
differences suggest that when competing risks are 
present, it is better to apply competing risk models, 
which is consistent with the study conducted by Nolan 
EK and Chen HY [28].  

In most studies that evaluate disease outcomes, 
statistical approaches such as the Kaplan-Meier (KM) 
survival analysis and Cox proportional hazards 
regression are normally used to account for unequal 
follow-up time, for instance when patients die or drop 
out before study completion. However, these survival 
analysis methods were originally developed to describe 
all-cause mortality in the presence of loss to follow-up 
independent of the study outcome [24,29]. Therefore, 
when KM and Cox proportional hazards models are 
used to describe outcomes other than all-cause 
mortality in the presence of a significant and related 
competing risk, such as death, it is likely that biased 
results may result [30,31].  

5. CONCLUSION  

In this study, we sought to determine the 
importance of utilizing competing risks methods in 
dropout analysis within the CDiC program for T1DM 
patients. By employing both non-competing and 
competing risk approaches, we comprehensively 
assessed dropout patterns, identified influential factors, 
and estimated their effects on dropout time. Our 
findings underscore the necessity of considering 
competing risks, such as death, to avoid 
underestimating dropout time. 

While our methodology differed from previous 
studies, particularly in handling dropout events and 
censoring, we consistently found BMI to be a significant 
determinant of dropout time. Multivariable modeling 
revealed the substantial impact of underweight BMI, 
with the Fine and Gray model providing a more refined 
estimation compared to the Cox model. This 
improvement, attributed to the inclusion of weight, 
enhances our understanding of dropout determinants. 
Moreover, our comparison of model performance using 

AIC values highlights the superiority of the Fine and 
Gray model in analyzing time to dropout. These 
insights contribute to optimizing interventions within the 
CDiC program and similar initiatives, ultimately 
enhancing patient care and program effectiveness in 
addressing dropout challenges among T1DM patients. 
Therefore, our study pinpoints two major implications 
that is, a patient dropout prevention strategy should 
adopt statistical modeling that would track all patients 
registered on the CDiC program to identify at-risk 
patients and provide them with additional support. And 
secondly, that a competing risks hazard model for 
predicting the probability of dropping out should 
become part of a powerful tool to identify patients at 
risk of dropping out. 
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