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Abstract: Repeated measures analysis is a common analysis plan for clinical trials comparing change over time in 
quantitative trait outcomes in treatment versus control. Mixed model for repeated measures (MMRM) assuming an 
unstructured covariance of repeated measures is the default statistical analysis plan, with alternative covariance 
structures specified in the event that the MMRM model with unstructured covariance does not converge. We here 
describe a parsimonious covariance structure for repeated measures analysis that is specifically appropriate for 
longitudinal repeated measures of chronic progressive conditions. This model has the parsimonious features of the 
mixed effects model with random slopes and intercepts, but without restricting the repeated measure means to be linear 
with time. We demonstrate with data from completed trials that this pattern of longitudinal trajectories spreading apart 
over time is typical of Alzheimer’s disease. We further demonstrate that alternative covariance structures typically 
specified in statistical analysis plans using MMRM perform poorly for chronic progressive conditions, with the compound 
symmetry model being anticonservative, and the autoregressive model being poorly powered. Finally, we derive power 
calculation formulas for the chronic progressive repeated measures model that have the advantage of being independent 
of the design of the pilot studies informing the power calculations. When data follow the pattern of a chronic progressive 
condition. These power formulas are also appropriate for sizing clinical trials using MMRM analysis with unstructured 
covariance of repeated measures. 
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1. INTRODUCTION 

A consistent feature of longitudinal studies of 
normal aging [1], mild cognitive impairment [2], and 
Alzheimer’s disease (AD) [3, 4] is that longitudinal 
measures of cognition and function "fan out" over time. 
This is typical of chronic progressive conditions, where 
the rate of progression of symptoms is different for 
each person, so that persons who progress more 
quickly diverge from persons who progress more slowly 
over time. A standard statistical analysis used by 
clinical trialists to accommodate this pattern of 
progression is mixed model for repeated measures 
(MMRM) assuming an unstructured covariance matrix 
[5]. As a measure of the importance of the MMRM 
analysis plan, every pivotal phase 3 clinical trial of 
monoclonal antibody therapy for the treatment of 
Alzheimer’s disease that filed a statistical analysis plan 
on clinicaltrials.gov (Table 1) listed MMRM as the 
primary statistical analysis. Monoclonal antibody 
therapy is the first treatment proven to affect the course 
of Alzheimer’s disease and be approved by the FDA, 
and MMRM was the the statistical analysis plan for 
each of the clinical trials supporting three recently 
approved treatments for early Alzheimer’s disease [6-
8]. A feature of MMRM is that the number of  
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covariance parameters in the model increases 
quadratically with the number of repeated measures, 
and MMRM models may fail to converge. For this 
reason, regulatory trial statistical analysis plans include 
contingency analysis plans. Typically, MMRM analyses 
assume parsimonious compound symmetric (CS) or 
first order autoregression (AR1) covariance structures 
for the contingency analysis plan (Table 1). 

In this paper, we demonstrate that CS and AR1 
models are not appropriate for chronic progressive 
data. In large-scale computer simulations of data 
typical of Alzheimer’s disease, we found that both of 
these covariance structures performed poorly for 
chronic progressive data. The MMRM analysis with CS 
covariance is prone to type I error, with a type I error 
rate that greatly exceeds the nominal 5% type I error 
rate used in hypothesis testing. Hence this commonly 
applied covariance structure is not valid for data typical 
of Alzheimer’s disease. In contrast, the MMRM analysis 
with AR1 covariance structure can result in a dramatic 
loss of statistical power, meaning that otherwise well-
powered trials may miss effective treatments if a 
contingency analysis with AR1 is required. To address 
these concerns, we derived an alternative covariance 
structure that is more appropriate for chronic 
progressive data typical of Alzheimer’s disease 
(Section 2). The model we propose is an MMRM model 
with arbitrary fixed effect means, but with a pattern of 
dispersion of longitudinal repeated measures more 
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consistent with the covariance structure of a chronic 
progressive condition. We call this alternative 
covariance structure the chronic progressive (CP) 
covariance structure, and the corresponding MMRM 
analysis the chronic progressive repeated measures 
(CPRM) analysis. 

Unlike the unstructured covariance model, the CP 
covariance model, formally defined in Section 2, 
requires only four parameters for estimation regardless 
of the number of repeated measures. Critical to 
confirming the potential applicability of the CPRM 
analysis, we demonstrate using data from completed 
clinical trials that the CP covariance assumption holds 
for longitudinal cognitive data in Alzheimer’s disease 
(Section 3). Section 4 reports computer simulations 
demonstrating how MMRM with a CS or AR1 
covariance structures dramatically mis-represent 
treatment associations with disease. These limitations 
of the CS and AR1 models are relevant to any 
condition with a chronic progressive pattern of decline. 
Finally, we derive power formulas for the CPRM model 
(Section 5). A unique advantage of the CPRM 
parameterization is that power formulas are more 
flexible in that they can be used to power future clinical 
trials of arbitrary design (with arbitrary number and 
interval between followup visits) regardless of the 
design of the pilot study used to inform power 
calculations. It is often the case that available data to 
inform sample size calculations are from studies with a 
different length of follow-up than the planned future 
clinical trial. These formulas will allow power 
calculations that fully utilize available data regardless of 
the design of prior studies. Moreover, for chronic 
progressive data the CP and unstructure covariance 
estimate have the same expected value, meaning 
CPRM power formulas can be used to power clinical 
trial where MMRM with unstructure covariance is the 
primary statistical analysis plan. 

2. THE CHRONIC PROGRESSIVE REPEATED 
MEASURES (CPRM) MODEL 

The CPRM model is a modification of the commonly 
applied parameterization of the Laird and Ware [9] 
mixed effects model of longitudinal data 

yij = !0 +!1t j +b0i +b1it j + eij ,          (1) 

where yij  is the response for subject i  ( i =1,2,...,n ) at 
time j  ( j =1,2,...,m ), t1,t2,...,tm  are times at which 
measurements yi  are made, ! = (!0,!1)  are the fixed 
effect coefficients describing the mean longitudinal 
trajectory,  (b0i ,b1i ) ! N(0,D)  are random, subject-
specific intercepts and slopes, and  ei ! N(0,R)  is 
residual variation about the individual trajectories. 
Where convenient, we will represent the diagonal 
elements of D  as ! b0

2  and ! b1
2 , and the off-diagonal 

elements as ! b0 , b1
 in derivations to follow. This model, 

familiarly called the random slopes model, has proved 
to be useful for modeling longitudinal cohort study data, 
where the linearity assumptions generally hold if the 
length of longitudinal follow-up is small relative to the 
full time course of the disease. The linearity 
assumption can be problematic for clinical trials, 
however, even when the period of follow-up is relatively 
short, because the pattern of progression under the 
alternative in the treatment arm cannot be known a 
priori. For example, treatment effects may be acute but 
not long lasting (e.g., Figure 1, top panel), or, there 
may be some delay before treatment effects are 
realized (e.g., Figure 1, bottom panel). We will 
demonstrate in simulations below how the random 
slope model can lead to dramatically anticonservative 
hypothesis testing when the fixed effect mean pattern 
of progression is consistent with the top panel of Figure 
1. To accommodate non-linear patterns of fixed effect 
mean change, we propose the CPRM model (equation 
(2)). 

The CPRM model parameterization replaces the 
fixed effects intercept and slope in equation (1) with m  

Table 1: Contingency Covariance Structures for Phase 3 Alzheimer’s Disease Monoclonal Antibody Trials Listed on 
clinicaltrials.gov. 

Trial  SAP  Contingency  N  Sponsor  Intervention 

NCT03289143  MMRM  hetAR1  457  Genentech, Inc.  Semorinemab  

NCT02484547  MMRM  hetAR1  1643  Biogen  Aducanumab  

NCT02670083  MMRM  CS  813  Hoffmann-La Roche  Crenezumab  

NCT03518073  MMRM  hetAR1, hetCS, CS  360  Eli Lilly and Company  Zagotenemab  

NCT01224106  MMRM  not specified  799  Hoffmann-La Roche  Gantenerumab  

SAP = Statistical Analysis Plan; MMRM = Mixed Model for Repeated Measures; hetAR1 = heterogeneous AR1; CS = compound symmetric; hetCS = heterogeneous 
CS. 
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means, one for each repeated measurement time, and 
can be written as  

yij =! j +b0i +b1it j + eij ,           (2) 

where ! j , j =1,...,m  are mean levels at each visit, 

 (b0i ,b1i ) ! N(0,D)  as above are random intercepts and 
slopes modeling the dispersion of the longitudinal 
trajectories, and  ei ! N(0,R)  are residual errors. The 
alternative parameterizations of fixed effects by the two 
models is illustrated with a toy example in Figure 2. 

Estimation of the parameters in equation (2) is by 
maximum likelihood or restricted maximum likelihood 

(REML). Derivation of the asymptotic variance of the 
fixed effect estimates for power calculation formulas 
proceeds analogously to the derivation of the variance 
of the fixed effects parameters under the random 
slopes model [10]. 

Writing equation (2) in matrix notation, we have  

yi =Xi! +Zibi +" i ,           (3) 

where identity matrix Xi  is the fixed effects design 
matrix for subject i , and Zi = (1,ti )  is the random 
effects design matrix for subject i . More generally, Xi  
can include additional fixed effect covariates. 

Under this model, the covariance Vi  for subject i  
with data completion pattern ti  is 

Vi =Cov(yi ) =ZiDZi
' +Ri .          (4) 

Assuming independent and identically distributed 
(iid) residual error 2

!" , Ri =!"
2I , and the elements of 

Vi  are a function of the pattern ti  of observations 
obtained for subject i , the residual error variance !"

2 , 
and the covariance parameters ! b0

2 , ! b1
2 , and ! b0b1

. 

Specifically, Vi  are matrices with off diagonal elements 
u,v  equal to ! b0

2 + (tu + tv )! b0 , b1
+ tutv! b1

2  and diagonal 

elements u,u  equal to ! b0
2 + 2tu! b0b1

+ tu
2! b1

2 +!"
2 . See 

reference [10] for a formal derivation. 

Given Vi  and Xi , when data are missing at random 
the asymptotic variance of REML estimates of the 
coefficients in equation (3) is 

V(!̂) =
i
"(Xi

'Vi
#1Xi )

$

%
&

'

(
)

#1

.           (5) 

Note that there is a finite set of missing value 
patterns defining Xi  and Vi . Indexing these missing 
value patterns by k  and summing over participants 
with the same dropout pattern k , equation (5) can be 
expressed as  

V(!̂) =
k
"nk (Xk

' Vk
#1Xk )

$

%
&

'

(
)

#1

= n
k
"pk (Xk

' Vk
#1Xk )

$

%
&

'

(
)

#1

        (6) 

where the nk  are counts of subjects in each set and 
sum to n , and pk = nk / n . Equation (6) will be useful for 
power calculation formulas for the CPRM model 
derived in Section 4 below. 

 
Figure 1: Top panel. Hypothetical trajectory of expected 
values by arm for a treatment with short term efficacy but no 
difference in treatment versus control at the end of the trial. 
Bottom panel. Hypothetical trajectory of expected values for a 
treatment with positive effect starting after the third 
observation and persisting to the end of the trial. 
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Figure 2: Fixed effect estimates by a repeated measures 
model (red) and a random slopes model (blue). The repeated 
measures model estimates the expect level at each time 
point while the random slopes model assumes a linear 
trajectory of fixed effect levels as a function of time. 

3. EMPIRICAL VALIDATION OF THE CHRONIC 
PROGRESSIVE COVARIANCE STRUCTURE FOR 
ALZHEIMER’S DISEASE DATA 

We explore the relevance of the CPRM model for 
modeling cognitive decline in Alzheimer’s disease 
using placebo arm data from representative clinical 
trials performed by the National Institute of Aging 
funded Alzheimer’s Disease Cooperative Study 
(ADCS). Alzheimer’s disease is a chronic progressive 
condition characterized by gradual loss of short term 
memory and other cognitive faculties. The primary 
outcome measures for Alzheimer’s disease clinical 
trials are typically so called global cognitive measures, 
meaning neuropsychometric instruments querying 
multiple domains of cognitive function affected by the 
disease. We here report data from two representative 
clinical trials, an Alzheimer’s treatment trial of vitamins 
to reduce homocysteine levels using the Alzheimer’s 
Disease Assessment Scale - cognitive domain (the 
ADAS-cog) as the primary outcome [11], and a 
prodromal Alzheimer’s disease trial of vitamin E or 
donepezil using the Mini-Mental Status Exam (MMSE) 
as a secondary outcome [12]. The vitamin E arm was 
null in the prodromal Alzheimer trial [12], and therefore 
we pooled the placebo and vitamin E arm data from 
this trial to increase the available sample size. 

Tables 2 and 3 report empirical covariance matrices 
and covariance matrices estimates by the CPRM 
model for the two trials. The empirical covariance 

matrices for these trials represent the covariance 
pattern one would expect for longitudinal trajectories 
that are fanning apart as a function of time. Under this 
pattern, we observe two phenomena. First, the 
variance increases over time, as reflected in the 
diagonal terms. Second, the covariance of neighboring 
observations increases over time, as reflected in the 
off-diagonal terms. The CPRM covariance model 
consistently recapitulates the empirical covariance 
observed in these data (Tables 2 and 3). For 
comparison, we have included covariance matrices for 

Table 2: Covariance Matrices Estimated from the ADCS 
Homocysteine Trial (ADAS-cog Data, n=330 
Subjects, Quarterly Observations for One and 
One Half Years). 

Empirical covariance matrix

 

68.6 61.8 60.6 66.0 67.7 73.9 78.4
61.8 80.4 67.2 74.8 75.4 84.5 89.6
60.6 67.2 79.5 76.9 77.4 84.6 93.2
66.0 74.8 76.9 102.7 91.0 96.1 106.1
67.7 75.4 77.4 91.0 104.9 102.8 112.4
73.9 84.5 84.6 96.1 102.8 123.7 123.7
78.4 89.6 93.2 106.1 112.4 123.7 155.6
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Covariance assuming the CPRM model

 

69.1 58.8 62.3 65.7 69.1 72.5 76.0
58.8 76.9 67.7 72.1 76.5 80.9 85.3
62.3 67.7 86.7 78.5 83.9 89.3 94.7
65.7 72.1 78.5 98.5 91.3 97.6 104.0
69.1 76.5 83.9 91.3 112.3 106.0 113.4
72.5 80.9 89.3 97.6 106.0 128.0 122.8
76.0 85.3 94.7 104.0 113.4 122.8 145.8
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Covariance assuming heterogeneous CS

 

72.7 64.4 63.5 72.2 72.2 78.2 89.2
64.4 81.6 67.2 76.5 76.5 82.9 94.5
63.5 67.2 79.2 75.4 75.3 81.6 93.1
72.2 76.5 75.4 102.5 85.7 92.9 105.9
72.2 76.5 75.3 85.7 102.4 92.8 105.9
78.2 82.9 81.6 92.9 92.8 120.2 114.7
89.2 94.5 93.1 105.9 105.9 114.7 156.3
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Covariance assuming heterogeneous AR1

 

78.1 73.6 62.1 58.8 49.3 45.5 44.6
73.6 92.1 77.7 73.5 61.7 57.0 55.8
62.1 77.7 87.1 82.4 69.1 63.9 62.6
58.8 73.5 82.4 103.4 86.7 80.1 78.6
49.3 61.7 69.1 86.7 96.6 89.2 87.5
45.5 57.0 63.9 80.1 89.2 109.5 107.3
44.6 55.8 62.6 78.6 87.5 107.3 139.6
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the heterogeneous CS and heterogeneous AR1 
MMRM model fits to the ADCS homocysteine trial data 
(Table 2). In these data, the CS model overestimates 
covariance terms away from the diagonal and the AR1 
model underestimates these terms. Similar CS and 
AR1 covariance patterns were observed in the 
prodromal Alzheimer’s disease trial (data not shown). 
Critically, in both data sets the covariance of the first 
and last observations, a critical component of the 
standard error of change first to last, is misrepresented 
by these models. Bias in estimates of the standard 
error of change can dramatically effect the performance 
of hypothesis testing by MMRM, as will be illustrated in 
Section 4. 

Table 3: Covariance Matrices Estimated from the ADCS 
Clinical Trial of Vitamin E and Donepezil 
(MMSE Data, n = 510, Biannual Observations 
for Three Years) 

Empirical covariance matrix

 

3.46 2.08 2.00 2.52 2.30 2.76 3.20
2.08 4.88 2.92 3.97 3.52 4.34 5.18
2.00 2.92 5.41 4.47 4.22 4.91 6.25
2.52 3.97 4.47 9.13 6.15 8.19 10.02
2.30 3.52 4.22 6.15 8.87 8.25 9.89
2.76 4.34 4.91 8.19 8.25 13.44 14.55
3.20 5.18 6.25 10.02 9.89 14.55 21.69
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Covariance assuming the CPRM model

 

5.13 2.20 2.50 2.81 3.12 3.42 3.73
2.20 6.12 3.56 4.24 4.93 5.61 6.29
2.50 3.56 7.86 5.68 6.74 7.80 8.85
2.81 4.24 5.68 10.36 8.55 9.98 11.42
3.12 4.93 6.74 8.55 13.60 12.17 13.98
3.42 5.61 7.80 9.98 12.17 17.60 16.54
3.73 6.29 8.85 11.42 13.98 16.54 22.34
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4. PERFORMANCE OF MMRM ON CHRONIC 
PROGRESSIVE DATA 

We use computer simulations to empirically 
characterize the performance of MMRM applied to 
chronic progressive data under null and alternative 
scenarios. We consider MMRM analyses assuming 
unstructured, chronic progressive, compound 
symmetric (standard and heterogeneous), and first 
order autoregressive (standard and heterogeneous) 
covariance structures. We also consider the random 
slopes analysis in the simulations. MMRM models were 
fit using the gls function within the R nlme package 
[13]. Random slopes and CPRM models were fit using 
the lme function within the same package. The random 

slopes models were constrained to have a single fixed 
effect intercept shared by both groups as 
recommended for randomized clinical trials [14]. 

Simulations under the null. Longitudinal repeat 
measures were generated following a CPRM model 
using covariance and residual error variance 
parameters estimated from the placebo arm of the 
ADCS homocysteine trial [11], and using fixed effects 
means under the hypothetical scenario of a treatment 
with short term palliative effect that washes out by the 
end of the study period (Figure 1, top panel). A total of 
10,000 simulated samples were performed (n=80 per 
group, 18 month trial with quarterly observations, and a 
nominal p-value for hypothesis testing of 0.05). 

Type I error rate estimates under the different model 
fits are listed in Table 4. The CPRM model and 
unstructured MMRM met the nominal five percent type 
I error rate to within the accuracy of simulations. The 
compound symmetry and heterogeneous compound 
symmetry MMRM models had type I error rates of 13.4 
percent and 9.6 percent respectively, meaning these 
two models are invalid and not appropriate for data that 
follow the chronic progressive pattern. The mixed 
effects model with random slopes was likewise 
anticonservative, with a type I error rate of nearly 15% 
(Table 4). This result clearly illustrates the concern of 
regulatory agencies that analyses imposing 
assumptions about the shape of the mean trajectory, 
such as the random slopes model with linear fixed 
effect mean illustrated here, can result in positive trial 
findings even when the treatment has no persistent 
efficacy. Finally, we observe that the AR1 and 
heterogeneous AR1 models (Table 4) had type I error 
rates much less than 0.05 (i.e., were substantively 
conservative). 

Simulations under the alternative. We next 
simulated data following the CPRM model as above, 
but under the alternative scenario depicted in Figure 1, 
bottom panel, and with an effect size chosen to 
ensured an expected power of 80 percent under the 
CPRM analysis. The unstructured MMRM and the 
CPRM models acheived the expected 80 percent 
power, while power for the AR1 MMRM models was 
close to 50 percent (Table 4). We do not report power 
for the compound symmetry models because type I 
error rates for these models are substantially greater 
than 0.05, meaning these models are invalid for chronic 
progressive longitudinal data. We also do not report 
power for the random slopes model because the type I 
error rate for this model (15%) is likewise greater than 
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the nominal 5% error rate under the null, meaning the 
random slopes model is invalid for plausible scenarios 
relevant to regulatory agencies. 

Table 4: Type I error rate under the null (Figure 1, Top 
panel), and power under the alternative (Figure 
1, Bottom panel). (10,000 simulations each, 
with effect size under the alternative chosen to 
achieve 80% power for the CPRM model). 
Power is not reported for models that did not 
meet the nominal 5% type I error rate under the 
null. 

  !  error rate  Power  

CPRM  0.0536  0.7981 

random slopes  0.1499  - 

MMRM, CS  0.1343  - 

MMRM, hetCS  0.0955  - 

MMRM, AR1 0.0069  0.5187  

MMRM, hetAR1 0.0058  0.4997  

MMRM, UN  0.0539  0.7989  

CS = compound symmetric; hetCS = heterogeneous CS; AR1 = 
autoregressive; hetAR1 = heterogeneous AR1; UN = unstructured. 

5. SAMPLE SIZE CALCULATIONS FOR THE CPRM 
MODEL 

Derivation of sample size formulas for the CPRM 
model follows directly from derivations for the random 
slopes model [10]. Power is a function of the sample 
size in each arm, the covariance of repeated measures 
in each arm, the study design (the study length and 
interval between followups), the missing data pattern, 
and the effect size. To simplify presentation, we begin 
by describing power formulas for the common 
circumstance of equal allocation to arms and 
equivalent covariance structure in the two arms. In this 
case, the variance of change first to last visit in each 
arm is V(!̂m "!̂1) , and the sample size required to 
detect a difference !  in change scores between arms 
at last visit with power 1!"  and type I error rate !  is 
given by the familiar formula 

N / Arm = 2(z! /2 + z" )
2V(!̂m #!̂1) /$

2.         (7) 

We use this formula to demonstrate two power 
calculation approaches commonly used when sizing a 
clinical trial, a conservative estimate of required sample 
size informed by the power of a completers-only 
analysis, and a less conservation estimate that 
explicitly adjusts for the anticipated missing data 
pattern to be obtained by the trial. We describe each of 
these in turn. 

Completers-only approach. A conservative 
approach is to determine the sample size required to 

power a completers-only analysis and then increase 
the sample size to ensure this many subjects complete 
the trial. This method has the advantages of relying on 
a straightforward power calculation formula and 
resulting in statistically conservative sample size 
estimates. For completers, there are no missing data 
and Xi  and Zi  are equivalent full matrices for all 
subjects so that 

V(!̂m "!̂1) =
2#$

2 + (tm " t1)
2# b1

2

n
.          (8) 

See the Appendix for derivation of this result. 
Equation (6) then reduces to 

Ncompleters / Arm = 2(z! /2 + z" )
2[2#$

2 + (tm % t1)
2# b1

2 ] /&2.        (9) 

If pm  is the proportion of subjects who will complete 
the trial, then setting total N / Arm  to Ncompleters / pm  will 
ensure an expected Ncompleters  complete the planned 
trial. 

Study subject attrition approach. Alternatively, 
one can use equation (6) to directly account for the 
anticipated dropout pattern expected in a study. Setting 
W = nV(!̂) , under equal allocation to study arm and 
assuming equivalent repeated measures covariance 
across arms, the sample size required to detect 
treatment effect !  with power 1!"  and type I error 
rate !  is 

N / Arm = 2(z! /2 + z" )
2 Wmm +W11 # 2W1m( ) /$2.      (10) 

As a practical matter, investigators restrict to the m  
missing data patterns determined by study subject 
dropout [15]. Given iid residual error variance !"

2 , W  
and by extension equation (9) are simple linear 
functions of the variance parameters !"

2 , ! b0
2 , ! b1

2 , 

and ! b0b1
, and the design vector t  (see Appendix). 

Given these four parameters as input, equation (10) 
can be used to determine sample size as a function of 
power (1!" ), type I error rate ! , and effect size ! . 

Implementation. Formula (8) and the study subject 
attrition approach formula (9) under the usual 
assumption of iid residual error are implemented in the 
CPRM.power function within the R package longpower 
[16]. Generalizing these formulas to allow unequal 
allocation and to the case where the covariance 
structure is different in the two groups is straightforward 
[10], and has also been implemented for the CPRM 
model in the CPRM.power function. Different 
covariance structures may be anticipated across 
groups. For example, in clinical trials a greater variance 
of change may occur within the treatment arm because 
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the change observed in the treatment arm reflects both 
normal background variability in change and the 
variability in response to treatment [5]. The formulas 
provided in CPRM.power can be used to perform 
sensitivity analyses of the potential magnitude of this 
effect on trial power. Note that the variance parameters 
required for the power calculation formulas can be 
estimated from prior data of arbitrary design. Stated 
differently, if we have variance parameter estimates 
from pilot studies or prior trials, we can use these 
values to power a future trial of arbitrary design (with 
arbitrary number and interval between followup visits). 
Furthermore, for chronic progressive data, the CPRM 
covariance estimate is a consistent estimate of the 
unstructure covariance, meaning these power 
calculation formulas are appropriate for trials using 
MMRM with unstructured covariance as the primary a 
priori analysis plan. 

5.1. Validation of Sample Size Formulas by 
Computer Simulation 

 We used computer simulations to evaluate the 
performance of equation (6). We simulated data 
following a CPRM model (equation (1)) using 
parameters estimated from the ADCS homocysteine 
trial described above, assuming an 18 month trial with 
quarterly observations and a 25% shift in mean change 
in treatment versus control. Power observed in 
simulations closely matches predicted power (Figure 
3). 

 
Figure 3: Theoretical power curve versus power estimated 
by computer simulation (10,000 simulations per sample size, 
two-sided test, type I error ! = 0.05 ). 

6. DISCUSSION 

We have introduced a novel parsimonious 
parameterization of the covariance structure of 
longitudinal repeated measures appropriate for chronic 

progressive conditions. We have demonstrated that 
alternative parsimonious parameterizations typically 
used in MMRM analysis are not appropriate for this 
pattern of longitudinal data that fan apart over time. In 
application, the MMRM analysis assuming compound 
symmetry is anticonservative, and the MMRM analysis 
assuming AR1 is underpowered for this type of data, 
while the CPRM analysis is both valid (maintaining its 
nominal type I error rate) and has equivalent power to 
MMRM with unstructured covariance when applied to 
chronic progressive data. 

Further, we have derived power calculation 
formulas for the CPRM model that are independent of 
pilot study design. This is helpful when the design of 
pilot studies available to inform power calculations 
does not match the design of the future trial being 
powered. 

The CPRM model has the heuristic advantage of 
testing treatment efficacy based explicitly on 
differences in response at the end of the trial period 
without any assumptions about the shape of mean 
trajectories of response over time. Model results are 
therefore unambiguous and easier to describe to a 
non-technical audience. We illustrated with computer 
simulations the concern of regulators and clinical 
trialists that false positive findings are possible under 
the random slopes analysis plan (Table 4). Recent 
advances in analytic methods, including natural cubic 
spline [17] and progression repeated measures [18] 
models, may be less susceptible to type I error 
concerns, and this is an area of future research. 
However, MMRM remains the de facto standard for 
Alzheimer’s disease treatment trials [6-8], and has the 
distinct advantage of providing an unambiguous 
characterization of treatment effect independent of any 
assumptions about the pattern of mean progression in 
the treatment or control arm. Finally we note that a 
current limitation of the CPRM model is that it has not 
been implemented as an option to MMRM functions 
contained in standard statistical analysis packages. 
Although the model parameters can be estimated with 
a linear mixed effect model, it would be more 
convenient and useful to include CP in the panoply of 
covariance structures available to the functions 
typically used for MMRM analysis. This is an area of 
future research. 

The suitability of CPRM for data beyond the 
longitudinal Alzheimer data considered here will have 
to be examined on an individual basis. However, we 
note that the CPRM model assumptions hold for any 
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scenario where the mixed effects model with random 
slopes is appropriate, so applications of CPRM are 
equally as broad as this common analytic approach. 
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APPENDIX 

A. Proofs 

A.1. Derivation of Equation (8) 

Restricting to completers only, there is only one 
drop-out pattern in equation (6) (the complete data 
pattern, with design matrix X , an m  by m  identity 
matrix). Hence, the asymptotic variance of !̂  reduces 
to  

(nX'V!1X)!1 = (nI'V!1I)!1 =V / n,  

where  
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Applying elements of this matrix to the variance of 
!̂m "!̂1 , we obtain  
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This completes the proof. 

 

A.2. Explicit Expression of W  in Equation (10) 

Let Vm  be the covariance of repeated measures of 
completers defined above. Study subject dropout 
defines m!1  additional covariance matrices 

Vk =
Uk 0
0 0

!

"
##

$

%
&&,  

k =1,...,m!1  Where Uk  are the k  by k  upper left 
submatrices of the completers’ covariance matrix Vm . 
Then by equation (6) 

W = nV(!̂) =
k
"pkVk
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.       (A2) 

The indexing in equation (A1) defines the elements 
of Vk  as a function of the variance parameters ! b0

2 , 

! b1
2 , ! b0b1

, and !"
2 . Calculation of W  involves setting 

the elements of Vk  to values determined by these four 
parameters, and applying the matrix operations 
specified in equation (A2). 
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