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Abstract: Background: Zika virus, Kunjin virus, Yellow Fever virus, & Sindbis virus belong to Flaviviridae family and are 
involved in derailing various biological pathways which are not yet elucidated.  

Aim: Understanding the gene as well as miRNA interplay which plays a vital role in pathogenesis in the diagnosis and 
prognosis of the disease is of utmost significance.  

Materials and Methods: By leveraging microarray data from the Gene Expression Omnibus GSE232504 dataset, we 
meticulously examined the differentially expressed genes & micro RNAs (miRNAs) induced by viral infections.  

Results: Our analysis revealed 60 statistically significant and differentially expressed genes (DEGs) out of a total of 
18,725, with SESN2 (SESTRIN 2) and GADD45A (Growth Arrest and DNA Damage-Inducible Alpha) standing out as 
highly significant players in the host cell response to these viruses. hsa-miR-148b-3p, hsa-miR-148a-3p, hsa-miR-607 & 
hsa-miR-5582-3p were the highly expressed micro RNAs (miRNAs). Through functional enrichment analyses, we 
unveiled significant pathways, including Type 1 Diabetes Mellitus and NF-kappa B Signaling, shedding light on the 
potential mechanisms underlying these virus-host cell interactions. Furthermore, our PPI (protein-protein interaction) 
network analysis highlighted key hub genes, while our exploration of miRNA-gene targeting relationships offered 
valuable insights into post-transcriptional regulation.  

Conclusion: This study provides a robust foundation for understanding the molecular intricacies of virus-host cell 
interactions, offering potential targets for further experimental validation and paving the way for innovative therapeutic 
approaches in combatting viral infections and associated diseases. 
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INTRODUCTION 

Flaviviruses are a group of viruses characterized by 
an 11 kb, positive-sense, and single-stranded RNA 
genome [1]. These viruses have a global distribution, 
posing a risk of infection to over 50% of the world's 
population (Pierson & Diamond, 2020). While many 
infections caused by flaviviruses are asymptomatic, the 
most common clinical presentation resembles a flu-like 
illness. However, it is crucial to note that flaviviruses 
have the potential to cause a range of severe ailments, 
including jaundice, encephalitis, and hemorrhagic 
fever, albeit in a small proportion of cases [2]. Among 
the notable members of the genus are Zika virus 
(ZIKV), Yellow Fever virus (YFV), Dengue virus 
(DENV), Japanese Encephalitis virus (JEV), and West 
Nile virus (WNV) [2,3]. These viruses are transmitted 
through mosquito vectors, which initially infect human 
skin cells, including dendritic cells. Subsequently, 
infected cells travel to lymphoid tissues, facilitating the 
dissemination of the virus throughout the body, 
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including the central nervous system (CNS). 
Flaviviruses exhibit a remarkable ability to manipulate 
various cellular processes for their advantage upon 
infection. For instance, DENV has been reported to 
enhance fatty acid biosynthesis by employing fatty acid 
synthase (FASN) at viral replication sites and 
enhancing FASN activity [4]. This alteration changes 
the lipid composition of virus-infected cells, altering the 
properties of the membrane and enhancing the 
formation of viral replication compartments [5]. 
Furthermore, Flaviviridae employ strategies to counter 
host cell defense mechanisms. They can inhibit 
interferon signaling [6] and prevent the formation of 
stress granules [7], allowing them to overcome the 
translation block of viral RNA. 

Current research has highlighted how flaviviruses 
can significantly impact the transcriptome of host cells, 
influencing gene expression and pre-mRNA splicing 
[8]. DENV, for example, affects the splicing of 
Spermidine/Spermine N1-Acetyltransferase 1 (SAT1), 
leading to the augmented addition of the fourth exon in 
SAT1 mRNA. This results in the degradation of SAT1 
mRNA and subsequently reduces the levels of the 
antiviral protein SAT1 [9]. 
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It is worth noting that most studies on transcriptomic 
profiling following flavivirus infection have focused on a 
single viral class, and investigational conditions across 
diverse studies have varied widely. This variability has 
made it challenging to compare the deviations in the 
host cell transcriptome caused by related flaviviruses 
accurately. To address this, our work aims to provide 
insights into the diverse molecular effects of flavivirus 
infections on host cells by investigating variations in the 
coding transcriptome and proteome upon infection with 
Flaviviridae (Zika, Kunjin, and Yellow Fever viruses). 

The objective of the study was to utilize microarray 
data deposited by Brand et al. 2023 to find differentially 
expressed genes (DEGs) linked with the complex 
interplay between viruses (Zika, Kunjin, or Yellow 
Fever virus) and host cells (human brain-derived U87 
cells) using bioinformatics tools. The research also 
sought to investigate gene enrichment, gene ontology 
(GO), enhancements in Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways, protein-protein inter-
action (PPI) networks, and cooperative miRNA-target 
quality networks, all in an effort to gain a deeper under-
standing of the fundamental molecular processes invol-
ved in the interactions between the virus and host cells. 

METHODS 

Extraction of Data of Microarray 

The public and functional genomics database called 
the Gene Expression Omnibus contains chips, high-
throughput microarrays, and gene expression data. In 
this study, we retrieved the GSE232504 microarray 
dataset from https://www.ncbi.nlm.nih.gov/geo/ for 
analysis. This dataset was originally deposited by [8].  

Processing of Data 

To process raw data and identify DEGs, we 
employed statistical software R 4.0.1 (available at 
https://www.r-project.org/) in conjunction with 
Bioconductor (http://bioconductor.org/biocLite.R). The 
Limma software was employed to normalize the 
information in sets, a crucial step that involves fitting a 
gene linear model to assess differential expression 
potential. Limma's robust tools facilitated data reading, 
standardization, and analysis. Subsequently, another 
instance of the Limma set was utilized to screen genes 
based on varying expression levels, using a fold-
change and p – value < 0.05. The differentially 
expressed genes (DEGs) were visualized on a volcano 
plot using the ggplot 2 package, and significant DEGs 
were further gathered using pheatmap. 

Assessment of Function and Pathway Enrichment 
of Differentially Expressed Genes 

We utilized the GO resource, available at 
http://www.geneontology.org, a community-driven 
bioinformatics tool. GO employs ontology to enhance 
our comprehension of biology, offering insights into 
gene and gene product functions. Additionally, we 
employed the KEGG resource (https://www.kegg.jp/), 
which serves as an information repository for 
understanding genomic classifications and additional 
biological information. It encompasses systematic, 
genomic, chemical, and a specialized human-specific 
category of health-related information. To analyze 
related signal pathways and biological functions, we 
employed GO/KEGG enrichment alongside the Cluster 
Profiler software package. A p - value of 0.05 or lower 
was considered statistically significant. 

Creating a Network of Protein-Protein Interactions 
and Determining and Confirming Key Hub Genes 

We employed the STRING database to build a 
protein-protein interaction network visualized in 
Cytoscape. Furthermore, we utilized Cytoscape's 
cytohubba module to identify central genes with higher 
scores, indicating their stronger connections within the 
PPI network. To confirm the significance of these 
genes statistically, GEO2R was used and significance 
was determined at a threshold of p < 0.05. 

To examine the miRNA-gene directing relationships 
for overlapping differentially expressed genes and hub 
genes, we consulted the miRDB, DIANA, and 
TargetScan databases, which provide comprehensive 
information on empirically confirmed relationships 
among genes and miRNAs, including metadata, 
experimental methods, and conditions. 

RESULTS 

A Total of 1190 Genes were Modulated in Response 
to CDCA Treatment 

Out of 18725 DEGs, 1190 genes were commonly 
expressed in the tissues infected with all the viruses 
(Figure 1).  

Each Viral Infection Displayed a Unique Profile, 
Highlighting Distinct Characteristics and 
Responses Associated with each Virus 

The UMAP plot shows clear separation among 
various viral infections with each group represented by 
a different color, underscoring the distinct profiles. 
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Figure 1: Venn diagram representing the common genes 
across all the groups. CCM – Cultured conditioned medium, 
ZK – Zika Virus, YFV – Yellow fever virus, SV – Sindbis virus, 
KV – Kunjn virus. 

This UMAP (Uniform Manifold Approximation and 
Projection) plot showcases the clustering of different 
groups within the dataset GSE232504, with the number 
of neighbors set to seven. Each point represents a data 
sample, and the colors correspond to specific groups: 
CCM, KV, ZV, YFV, and SV. The distinct clustering 
patterns reflect the inherent similarity or dissimilarity 
among the groups, suggesting underlying biological or 
molecular differences captured in the dataset. For 
biostatistical research, such visualizations are 
instrumental in reducing dimensionality while 
preserving data structure, allowing researchers to 
identify patterns, relationships, and potential outliers. 

The clear segregation observed here can guide 
downstream analyses, such as biomarker identification, 
differential expression studies, or pathway analyses, 
further enhancing our understanding of the biological 
phenomena represented in these groups. 

Box Plots Representing the Normal Distribution of 
the Data 

In the dataset GSE232504, normalized gene 
expression counts (log10-transformed) were compared 
across samples from five different viral infection 
groups: CQV, KV, ZV, YFV, and SV. The boxplot 
reveals that the distribution of gene expression levels is 
relatively consistent across all groups, as indicated by 
similar median values and interquartile ranges. This 
uniformity suggests effective normalization, minimizing 
technical variation between samples. No significant 
outliers are observed within each group, indicating that 
the expression levels are relatively stable within each 
infection type. The comparable expression levels 
across groups may suggest a similar transcriptional 
response baseline among the different infections, 
though further analysis would be necessary to identify 
specific expression differences related to each virus 
type. 

Chenodeoxycholic Acid Induces Differential 
Expression of Genes in Gallbladder Cancer Cells 

In the analysis of the GSE232504 dataset, KV 
resulted in decrease in the expression of 317 genes 
and increase in the expression of 25 genes (Figure 
4A). The expression of 290 genes was reduced and 
138 genes was increased as a result of ZV infection 
(Figure 4B). Further, 587 genes were found to be 
downregulated and 22 genes were upregulated in 
response to YFV (Figure 4C). A total of 108 genes 
were downregulated and 5 genes were upregulated as 
a result of SV infection (Figure 4D). This suggested 
that each virus has a distinct pattern in modulating the 
host gene expression. 

The Gene Expression Pattern was Found to be 
Unique to each Viral Infection 

A significant variation in the gene expression 
profiles was observed between control group when 
compared to any other viral infection (Figure 5A-5B).  

Majority of the Genes were Found to be Significant 

A significant proportion of the genes were found to 
be modulated in response to viral infections (p<0.05) 
(Figure 6). 

 
Figure 2: UMAP plot representing variations among four 
groups and clustering within the groups. CCM – Cultured 
conditioned medium, ZK – Zika Virus, YFV – Yellow fever 
virus, SV – Sindbis virus, KV – Kunjn virus. 
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Figure 3: Boxplot of normalized gene expression counts (in Log10 scale) for multiple samples associated with the dataset 
GSE232504. Each color-coded box represents one of four distinct viral infection groups: CQV, KV, ZV, YFV, and SV, as 
indicated by the legend. 

 

 
Figure 4: Differential expression of the genes in response to various infections. The x - axis (Log2 Fold Change) signifies the 
degree of gene expression change, positive values signifying upregulation (red) and negative values representing 
downregulation (blue). The y - axis (-Log10 p - value) represents the statistical significance of differential expression, where 
smaller p - value indicate greater significance. Each data point on the plot corresponds to a gene, positioned based on its log2 
fold change on x - axis and negative logarithm of its p - value on y - axis. 
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Figure 5: MA (mean-difference) plots comparing gene expression between different conditions, with respect to control and 
various other groups (KV, ZV, YFV, and SV). The four panels (A, B, C, and D) show the log2 fold change (log2FC) of each gene 
on the y-axis, plotted against the log10 transformed mean expression level (log10 base Mean) on the x-axis. 

 
Figure 6: Viral infection has significantly modulated the gene 
expression patterns. The histogram represents p-value 
against the number of genes. 

Top 10 differentially expressed genes are 
represented in Table 1. The table contains information 
about several genes or proteins, including their 
symbols, descriptions, statistical significance (p - 
value), and interactions with specific microRNAs 
(miRNAs). hsa-miR-148b-3p, hsa-miR-148a-3p, hsa-
miR-5582-3p and hsa-miR-607 were the highly 

expressed miRNAs. Each row in the table represents a 
unique gene or protein, and the associated miRNAs 
are listed alongside. The p - value of 0 for each entry 
suggests that these interactions are highly statistically 
significant. This information is crucial in understanding 
the governing associations between miRNAs and their 
mark genes or proteins. It indicates that these miRNAs 
likely perform a significant role in the post-
transcriptional regulation of the mentioned genes or 
proteins. Further analysis and experimental validation 
may be required to uncover the specific biological 
implications of these interactions in cellular processes 
and diseases. 

Our gene ontology analysis revealed that top 10 
genes are associated with molecular fucntions such as 
leucine binding, cytokine activity, protein 
heterodimerization activity etc. (Figure 7A). Cellular 
component analysis showed cytoplasmic lumen, 
organelle outer lumen, HFE transferring receptor 
complex and lumen of various organelles (Figure 7B). 
The key biological processes associated with these 10 
genes are regulation of VEGF, T cell proliferation and 
unsaturated fatty acid biosynthesis (Figure 7C). 
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Top 10 Modulated Genes Influence Immune 
Pathways 

Protein – protein interaction analysis showed that 
the top 10 genes are modulate inflammatory response 
mediated by interleukins (Figure 8).  

The results presented in the KEGG pathway 
analysis report (Table 2) indicate the enrichment of 
specific biological pathways within a dataset of genes 

or proteins. Notably, the Type 1 Diabetes Mellitus 
pathway showed significant enrichment, with 2 out of 
38 genes associated with this autoimmune disease, 
and a low false discovery rate (FDR), suggesting a 
reliable finding. Conversely, the Tuberculosis pathway 
exhibited enrichment, but with a somewhat higher FDR, 
warranting cautious interpretation. The NF-kappa B 
Signaling Pathway was highly enriched, with a strength 
value of 1.77 and an impressively low FDR of 0.0019, 
indicating a robust association with this cellular 

Table 1: Enrichment of Top 10 Genes and their Associated miRNAs 

Symbol Description p - value miRNA 

SESN2 Sestrin 2 0 

hsa-miR-605-3p 
hsa-miR-148b-3p 
hsa-miR-148a-3p 
hsa-miR-891a-3p 

GADD45A Growth Arrest And DNA Damage Inducible 
Alpha 0 

hsa-miR-659-3p 
hsa-miR-607 

hsa-miR-5582-3p 
hsa-miR-3163 

CTH Cystathionine Gamma-Lyase 0 

hsa-miR-27b-3p 
hsa-miR-9985 

hsa-miR-582-5p 
hsa-miR-27a-3p 

F3 Coagulation Factor III, Tissue Factor 0 

hsa-let-7a-3p 
hsa-miR-5011-5p 

hsa-let-7b-3p 
hsa-miR-98-3p 

HSPA6 Heat Shock Protein Family A (Hsp70) 
Member 6 0 

hsa-miR-6779-3p 
hsa-miR-6515-5p 
hsa-miR-1343-3p 
hsa-miR-6721-5p 

PTGS2 Prostaglandin-Endoperoxide Synthase 2 0 

hsa-miR-95-5p 
hsa-miR-5692a 
hsa-miR-26a-5p 
hsa-miR-1297 

ATF3 Activating Transcription Factor 3 0 

hsa-miR-600 
hsa-miR-3200-5p 
hsa-miR-6823-5p 

hsa-miR-4251 

RSAD2 Radical S-Adenosyl Methionine Domain 
Containing 2 0 

hsa-miR-141-3p 
hsa-miR-590-5p 
hsa-miR-21-5p 

hsa-miR-200a-3p 

IL1A Interleukin 1 Alpha 0 

hsa-miR-543 
hsa-miR-323b-5p 

hsa-miR-3662 
hsa-miR-410-5p 

IL1B Interleukin 1 Beta 0 

hsa-miR-495-3p 
hsa-miR-5688 
hsa-miR-1291 
hsa-miR-5692a 
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process. Furthermore, Alzheimer's Disease and the 
AGE-RAGE Signaling Pathway in Diabetic 
Complications both displayed enrichment, with 
moderate FDR values of 0.0172 and an exceptionally 
low 0.0019, respectively. These findings offer insights 
into potential biological processes associated with the 
dataset and can guide further research, with the 

reliability of each enrichment assessed by the FDR 
values. 

DISCUSSION 

Virus-host interactions are crucial aspects of 
virology and are essential for understanding how 

 

 
Figure 7: GO analysis of top 10 modulated genes. A) Molecular function, B) Cellular component analysis and C) Biological 
processes. 
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viruses infect, replicate within, and interact with their 
host organisms. 

 
Figure 8: Protein-protein interactions of top 10 genes. 

Kunjin virus, a member of the Flaviviridae family, 
primarily infects birds but can also affect humans and 
horses [10]. The virus enters host cells by binding its 
envelope protein E to cellular receptors like DC-SIGN 
and heparan sulfate. Once inside, it replicates in the 
cell's cytoplasm, hijacking host machinery for RNA 
replication and protein production [11]. The host's 
immune system responds with innate immune 
mechanisms, including interferon production. While 
Kunjin virus is generally less pathogenic in humans, 
severe cases can occur, particularly in individuals with 
weakened immune systems [12]. 

Zika virus, another flavivirus, is known for its 
association with microcephaly in newborns [13]. It 
enters host cells via interactions between its envelope 
protein E and receptors like AXL, Tyro3, and TIM-1, 

Table 2: Representation of KEGG Pathway 

Pathway  Description Count in network  Strength False discovery rate 

hsa04904 Type 1 diabetes mellitus  2 of 38 2.02 0.0077 

hsa05152 Tuberculosis 2 of 165 1.38 0.0397 

hsa04668 TNF signaling pathway 2 of 111 1.55 0.0239 

hsa05222 Small cell lung cancer 2 of 92 1.63 0.0199 

hsa05323 Rheumatoid arthritis 2 of 83 1.68 0.0181 

hsa05020 Prion disease 3 of 263 1.35 0.0102 

hsa05133 Pertussis 2 of 73 1.73 0.0172 

hsa04115 P53 signaling pathway 2 of 72 1.74 0.0172 

hsa04380 Osteoclast differentiation 2 of 120 1.52 0.0265 

hsa04932 NAFLD 2 of 146 1.43 0.0354 

hsa04064 NF-kB pathway 2 of 101 1.77 0.0019 

hsa04217 Necroptosis 2 of 147 1.43 0.0354 

hsa05162 Measles 3 of137 1.63 0.0027 

hsa04010 MAPK signaling pathway 4 of 286 1.44 0.0019 

hsa05140 Leishmaniasis 3 of 69 1.93 0.0019 

hsa05134 Legionellosis 2 of55 1.86 0.0122 

hsa05164 Influenza A 2 of 163 1.56 0.0038 

hsa05321 Inflammatory bowel disease 2 of 59 1.82 0.0127 

hsa04657 IL-17 signaling pathway 2 of 91 1.64 0.0199 

hsa04640 Hematopoietic cell lineage  2 of 90 1.64 0.0199 

hsa05332 Graft-versus-host disease 2 of 36 2.04 0.0077 

hsa05418 Fluid shear stress and atherosclerosis 2 of 129 1.48 0.0291 

hsa04218 Cellular senescence 2 of 150 1.42 0.0354 

hsa04625 C type lectin receptor signaling pathway 2 of 101 1.59 0.0209 

hsa05010 Alzheimer disease 3 of 354 1.22 0.0172 

hsa04933 AGE-RAGE signaling pathway in diabetic 
complications 

3 of 96 1.79 0.0019 
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with a particular affinity for neural cells [14]. The virus 
can infect neural stem cells and developing brain cells, 
contributing to microcephaly. Host immune responses 
include interferon production and pro-inflammatory 
cytokines, although Zika virus can evade some immune 
defenses. Cross-reactivity with other flaviviruses can 
impact the immune response and possibly worsen 
outcomes in those previously exposed to related 
viruses [15]. 

Yellow Fever virus, a mosquito-borne flavivirus, 
enters host cells by binding envelope protein E to 
receptors like DC-SIGN and heparan sulfate [16]. 
Replication occurs in the cell's cytoplasm using the 
host's machinery. The virus triggers a robust immune 
response, activating both innate and adaptive 
components. This immune response is vital in 
controlling and clearing the infection [17]. Importantly, a 
highly effective Yellow Fever vaccine has been 
developed, providing long-lasting immunity and 
preventing outbreaks by priming the host's immune 
system to recognize and combat the virus effectively 
[18]. 

Studying virus-host interactions using bioinformatics 
tools is of paramount importance for several reasons; 

Bioinformatics helps to dissect the molecular 
interactions between viruses and their host organisms 
at a systems level. This understanding is crucial for 
unraveling the mechanisms underlying viral infections, 
replication, and pathogenesis, which can inform the 
development of targeted therapies and vaccines. By 
identifying key host factors and pathways involved in 
virus-host interactions, bioinformatics can aid in the 
discovery of potential drug targets. This knowledge can 
guide the development of antiviral drugs and vaccines, 
offering promising strategies for the treatment and 
prevention of viral diseases. Bioinformatics tools can 
analyze viral genomes and predict how viruses may 
evolve over time. This is vital for tracking the 
emergence of new viral strains, assessing their 
potential for increased virulence or transmission, and 
developing strategies to mitigate outbreaks. 
Understanding individual variations in host responses 
to viral infections is crucial for personalized medicine. 
Bioinformatics can help identify genetic factors that 
influence susceptibility to certain viruses, enabling 
more tailored treatment plans and vaccination 
strategies. 

Bioinformatics tools can pinpoint biomarkers 
associated with viral infections. These biomarkers can 

be used for early detection, monitoring of progression, 
and treatment efficacy assessment. Studying virus-host 
interactions on a large scale can help public health 
organizations monitor and respond to infectious 
disease outbreaks more effectively. This information 
can inform containment strategies, vaccination 
campaigns, and resource allocation. Bioinformatics 
allows for the integration of diverse data sources, 
including genomics, transcriptomics, proteomics, and 
clinical data. Integrating these data can provide a 
comprehensive view of virus-host interactions and their 
impact on health and disease. Computational models 
and simulations generated through bioinformatics can 
be used to test hypotheses and predict outcomes of 
virus-host interactions. This enables researchers to 
explore various scenarios and strategies in a cost-
effective and time-efficient manner. Bioinformatics 
facilitates data sharing and collaboration among 
researchers worldwide. Open-access databases and 
bioinformatics tools ensure that valuable information is 
widely available to the scientific community, fostering 
collaboration and accelerating research. Bioinformatics 
also plays a role in the ethical analysis of virus-host 
interactions, helping to address issues related to data 
privacy, informed consent, and the responsible use of 
genetic information in research and healthcare. 

Advanced technologies such as microarrays have 
transformed our capacity to investigate overall genome 
expression levels and identify changes in gene 
expression without relying on assumptions. In the past 
decade, these technologies have played a pivotal role 
in studies pinpointing irregularities in gene expression 
linked to mental health disorders. Beyond the 
conventional hypothesis-driven approach, 
transcriptomics research holds the potential to uncover 
fresh indicators associated with various mental 
disorders, opening the door to innovative treatment 
strategies and personalized medicine. 

Protein-protein interactions (PPIs) are pivotal in 
predicting the functions of target proteins and 
evaluating the drug-like qualities of molecules. PPIs 
govern various biological processes, including 
metabolism, development, and interactions between 
cells. Information concerning these interactions is 
essential in pinpointing potential therapeutic targets. 
Research has revealed that proteins with numerous 
connections, known as hubs, encompass enzyme 
families, transcription factors, and intrinsically 
disordered proteins. PPIs involve intricate processes 
and a wide-reaching regulatory scope, underscoring 



Bioinformatics and Primary Hyperoxaluria International Journal of Statistics in Medical Research, 2024, Vol. 13      433 

the necessity of understanding diverse interactions and 
their impacts. In-silico methods are frequently 
employed to scrutinize PPIs. For instance, STRING 
uses functional associations to link proteins 
contributing to particular biological functions. According 
to the analysis from the STRING database presented in 
Figure 8, there is no noteworthy gene co-expression, 
co-occurrence, or gene fusions associated with the 
examined gene [19]. 

miRNAs, capable of targeting over 60% of human 
genes, play a pivotal and diverse role in gene 
regulation [20]. Prior research has established their 
importance in kidney development, structure, function, 
and the regulation of electrolytes, fluid, blood pressure 
and acid-base balance. MiRNAs are also implicated in 
pathological processes. Importantly, miRNA levels in 
serum and urine remain stable despite storage 
conditions, making them valuable diagnostic and 
prognostic markers [20-24]. 

This study demonstrates the application of 
biostatistical tools in virology to analyze transcriptomic 
data, focusing on Zika virus, Kunjin virus, Yellow Fever 
virus, and Sindbis virus of the Flaviviridae family. By 
examining microarray data from the GSE232504 
dataset, the analysis identified differentially expressed 
genes (DEGs) and miRNAs critical to the viruses' 
pathogenic mechanisms. Statistical methods enabled 
the discovery of key DEGs like SESN2 and GADD45A, 
and miRNAs such as hsa-miR-148b-3p and hsa-miR-
148a-3p. Functional enrichment and pathway analyses, 
supported by PPI network mapping, elucidated the 
involvement of significant pathways like NF-kappa B 
signaling in viral pathogenesis. This integrative 
approach underscores the value of biostatistics in 
decoding complex virus-host interactions, identifying 
potential biomarkers, and guiding therapeutic 
innovations. 

The application of biostatistical techniques to 
transcriptomic data in this study highlights their broader 
significance in modeling complex biological systems, 
particularly in virology. By leveraging data reduction 
and clustering methods such as UMAP, combined with 
differential expression analysis, the study successfully 
identified key genes and miRNAs involved in the host 
response to Zika virus, Kunjin virus, Yellow Fever virus, 
and Sindbis virus. These viruses, belonging to the 
Flaviviridae family, disrupt multiple pathways critical to 
maintaining cellular homeostasis. Biostatistical 
modeling provides a robust framework to unravel these 

complex interactions, enabling researchers to identify 
significant molecular players like SESN2, GADD45A, 
and miRNAs such as hsa-miR-148b-3p and hsa-miR-
148a-3p, which could serve as potential diagnostic or 
therapeutic targets. 

A key strength of these techniques lies in their 
ability to handle high-dimensional data, such as the 
18,725 genes analyzed in this study. By identifying only 
60 statistically significant DEGs, the methods not only 
reduced data complexity but also emphasized 
biologically relevant findings. Similarly, the integration 
of pathway enrichment analyses and PPI network 
construction provided deeper insights into the biological 
systems affected by these viruses. For instance, the 
identification of pathways like NF-kappa B signaling 
and Type 1 Diabetes Mellitus underscores the potential 
systemic implications of these viral infections, further 
linking molecular disruptions to clinical outcomes. This 
systems biology approach offers a holistic view, 
connecting gene-level changes to pathway-level effects 
and organism-wide responses. 

The miRNA-gene interaction analysis adds another 
layer of complexity to the study, shedding light on post-
transcriptional regulatory mechanisms. MiRNAs are 
known to fine-tune gene expression and play critical 
roles in viral pathogenesis. The identification of 
miRNAs such as hsa-miR-607 and hsa-miR-5582-3p 
highlights their potential as biomarkers or therapeutic 
targets. Biostatistical modeling facilitates this 
understanding by providing tools to predict and validate 
miRNA-gene interactions, creating a roadmap for 
further experimental studies. 

Beyond this study, the implications of these 
biostatistical techniques extend to a wide range of 
biological systems. They enable the modeling of 
dynamic, non-linear relationships within and between 
molecular pathways, making them invaluable for 
understanding complex diseases, multi-organ 
interactions, and host-pathogen dynamics. These 
methods can also be applied to study other emerging 
viral infections, adapt to new datasets, and integrate 
multi-omics data for a more comprehensive 
understanding. As the field of virology evolves, the 
ability to model and predict biological responses using 
biostatistical frameworks will become increasingly 
critical, driving advances in precision medicine and 
public health strategies. 

In conclusion, the biostatistical approaches used in 
this study not only provided valuable insights into virus-
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host interactions but also demonstrated their potential 
for broader applications in understanding and modeling 
complex biological systems. These techniques serve 
as a bridge between data and biology, paving the way 
for translational research that could significantly impact 
diagnostic, prognostic, and therapeutic paradigms. 

In summary, the study of virus-host interactions 
through bioinformatics tools has far-reaching 
implications for human health, disease prevention, and 
our understanding of the complex interplay between 
viruses and their hosts. It empowers researchers to 
develop innovative solutions and strategies to combat 
infectious diseases and protect public health. 

LIMITATIONS OF THE STUDY 

As this is a bioinformatics study validation, in the 
clinical cohorts is warranted. However, the study 
utilized the dataset involving human derived cell lines 
and hence, the findings are of significant relevance. 

CONCLUSION 

In this extensive bioinformatic analysis of the 
GSE232504 dataset, 18,725 DEGs were found, with 60 
genes demonstrating significant statistical differences. 
The results were visualized using a volcano plot, where 
genes with higher log2 fold changes were considered 
upregulated, and those with lower negative log p - 
value were considered statistically significant. Notably, 
SESN2 and GADD45A out as highly significant genes. 
hsa-miR-148b-3p,hsa-miR-148a-3p, hsa-miR-891a-3p 
and hsa-miR-605-3p were the top expressed miRNAs 
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