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Abstract: This study aims to utilize microarray data deposited by Romero et al. and conduct bioinformatic analysis for 
identifying differentially expressed genes (DEGs) associated with a novel method involving gene correction at the 
Alanine–Glyoxylate Aminotransferase (AGXT) locus and direct conversion of fibroblasts from primary hyperoxaluria type 
1 (PH1) patients into healthy induced hepatocytes (iHeps) using Clustered Regularly Interspaced Short Palindromic 
Repeats - CRISPR-associated protein 9 (CRISPR-Cas9) technology. Additionally, the study aims to elucidate the 
molecular mechanisms underlying hyperoxaluria compared to oxalate crystal formation. Romero et al.'s GSE226019 
microarray data was retrieved from Gene Expression Omnibus. Statistical analysis was done in R and Bioconductor, 
utilizing rigorous methods to ensure robust and reproducible results. The limma program compared gene expression 
levels across groups. Pathway analysis, protein-protein interaction (PPI) network creation, and miRNA-target interaction 
network analysis were constructed. The top ten DEGs included ANGPTL3, SLC38A3, KNG1, BDH1, GC, ADH1C, 
ARG1, CYP3A4, AMBP, and CYP2C9. Enrichment analysis revealed significant associations with various biological 
pathways, including Linoleic acid metabolism and Retinol metabolism. Volcano plots and mean difference plots 
highlighted significant gene expression changes between different sample groups. Protein-protein interaction networks 
and miRNA-target interaction networks provided insights into molecular interactions and regulatory mechanisms. The top 
ten differentially expressed genes include ANGPTL3, SLC38A3, KNG1, BDH1, GC, ADH1C, ARG1, CYP3A4, AMBP, 
and CYP2C9—emerge as key players with strong associations to critical biological pathways like Linoleic acid 
metabolism and drug metabolism-cytochrome P450. Understanding the regulatory role of specific miRNAs (hsa-miR-
4501, hsa-miR-5692c, hsa-miR-6731-3p, hsa-miR-6867-5p, hsa-miR-616-3p, hsa-miR-4468, hsa-miR-3692-3p, hsa-
miR-4277, hsa-miR-4763-5p, hsa-miR-4797-5p) in gene expression could provide further insights into disease 
mechanisms and potential therapeutic avenues. The statistical findings provide a foundation for predictive modeling, 
hypothesis testing, and exploring personalized therapeutic strategies. 
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INTRODUCTION 

Primary hyperoxalurias (PH) encompass rare 
metabolic disorders characterized by hepatic oxalate 
overproduction, with primary hyperoxaluria type 1 
(PH1) standing out as the most severe form. It arises 
due to a deficiency in alanine-glyoxylate aminotrans-
ferase (AGT), a peroxisomal enzyme encoded by the 
AGXT gene, resulting in impaired conversion of 
glyoxylate to glycine in the liver. This metabolic 
anomaly leads to the accumulation of oxalate, a 
metabolite that cannot be efficiently processed by 
mammals and consequently precipitates as calcium 
oxalate crystals, primarily in the kidneys, resulting in 
renal damage and often progressing to end-stage renal 
disease (ESRD) and systemic oxalosis [1]. 

Historically, treatment modalities have focused on 
preserving renal function and reducing urinary calcium 
oxalate saturation. However, the advent of substrate  
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reduction therapy, involving periodic administration 
of therapeutic siRNA targeting the upstream enzyme 
glycolate oxidase (GO), has provided a novel 
therapeutic avenue. Despite these advancements, 
patients often require intensive dialysis as a temporary 
measure, awaiting combined liver-kidney transplan-
tation (LKTx), the only definitive curative treatment due 
to the hepatic origin of oxalate overproduction [2-6]. 

Although Liver-Kidney Transplantation (LKTx) 
remains the primary treatment, challenges such as 
donor organ shortage, transplantation-associated 
complications, and lifelong immunosuppression 
underscore the need for alternative therapeutic 
strategies. Gene editing has emerged as a promising 
avenue, with targeted correction of AGXT mutations 
using CRISPR-Cas9 technology showing potential. 
Additionally, hepatocyte transplantation has shown 
promise in preclinical studies and as a bridging 
procedure in clinical cases. Efforts to generate induced 
hepatocytes from patient-derived cells offer an 
attractive alternative for liver cell replacement therapy,  
 



Bioinformatics and Primary Hyperoxaluria International Journal of Statistics in Medical Research, 2024, Vol. 13      437 

minimizing tumorigenic risks associated with pluripotent 
cell-based approaches. 

Romero et al. explored innovative strategies to 
address PH1, combining gene correction at the AGXT 
locus with direct conversion of patient-derived 
fibroblasts into healthy induced hepatocytes (iHeps) [7]. 
They employed CRISPR-Cas9 technology for site-
specific AGXT correction through homology-directed 
repair (HDR), utilizing two distinct methods: precise 
point mutation correction and insertion of an enhanced 
AGXT cDNA. Subsequently, they induced the 
transformation of corrected cells into iHeps by 
overexpressing hepatic transcription factors. The 
resulting AGXT-corrected iHeps exhibited hepatic gene 
expression profiles and demonstrated reduced oxalate 
accumulation compared to non-edited PH1-derived 
iHeps, presenting a promising alternative cellular 
source for liver cell replacement therapy and a 
personalized in vitro model for studying PH1 [7]. 

Furthermore, advancements in hepatocyte 
differentiation from induced pluripotent stem cells 
(iPSCs) and direct cell reprogramming of somatic cells 
into induced hepatocytes offer additional avenues for 
exploring autologous hepatocyte-based therapies, 
minimizing the risks associated with allogenic 
transplantation and pluripotent cell-derived 
tumorigenicity. These approaches hold immense 
potential in addressing the unmet clinical needs of PH1 
patients, paving the way for effective and personalized 
therapeutic interventions. 

The aim of the study is to utilize microarray data, 
deposited by the author Romero et al., for bioinformatic 
analysis to identify differentially expressed genes 
(DEGs) linked with a novel method combining gene 
correction at the AGXT locus with direct conversion of 
fibroblasts from PH1 patients into healthy induced 
hepatocytes (iHeps) using CRISPR-Cas9 technology. 

Additionally, the study intends to investigate gene 
enrichment, gene ontology (GO), Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway involvement, 
protein-protein interaction (PPI) networks, and miRNA-
target interaction networks to elucidate the molecular 
mechanisms underlying hyperoxaluria compared to the 
oxalate crystal formation stage. Statistical analysis 
played a pivotal role, employing linear models in the 
limma package, which are tailored for microarray data 
due to their flexibility and precision in handling high-
dimensional datasets. These methods contributed to 
identifying key hub genes and pathways, with 

implications in predictive modeling, hypothesis testing, 
and personalized medicine. 

METHODOLOGY 

Statistical and Bioinformatics Analysis 

This study's core novelty lies in the biostatistical and 
bioinformatics methodologies applied to analyze 
publicly accessible microarray data (accession number 
GSE226019) deposited by Romero et al. Statistical 
analyses were conducted using R 4.0.1 in conjunction 
with Bioconductor packages to ensure reproducibility 
and robustness. The limma package was employed for 
differential gene expression analysis, offering tools for 
calibration and standardization across experimental 
batches. A gene linear model was fitted to assess 
differential expression, with genes filtered based on 
fold-change thresholds and statistical significance (p < 
0.05). 

Visualization of differentially expressed genes 
(DEGs) was achieved through ggplot2 for volcano plots 
and pheatmap for clustering significant DEGs. 

Dataset Selection and Preprocessing 

Secondary data analysis was performed on 
microarray datasets obtained from the GEO database 
for their relevance to Primary Hyperoxaluria Type 1 
(PH1) and CRISPR-Cas9-mediated gene repair 
experiments. The dataset included five groups: 

Skin fibroblasts of healthy controls. 

Skin fibroblasts with AGXT knock-in. 

Induced hepatocytes (iHeps) of control donors. 

Liver hepatocytes of control donors. 

iHeps of PH1 patients with AGXT mutation. 

Raw data from GEO was preprocessed for 
background correction, normalization, and quality 
assessment using limma, ensuring consistency across 
sample sets. 

Functional and Pathway Enrichment Analysis 

To evaluate the biological functions and pathway 
enrichments of DEGs, the ClusterProfiler package was 
employed for Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
analyses. Signaling pathways and biological functions 
were analyzed, with a statistically significant threshold 
set at p < 0.05. GO analysis provided insights into 
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cellular components, biological processes, and 
molecular functions, while KEGG analyses illuminated 
relevant pathways. 

Protein-Protein Interaction (PPI) Network Analysis 

A PPI network was constructed using the STRING 
database and visualized in Cytoscape to predict protein 
functions and elucidate cellular mechanisms. The 
cytoHubba module identified hub genes with higher 
connectivity scores, indicating their critical roles in the 
PPI network. Validation of hub gene statistical 
significance was conducted using GEO2R, with a focus 
on p < 0.05 for cross-sample comparisons. 

MicroRNA-Target Gene Network 

The miRNA-target gene relationships for DEGs and 
hub genes were identified using the miRDB database. 
This database integrates curated metadata, 
experimental evidence, and computational predictions. 
Interactions between miRNAs and target genes were 
systematically explored to understand their regulatory 
roles in PH1-related pathways. 

Experimental Details and Data Sources 

Data was derived from microarray experiments 
conducted by Romero et al. Human fibroblasts were 
isolated, immortalized via hTERT lentiviral 
transduction, and subjected to CRISPR-Cas9-mediated 
AGXT gene editing. Subsequent reprogramming of 
fibroblasts into iHeps involved hepatic transcription 
factors and culture in hepatic-specific media. 
Experimental validation included flow cytometry, RNA 
sequencing, immunoprecipitation, and western blotting. 
The processed data deposited in the GEO database 
(accession number GSE226019) served as the 
foundation for our analysis. 

Ethical Considerations 

This study utilized publicly available microarray 
data, eliminating ethical concerns. No direct patient 

recruitment or personal data usage occurred. Ethical 
standards adhered to those established by the original 
data authors. 

RESULTS  

The top ten differentially expressed genes were 
ANGPTL3, SLC38A3, KNG1, BDH1, GC, ADH1C, 
ARG1, CYP3A4, AMBP, CYP2C9. The table presents 
the enrichment results for the top 10 Differentially 
Expressed Genes (DEGs) in the study. These DEGs 
are significantly associated with various biological 
pathways, as indicated by the low False Discovery 
Rate (FDR) values, suggesting strong statistical 
significance. Notably, pathways such as Linoleic acid 
metabolism, Arginine biosynthesis, Retinol metabolism, 
and drug metabolism-cytochrome P450 exhibit high 
fold enrichment values, indicating a substantial 
overrepresentation of DEGs compared to random 
expectation. This suggests their potential importance in 
the context of the studied condition. Additionally, the 
involvement of pathways like Metabolic pathways and 
Chemical carcinogenesis-DNA adducts highlights the 
broader biological processes underlying the differential 
gene expression observed in the study. Overall, these 
findings provide valuable insights into the molecular 
mechanisms and pathways associated with the 
identified DEGs, offering a deeper understanding of the 
underlying biology of the studied condition. 

A volcano plot demonstrates statistical significance 
(-log10 P value) versus magnitude of change (log2 fold 
change) and is useful for envisioning differentially 
expressed genes. GSE226019 were used to screen 
DEGs ( upregulated and Generated using limma). 

Volcano Plots-Group 1 vs Group 2 

In the context of primary hyperoxaluria, comparing 
gene expression between Group 1 (skin fibroblasts of 
healthy controls) and Group 2 (skin fibroblasts with 
AGXT targeted knock-in) revealed noteworthy 

Table 1: Enrichment Results of Top 10 DEGs 

Enrichment FDR nGenes Pathway Genes Fold Enrichment Pathways (click for details) 

5.1E-04 2 30 169.5 Linoleic acid metabolism 
4.2E-02 1 22 115.6 Arginine biosynthesis 
3.2E-05 3 68 112.2 Retinol metabolism 
3.2E-05 3 69 110.5 Drug metabolism-cytochrome P450 
3.2E-05 3 75 101.7 Metabolism of xenobiotics by cytochrome P450 
2.1-03 2 68 74.8 Chemical carcinogenesis-DNA adducts 
1.1-02 4 1538 6.6 Metabolic pathways 
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alterations in various gene expressions. Specifically, 
HES5 displayed a significant upregulation with a 
log2(fold change) of 6.938 and a corresponding -
log10(Pvalue) of 1.354, suggesting its potential 
relevance to the condition. Conversely, genes like 
PRDM16 and EPHA2 exhibited substantial 
downregulation, with log2(fold changes) of -6.376 and -
4.381, respectively, implicating their involvement in the 
pathophysiology. Moreover, FBXO2 and TMEM51 
showed notable upregulation with log2(fold changes) of 
4.676 and 9.021, respectively, whereas WNT4 and 
LOC105376845 displayed significant downregulation 
with log2(fold changes) of -5.904 and -3.894, 
respectively.  

Volcano Plots-Group 3 vs Group 4 

In comparing Group 3 (induced hepatocytes of 
control donors) to Group 4 (liver hepatocytes of control 
donors), significant changes in gene expression were 
observed. Notably, MXRA8 exhibited the most 
substantial upregulation, with a log2(fold change) of 
6.156 and a corresponding -log10(Pvalue) of 13.198, 
suggesting its potential importance in the studied 
condition. Conversely, genes such as ARHGEF16 and 
ESPN displayed significant downregulation, with 
log2(fold changes) of -6.418 and -9.725, respectively, 
implicating them in the pathogenesis of the disease. 
Additionally, genes like GNB1 and ICMT showed 
notable upregulation with log2(fold changes) of 1.449 
and 2.283, respectively, indicating their potential 
involvement in disease mechanisms. Conversely, 
TNFRSF14 and PLEKHG5 exhibited moderate 
changes in expression levels, with log2(fold changes) of 
-2.088 and 2.608, respectively.  

Volcano Plots- Group 3 vs Group 5 

In comparing Group 3 (induced hepatocytes of 
control donors) to Group 5 (induced hepatocytes of 
PH1 patients with AGXT mutation), the analysis of 
gene expression data revealed significant changes in 
several genes. Notably, AJAP1 exhibited substantial 
upregulation with a log2(fold change) of 7.576, while 
TNFRSF14 showed moderate downregulation with a 
log2(fold change) of -1.106, suggesting their potential 
roles in underlying biological processes. Additionally, 
genes like SLC35E2A displayed significant 
upregulation with a log2(fold change) of 1.315, 
indicating potential involvement in cellular mechanisms. 
Conversely, genes such as PRDM16 and SLC2A5 
showed considerable downregulation with log2(fold 
changes) of -5.78 and -3.069, respectively, suggesting 

potential implications in disease pathogenesis. 
Furthermore, genes like GPR157 and PRXL2B 
exhibited notable changes in expression levels with 
log2(fold changes) of 1.345 and 1.015, respectively.  

Volcano Plots- Group 4 vs Group 5 

In comparing Group 4 (liver hepatocytes of control 
donors) to Group 5 (induced hepatocytes of PH1 
patients with AGXT mutation), the gene expression 
analysis revealed significant changes in the expression 
levels of several genes. For instance, ESPN displayed 
substantial upregulation with a log2(fold change) of 
9.307, while HES2 exhibited significant downregulation 
with a log2(fold change) of -6.546. Additionally, genes 
like ATAD3C and TMEM52 showed notable 
upregulation with log2(fold changes) of 4.854 and 5.33, 
respectively, suggesting potential roles in the 
underlying biological processes. Conversely, SLC2A5 
and SLC45A1 displayed considerable downregulation 
with log2(fold changes) of -8.839 and -5.152, 
respectively, indicating potential implications in disease 
pathogenesis. Furthermore, PLCH2 and ARHGEF16 
exhibited significant changes in expression levels with 
log2(fold changes) of 3.838 and 6.262, respectively.  

The "Log2 Fold Change" indicates the extent of 
change in gene expression between two conditions. A 
positive value denotes upregulation (increased 
expression) in the second condition, while a negative 
value signifies downregulation (decreased expression). 
Conversely, the "-Log10(Pvalue)" reflects the statistical 
significance of the expression change, with higher 
values suggesting stronger evidence against random 
chance. Typically, a threshold of -log10(Pvalue) > 2, 
corresponding to a p-value less than 0.01, is 
considered significant. Among the most significant 
changes observed, ESPN exhibits the highest 
upregulation, with a log2 fold change of 9.3 and a -
log10(Pvalue) of 74.15, indicating a substantial increase 
in expression. Understanding the role of ESPN in this 
context could be crucial for further investigation. 
Conversely, MXRA8 shows the most significant 
downregulation, with a log2 fold change of -6.21 and a -
log10(P value) of 14.92, prompting the need to explore 
why its expression is markedly decreased. Additionally, 
several genes, including HES2, SLC2A5, VAMP3, and 
ARHGEF16, exhibit noteworthy changes in expression 
levels, warranting further investigation into their roles in 
the observed differences between conditions. It's worth 
noting that some entries represent pseudogenes or 
uncharacterized LOCs, whose significance may require 
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additional scrutiny due to their ambiguous functional 
implications. 

Overall, this data suggests significant changes in 
the expression of various genes. Further analysis and 
investigation into the most relevant genes would be 
necessary to understand the biological processes 
underlying the observed differences between the two 
conditions. These findings underscore a wide range of 
gene expression alterations that contribute to the 
molecular mechanisms underlying primary 
hyperoxaluria. Further functional analysis of these 
genes could illuminate novel therapeutic targets and 
deepen our understanding of the disease processes. 

The log2 fold change in contrast to the average log2 
expression value is shown in a mean difference (MD) 
plot (Figure 2a and 2b) created with limma (plotMD), 
which is helpful for demonstrating differentially 
expressed genes. 

A mean distinction plot shows the test results for a 
solitary difference, compares the disagreement or 

differences between two quantitative measurements, 
i.e., the expression of genes.  

Mean Difference Plots Group 1 versus Group 2 

In comparing Group 1 (skin fibroblasts of healthy 
controls) to Group 2 (skin fibroblasts AGXT targeted 
knock-in), the mean difference plots illustrate the 
expression changes of various genes across different 
conditions. Notably, HES5, a member of the Hes family 
bHLH transcription factors, showed a substantial 
increase in expression with a log2(fold change) of 
6.938, suggesting a potential role in the regulatory 
processes underlying the studied condition. 
Conversely, PRDM16 exhibited significant 
downregulation with a log2(fold change) of -6.376, 
indicating its potential involvement as a suppressor or 
modulator of the studied pathways. Additionally, genes 
like TMEM51 and RUNX3 displayed notable 
upregulation with log2(fold changes) of 9.021 and 
9.778, respectively, suggesting their potential 
importance in the biological processes being 

 
      a     b 

 
      c     d 
Figure 1: a: Volcano plot- Group 1x2. b: Volcano plot- Group 3x4. c: Volcano plot- Group 3x5. d: Volcano plot- Group 4x5. 
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investigated. Conversely, genes like WNT4 exhibited 
significant downregulation with a log2(fold change) of -
5.904, indicating potential implications in disease 
pathogenesis. Furthermore, genes such as GPR3 
showed substantial upregulation with a log2(fold 
change) of 6.974, suggesting their potential roles as 
mediators or regulators of the studied pathways. These 
findings highlight the diverse molecular landscape 
associated with PH1 and underscore potential 
candidate genes for further investigation to elucidate 
their roles in disease progression and pathophysiology. 

Mean Difference Plot – Group 3 versus Group 4 

The mean difference plot comparing Group 3 
(induced hepatocytes from control donors) to Group 4 
(liver hepatocytes from control donors) illustrates 
significant alterations in gene expression levels across 
these conditions. Notably, genes such as WASH7P, 
LOC729737, WASH9P, and LOC100132287 exhibit 

consistent downregulation, indicating a decrease in 
their expression compared to the baseline. Conversely, 
genes like HES2 display significant upregulation, 
suggesting an increase in expression levels. 
Furthermore, the plot highlights genes with 
considerable variability in expression levels, as 
indicated by the wide range of log2 fold changes 
observed. These findings offer valuable insights into 
the molecular mechanisms underlying the observed 
biological phenomena, particularly in the context of 
hepatocyte differentiation and function in both induced 
and native states. Additionally, they underscore the 
importance of further investigating the roles of these 
genes in cellular processes, particularly those relevant 
to hepatocyte function and liver physiology. 

Mean Difference -Group 3 versus Group 5 

The mean difference plot comparing Group 3 
(induced hepatocytes from control donors) to Group 5 

 
     a      b 

 
     c      d 
Figure 2: a: Mean difference- Group 1 x 2. b: Mean difference- Group 3x4. c: Mean difference -Group 3x5. d: Mean difference -
Group 4x5. 
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(induced hepatocytes from PH1 patients with AGXT 
mutation) reveals significant changes in gene 
expression levels. Notably, AJAP1 (adherens junctions 
associated protein 1) exhibits a substantial increase in 
expression with a high log2 fold change of 7.576, 
indicating a pronounced upregulation in PH1. 
Conversely, PRDM16 (PR/SET domain 16) shows a 
considerable decrease in expression with a log2 fold 
change of -5.78, suggesting downregulation in PH1. 
Additionally, genes like GPR157 (G protein-coupled 
receptor 157) and PIK3CD (phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit delta) also 
display noteworthy changes in expression levels, albeit 
to a lesser extent. Furthermore, some genes exhibit 
relatively small log2 fold changes, indicating minor 
alterations in expression levels in the context of PH1. 
These findings provide valuable insights into the 
molecular differences between induced hepatocytes 
from control donors and those from PH1 patients, 
shedding light on potential mechanisms underlying the 
pathology of the disease and identifying candidate 
genes for further investigation. 

Mean Difference -Group 4 vs Group 5 

The mean difference plot comparing Group 4 (liver 
hepatocytes from control donors) to Group 5 (induced 

hepatocytes from PH1 patients with AGXT mutation) 
reveals a diverse landscape of transcriptional changes 
across various genes and non-coding RNAs. 
Significant alterations in expression levels are 
observed, indicating potential roles in various biological 
processes. Interestingly, the dataset encompasses 
pseudogenes, non-coding RNAs, and protein-coding 
genes, highlighting the complexity of the transcriptome. 
Genes such as ARHGEF16 and TMEM52 exhibit 
substantial fold changes, suggesting their involvement 
in cellular signaling and membrane transport. 
Moreover, non-coding RNAs like LINC01128 and 
PRKCZ-AS1 display distinct expression patterns, 
hinting at their regulatory functions. Furthermore, 
genes with negative fold changes, including LRRC47 
and SLC2A5, may play roles in metabolic processes 
and cellular homeostasis. Notably, outliers like ESPN 
and HES2 demonstrate extreme expression changes, 
warranting further investigation into their potential 
implications in health and disease. Overall, this dataset 
offers valuable insights into the dynamic regulation of 
gene expression, identifying potential targets for future 
research in molecular biology and biomedical sciences. 

The R boxplot method, illustrated in Figure 3, was 
utilized to visualize the distribution of values within the 
selected samples. These samples were grouped by 

 
Figure 3: Box plot. 
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color to facilitate comparison. Assessing the distribution 
aids in determining the suitability of the chosen 
samples for further analysis of differential expression. 
Typically, data centered around the median suggests 
compatibility for cross-comparison and normalization. 

The plot shows data after log transform and 
normalization, if they were performed. 

 
Figure 4: Histogram. 

The histogram depicted in Figure 4, generated 
using the hist function, serves to visualize the 
distribution of P-values obtained from the analysis 
results. These P-values were calculated using all 

selected contrasts, mirroring those presented in the top 
table of differentially expressed genes.  

Following the fitting of a linear model, a mean 
variance plot, generated using R limma (plotSA, 
vooma), serves to confirm the relationship between the 
mean and variance of the expression data. This plot 
visually represents the level of variability within the data 
and helps assess the presence of a significant mean-
variance trend. Additionally, it aids in determining 
whether utilizing the precision weights option to 
address this trend is advisable. Precision weights are 
particularly beneficial when a clear mean-variance 
trend is observed, as they improve the accuracy of test 
results. Each point on the plot corresponds to a gene, 
with the red line representing the mean-variance trend 
approximation. This approximation may already factor 
in the precision weight option during the analysis of 
differential gene expression. Conversely, the blue line 
represents an approximation of constant variance. 

Produced utilizing UMAP, or Uniform Manifold 
Approximation and Projection (UMAP) (Figure 6), this 
method is beneficial for dimensionality reduction, 
simplifying the visualization of the relationships 
between samples. By reducing the data to two 
dimensions, it offers insight into the proximity of 
samples to each other. The plot also illustrates the 
number of closest neighbors employed in the 
computation. 

 
Figure 5: Mean variance plot. 
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Using the limma algorithm, a Venn diagram (Figure 
7) is generated to explore and identify significant gene 
overlap among different contrasts, facilitating the 
comparison and download of pertinent data. 

Venn Diagram Group 1 and 2 

The Venn diagram comparing Group 1 (skin 
fibroblasts of healthy controls) and Group 2 (skin 
fibroblasts AGXT targeted knock-in) illustrates a 
complex interplay of gene expression changes across 
a diverse set of genes and non-coding RNAs. Several 
genes exhibit significant alterations in expression 
levels, suggesting potential involvement in various 
biological processes. Notably, the dataset 
encompasses pseudogenes, non-coding RNAs, and 
protein-coding genes, emphasizing the intricate nature 
of the transcriptome. Genes like ARHGEF16 and 
TMEM52 demonstrate substantial fold changes, 
implicating their roles in cellular signaling and 
membrane transport. Moreover, distinct expression 
patterns observed in non-coding RNAs such as 
LINC01128 and PRKCZ-AS1 hint at their regulatory 
functions. Additionally, genes showing negative fold 
changes, including LRRC47 and SLC2A5, may 
contribute to metabolic processes and cellular 
homeostasis. Remarkably, outliers like ESPN and 
HES2 exhibit extreme expression changes, meriting 
further exploration into their potential implications for 
health and disease. Overall, this comprehensive 
dataset offers valuable insights into the dynamic 
regulation of gene expression, presenting potential 
avenues for future research in molecular biology and 
biomedical sciences. 

Venn – Group 3 and 4 

The Venn diagram comparing Group 3 (induced 
hepatocytes of control donors) and Group 4 (liver 
hepatocytes of control donors) reveals distinct patterns 
of gene expression changes, shedding light on 
potential differences in underlying biological processes. 
Among the genes showing significant alterations, 
TNFRSF9 stands out with the highest fold change 
(log2FC = 6.098), suggesting its potential importance in 
the investigated biological phenomena. Similarly, 
genes such as PADI3 (log2FC = 7.038), SLC2A1-DT 
(log2FC = 5.529), and RPE65 (log2FC = 5.805) exhibit 
substantial upregulation, indicating their potential roles 
in cellular functions. In contrast, genes like LRRC8B 
(log2FC = -3.031), LINC02788 (log2FC = -7.688), and 
SNORA66 (log2FC = -3.834) demonstrate notable 
downregulation, suggesting their involvement in 
different regulatory pathways. Moreover, genes like 
CDC14A, DDX20, and VPS45 display moderate yet 
significant changes in expression levels, hinting at their 
potential contributions to the studied conditions. These 
findings highlight the complex interplay of gene 
expression dynamics between Group 3 and Group 4, 
providing valuable insights for further investigation into 
the underlying mechanisms of these biological 
processes. 

Venn -Group 3 and 5 

The Venn diagram comparing Group 3 (induced 
hepatocytes of control donors) and Group 5 (induced 
hepatocytes of PH1 patients with AGXT mutation) 
reveals distinct patterns of gene expression changes, 

 
Figure 6: UMAP plot. 
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suggesting differences in underlying biological 
processes between the two groups. Among the genes 
showing significant alterations, AJAP1 stands out with 
a considerable upregulation, indicated by a log2 fold 
change of 7.576, suggesting its potential importance in 
the biological processes under investigation. Similarly, 
genes such as TENT5B (log2FC = 3.172), PADI1 
(log2FC = 2.348), and EPHA2-AS1 (log2FC = 2.471) 
also exhibit notable upregulation, indicating their 
potential roles in cellular functions. Conversely, genes 
like CLSPN (log2FC = -1.424), CLCNKB (log2FC = -
3.345), and TINAGL1 (log2FC = -5.153) demonstrate 
significant downregulation, suggesting their 
involvement in different regulatory pathways. These 
findings highlight the complex interplay of gene 
expression dynamics between Group 3 and Group 5, 
providing valuable insights for further investigation into 
the underlying mechanisms of these biological 
processes. 

 
Figure 7: Venn diagram. 

Venn Group 4 and 5 

The Venn diagram comparing Group 4 (liver 
hepatocytes of control donors) and Group 5 (induced 
hepatocytes of PH1 patients with AGXT mutation) 
highlights distinctive patterns of gene expression 
changes between the two groups. Among the genes 
exhibiting significant alterations, several stand out with 
notable upregulation, including NPPA (log2FC = 2.638), 
ZPLD2P (log2FC = 4.878), and ERRFI1 (log2FC = 
2.179), suggesting their potential roles in the biological 
processes under investigation. Conversely, genes such 
as SLC45A1 (log2FC = -5.152), TAL1 (log2FC = -
5.116), and NGF (log2FC = -5.26) demonstrate 

substantial downregulation, indicating their potential 
involvement as suppressors or inhibitors in the studied 
pathways or conditions. These findings provide 
valuable insights into the differential gene expression 
profiles between Group 4 and Group 5, offering 
avenues for further research to elucidate the functional 
significance of these genes in the context of the 
investigated biological processes. 

The string analysis results indicate strong 
associations between various genes based on their 
interactions and functions, such as the interplay 
between AMBP and GC in inhibiting calcium oxalate 
crystallization, the involvement of ANGPTL3 and GC in 
lipid and glucose metabolism regulation, and the 
significant metabolic interactions between CYP2C9 and 
CYP3A4 in the metabolism of endogenous substrates. 

 
Figure 8: Protein-protein interactions of top 10 genes. 

The network statistics indicate that there are 10 
nodes (genes or proteins) and 6 edges (interactions) 
present. The average node degree is 1.2, which means 
that on average, each node is connected to 1.2 other 
nodes. The average local clustering coefficient is 
0.417, suggesting a relatively high degree of clustering 
or interconnectedness among neighboring nodes. The 
expected number of edges is 1, but the actual number 
of edges is significantly higher, indicating that the 
network has more interactions between nodes than 
expected by chance. 

The network analysis reveals significant enrichment 
in various biological processes related to metabolism. 
Among these processes, the Monoterpenoid metabolic 
process and Terpenoid metabolic process stand out, 
indicating the involvement of specific genes/proteins in 
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the synthesis and modification of monoterpenoids and 
terpenoids, respectively. Additionally, the Steroid 
metabolic process, Alcohol metabolic process, Organic 
hydroxy compound metabolic process, and Lipid 
metabolic process are also enriched, suggesting the 
activity of genes/proteins associated with the 
biosynthesis, breakdown, and modification of steroids, 
alcohols, organic hydroxy compounds, and lipids. 
These findings underscore the importance of these 
metabolic pathways in cellular functions, including 
energy production, signaling, and structural integrity. 
The network's composition of genes/proteins involved 
in these processes provides valuable insights into the 
molecular mechanisms underlying various 
physiological and pathological conditions associated 
with metabolism, such as hormone regulation, lipid 
disorders, and metabolic diseases. Further 
investigation into the specific roles of these 
genes/proteins can contribute to a better understanding 
of metabolic pathways and their implications for human 
health and disease. 

The molecular function analysis highlights the 
presence of specific activities within the network. 
Caffeine oxidase activity, represented by 2 out of 4 
interactions, suggests the involvement of enzymes 
responsible for metabolizing caffeine. This activity 
indicates the potential for caffeine metabolism within 
the system, which may have implications for caffeine 
clearance or its effects on downstream cellular 
processes. Oxidoreductase activity, observed in 5 out 
of 731 interactions, denotes a broader category of 
enzymes involved in oxidation-reduction reactions, 
implying their role in electron transfer processes. This 
activity is fundamental to various cellular functions, 
including energy production and metabolism. 
Furthermore, Heme binding, found in 3 out of 140 
interactions, suggests the presence of proteins capable 
of binding to heme molecules. Heme binding proteins 
often play crucial roles in transporting, storing, or 
catalyzing reactions involving heme-containing 
molecules, such as hemoglobin and cytochromes. 
These molecular functions provide insights into the 
biochemical processes occurring within the network 
and highlight the diversity of enzymatic activities 
involved in cellular metabolism and signaling. 

The KEGG pathway analysis highlights several 
significant pathways enriched within the network, 
providing insights into the molecular mechanisms at 
play. Firstly, "Drug metabolism - cytochrome P450" 
(hsa00982) signifies the involvement of cytochrome 
P450 enzymes in metabolizing various drugs, 

emphasizing the network's role in drug detoxification 
and elimination. Additionally, "Retinol metabolism" 
(hsa00830) suggests active processes related to the 
metabolism of vitamin A and its derivatives, crucial for 
vision and cellular function. The presence of 
"Metabolism of xenobiotics by cytochrome P450" 
(hsa00980) underscores the network's participation in 
the biotransformation of foreign compounds, 
contributing to detoxification mechanisms. "Chemical 
carcinogenesis" (hsa05204) indicates potential 
involvement in pathways related to cancer initiation and 
progression, while "Linoleic acid metabolism" 
(hsa00591) suggests activities linked to omega-6 fatty 
acid metabolism, important for cellular signaling. Lastly, 
the enrichment of "Metabolic pathways" (hsa01100) 
underscores the diverse metabolic activities occurring 
within the network, encompassing various biosynthetic 
and degradation processes essential for cellular 
homeostasis. Collectively, these pathway enrichments 
provide a comprehensive understanding of the 
network's biological functions and potential implications 
in health and disease. 

Table 2: miRNAs for Top 10 DEGs 

Genes MiRNA 

ANGPTL3 hsa-miR-4501 

SLC38A3 hsa-miR-5692c 

KNG1 hsa-miR-6731-3p 

BDH1 hsa-miR-6867-5p 

GC hsa-miR-616-3p 

ADH1C hsa-miR-4468 

ARG1 hsa-miR-3692-3p 

CYP3A4 hsa-miR-4277 

AMBP hsa-miR-4763-5p 

CYP2C9 hsa-miR-4797-5p 

 

DISCUSSION 

Role of miRNAs in Gene Regulation and Kidney 
Function 

MiRNAs, capable of targeting over 60% of human 
genes, are pivotal in regulating diverse biological 
processes, including gene expression, development, 
and homeostasis [17,18]. In the context of kidney 
biology, miRNAs are integral to the development, 
structure, and function of renal tissues. They influence 
critical processes such as fluid and electrolyte balance, 
acid-base homeostasis, and blood pressure regulation. 



Bioinformatics and Primary Hyperoxaluria International Journal of Statistics in Medical Research, 2024, Vol. 13      447 

Furthermore, their involvement in pathogenic 
mechanisms underscores their potential as therapeutic 
targets. 

Notably, the stability of miRNAs in serum and urine, 
irrespective of storage conditions, enhances their 
appeal as reliable biomarkers for diagnosing and 
monitoring kidney injuries [19]. This highlights the 
translational potential of miRNA-target networks in 
advancing our understanding of diseases like Primary 
Hyperoxaluria Type 1 (PH1). 

Contribution of Statistical Methodologies 

The robust statistical framework employed in this 
study significantly contributed to the accuracy and 
reliability of the findings. The use of limma for 
differential expression analysis ensured precise 
normalization and calibration across experimental 
batches, minimizing potential biases in the dataset. The 
selection criteria based on fold-change and p-value 
thresholds (p < 0.05) allowed for the identification of 
biologically significant DEGs, which formed the 
foundation for subsequent functional and pathway 
analyses. 

Visualization tools such as volcano plots and 
heatmaps facilitated intuitive interpretations of DEGs, 
providing insights into gene expression patterns across 
experimental groups. The incorporation of GO and 
KEGG enrichment analyses using ClusterProfiler 
further underscored the relevance of identified genes in 
pathways critical to PH1 pathophysiology. 

Protein-Protein Interaction (PPI) networks, 
constructed via STRING and visualized in Cytoscape, 
revealed key hub genes with central roles in cellular 
processes. The validation of these hub genes using 
GEO2R enhanced the statistical rigor, ensuring that the 
findings were not artifacts of a specific dataset but were 
reproducible across similar experimental settings. 

Applicability in Related Research 

The statistical methodologies utilized in this study 
are widely applicable in other research areas involving 
high-throughput omics datasets. For example: 

Differential Gene Expression Analysis: The 
approach can be adapted to study other genetic 
diseases, cancers, or metabolic disorders by analyzing 
transcriptomic data. 

Pathway Enrichment and PPI Networks: GO and 
KEGG analyses, coupled with PPI construction, offer a 

comprehensive view of molecular mechanisms in 
diverse conditions, from neurodegenerative diseases to 
cardiovascular pathologies. 

MiRNA-Target Networks: By integrating databases 
like miRDB, researchers can identify regulatory 
networks in various diseases, extending the utility of 
the methodology to precision medicine applications. 

By demonstrating how biostatistical tools and 
frameworks can uncover clinically relevant biomarkers 
and therapeutic targets, this study provides a model for 
leveraging bioinformatics in translational research. The 
reproducibility and adaptability of these methods 
ensure their applicability in addressing similar 
questions across a wide range of biological disciplines. 

CONCLUSION 

The top ten differentially expressed genes 
identified—ANGPTL3, SLC38A3, KNG1, BDH1, GC, 
ADH1C, ARG1, CYP3A4, AMBP, and CYP2C9—
exhibit strong associations with various biological 
pathways. Pathways like Linoleic acid metabolism and 
drug metabolism-cytochrome P450 demonstrate 
significant overrepresentation of these genes. This 
provides insights into the molecular mechanisms 
underlying the studied condition. Notably, genes like 
ESPN show the highest upregulation, while MXRA8 
demonstrates the most significant downregulation, 
suggesting their potential roles in disease 
pathogenesis. Furthermore, network analysis highlights 
the involvement of these genes in critical metabolic 
processes, offering potential targets for further 
investigation. Understanding the regulatory role of 
specific miRNAs (hsa-miR-4501,hsa-miR-5692c,hsa-
miR-6731-3p,hsa-miR-6867-5p,hsa-miR-616-3p,hsa-
miR-4468,hsa-miR-3692-3p,hsa-miR-4277,hsa-miR-
4763-5p,hsa-miR-4797-5p) in gene expression could 
provide further insights into disease mechanisms and 
potential therapeutic avenues. Overall, this study 
enhances our understanding of primary hyperoxaluria's 
molecular landscape and identifies potential targets for 
future research and therapeutic interventions. 

OUTCOMES OF THE STUDY 

The research found 10 pivotal differentially 
expressed genes (DEGs) ANGPTL3, SLC38A3, KNG1, 
BDH1, GC, ADH1C, ARG1, CYP3A4, AMBP, and 
CYP2C9 that are strongly linked to essential biological 
activities, including linoleic acid metabolism and drug 
metabolism via cytochrome P450 pathways. Protein-
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protein interaction networks and miRNA-target 
interaction networks were established, uncovering 
complex molecular and regulatory pathways. Particular 
miRNAs, such as hsa-miR-4501 and hsa-miR-5692c, 
were identified as regulators of these DEGs, providing 
significant insights into disease processes and 
prospective treatment targets. 

RATIONALE OF THE STUDY 

The research seeks to explore a new treatment 
strategy for Primary Hyperoxaluria Type 1 (PH1) by 
examining the effects of gene repair at the AGXT locus 
and the direct transformation of fibroblasts from PH1 
patients into induced hepatocytes (iHeps) via CRISPR-
Cas9 technology. The research aims to elucidate the 
molecular processes of hyperoxaluria and its 
advancement to oxalate crystal formation by the 
analysis of gene expression data. This bioinformatics-
based method enables the identification of crucial 
regulatory genes and pathways, connecting genetic 
repair procedures with their biological consequences. 

LIMITATIONS OF THE STUDY 

The work offers useful insights on differentially 
expressed genes and related pathways; nevertheless, 
it is constrained by its dependence on microarray data, 
which may not possess the depth and resolution of 
RNA-sequencing data. Furthermore, the results stem 
from bioinformatic predictions and need experimental 
confirmation to verify the functions of the detected 
DEGs and miRNAs. The study concentrates on a 
particular dataset, perhaps constraining the 
applicability of the findings to wider populations or 
alternative datasets. 
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