Raking Method as a Tool for Improving Representativeness in Non-Probability Studies

Authors

  • Víctor Juan Vera-Ponce Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú and Facultad de Medicina (FAMED), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú
  • Fiorella E. Zuzunaga-Montoya 3Universidad Continental, Lima, Perú
  • Nataly Mayely Sanchez-Tamay Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú and Facultad de Medicina (FAMED), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú https://orcid.org/0009-0003-5951-4196
  • Lupita Ana Maria Valladolid-Sandoval Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú and Facultad de Medicina (FAMED), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú
  • Jhosmer Ballena-Caicedo Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú and Facultad de Medicina (FAMED), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú
  • Juan Carlos Bustamante-Rodríguez Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú and Facultad de Medicina (FAMED), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú
  • Angie Chuquimbalqui Coronel Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú and Facultad de Medicina (FAMED), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú
  • Christian Humberto Huaman-Vega Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú and Instituto de Investigación de Salud Integral Intercultural, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú https://orcid.org/0000-0003-2333-2254
  • Carmen Inés Gutierrez De Carrillo Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú and Facultad de Medicina (FAMED), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú https://orcid.org/0000-0002-4711-7201

DOI:

https://doi.org/10.6000/1929-6029.2025.14.22

Keywords:

Sampling Studies, Analytic Sample Preparation Methods, Biostatistics, Epidemiology

Abstract

This is a methodological review focused on raking, or iterative proportional fitting, as a tool for improving representativeness in studies with non-probability sampling. The paper synthesizes the theoretical foundations, practical considerations, and applications of raking in biomedical research. The method operates by iteratively adjusting sample weights so that the marginal distributions of selected variables match the known distributions of the target population. Its implementation requires reliable auxiliary information about the population of interest and careful selection of adjustment variables.

The review addresses critical aspects such as weight quality evaluation, management of extreme values, and computational considerations in raking implementation. The method's advantages are discussed, including its capacity to simultaneously adjust multiple variables and its applicability when only marginal information about the population is available. Its limitations are also examined, such as the potential generation of extreme weights and dependence on precise population data. Finally, practical examples are presented in various contexts, from hospital studies to research in university populations, demonstrating the method's versatility. The application of raking has proven particularly valuable in epidemiological and health services studies, where non-probability samples are common. This review provides a comprehensive methodological guide for researchers seeking to implement raking, emphasizing the importance of rigorous application and transparent documentation.

References

Baker R, Brick JM, Bates NA, Battaglia M, Couper MP, Dever JA, et al. Summary Report of the AAPOR Task Force on Non-probability Sampling. J Surv Stat Methodol 2013; 1(2): 90-143. DOI: https://doi.org/10.1093/jssam/smt008

Mercer AW, Kreuter F, Keeter S, Stuart EA. Theory and Practice in Nonprobability Surveys: Parallels between Causal Inference and Survey Inference. Public Opin Q 2017; 81(S1): 250-71. DOI: https://doi.org/10.1093/poq/nfw060

Brick JM. The Future of Survey Sampling. Public Opin Q 2011; 75(5): 872-88. DOI: https://doi.org/10.1093/poq/nfr045

Wang VH-C, Lei J, Shi T, Pagán JA. Weighting the United States All of Us Research Program data to known population estimates using raking. Prev Med Rep 2024; 43: 102795. DOI: https://doi.org/10.1016/j.pmedr.2024.102795

Wang VH-C, Holm J, Pagán JA. Use calibration to improve the precision of estimates obtained from All of Us data. J Am Med Inform Assoc JAMIA 2024; ocae181. DOI: https://doi.org/10.1093/jamia/ocae181

Kim J, Tam S-M. Data Integration by Combining Big Data and Survey Sample Data for Finite Population Inference. Int Stat Rev 2020; 89. DOI: https://doi.org/10.1111/insr.12434

Bethlehem J. Selection Bias in Web Surveys. Int Stat Rev 2010; 78(2): 161-88. DOI: https://doi.org/10.1111/j.1751-5823.2010.00112.x

Valliant R, Dever JA, Kreuter F. Practical Tools for Designing and Weighting Survey Samples [Internet]. Cham: Springer International Publishing; 2018 [citado el 26 de octubre de 2024]. (Statistics for Social and Behavioral Sciences). DOI: https://doi.org/10.1007/978-3-319-93632-1

Lohr SL. Sampling: design and analysis. 2nd ed. Boston, Mass: Brooks/Cole; 2010. 596 p.

Encyclopedia of Survey Research Methods [Internet]. SAGE Publications Inc 2024 [citado el 26 de octubre de 2024]. Disponible en: https://us.sagepub.com/en-us/nam/ encyclopedia-of-survey-research-methods/book227714

Etikan I, Musa SA, Alkassim RS. Comparison of Convenience Sampling and Purposive Sampling. Am J Theor Appl Stat 2015; 5(1): 1-4. DOI: https://doi.org/10.11648/j.ajtas.20160501.11

Martínez-Mesa J, González-Chica DA, Duquia RP, Bonamigo RR, Bastos JL. Sampling: how to select participants in my research study? An Bras Dermatol 2016; 91(3): 326. DOI: https://doi.org/10.1590/abd1806-4841.20165254

Palinkas LA, Horwitz SM, Green CA, Wisdom JP, Duan N, Hoagwood K. Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Adm Policy Ment Health 2015; 42(5): 533. DOI: https://doi.org/10.1007/s10488-013-0528-y

Teddlie C, Yu F. Mixed Methods Sampling: A Typology With Examples. J Mix Methods Res 2007; 1(1): 77-100. DOI: https://doi.org/10.1177/1558689806292430

Heckathorn DD. Snowball versus respondent-driven sampling. Sociol Methodol 2011; 41(1): 355. DOI: https://doi.org/10.1111/j.1467-9531.2011.01244.x

Guest G, Namey E, Chen M. A simple method to assess and report thematic saturation in qualitative research. PLOS ONE 2020; 15(5): e0232076. DOI: https://doi.org/10.1371/journal.pone.0232076

Imbens GW, Rubin DB. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge: Cambridge University Press; 2015 [citado el 26 de octubre de 2024]. DOI: https://doi.org/10.1017/CBO9781139025751

Hernan MA, Robins JM. Causal Inference: What If. CRC Press; 2024. 312 p.

Pearl J. Causality: Models, Reasoning, and Inference. Cambridge University Press; 2000. 412 p.

Shadish WR, Cook TD, Campbell DT. Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Belmont, CA; 2001. 656 p.

VanderWeele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann Intern Med 2017; 167(4): 268-74. DOI: https://doi.org/10.7326/M16-2607

Stuart EA. Matching methods for causal inference: A review and a look forward. Stat Sci Rev J Inst Math Stat 2010; 25(1): 1. DOI: https://doi.org/10.1214/09-STS313

Kalton G, Flores Cervantes I. Weighting Methods. Httplst-Iiepiiep-Unescoorgcgi-Binwwwi32exeinepidoc1int2000019622100 2003; 19

Little RJA, Rubin DB. Statistical Analysis with Missing Data. John Wiley & Sons; 2019. 462 p. DOI: https://doi.org/10.1002/9781119482260

Deville J-C, Särndal C-E, Sautory O. Generalized Raking Procedures in Survey Sampling. J Am Stat Assoc. 1993; 88(423): 1013-20. DOI: https://doi.org/10.1080/01621459.1993.10476369

Groves RM, Peytcheva E. The Impact of Nonresponse Rates on Nonresponse Bias: A Meta-Analysis. Public Opin Q 2008; 72(2): 167-89. DOI: https://doi.org/10.1093/poq/nfn011

Stuart EA, Cole SR, Bradshaw CP, Leaf PJ. The use of propensity scores to assess the generalizability of results from randomized trials. J R Stat Soc Ser A Stat Soc 2001; 174(2): 369. DOI: https://doi.org/10.1111/j.1467-985X.2010.00673.x

Battaglia MP, Hoaglin DC, Frankel MR. Practical Considerations in Raking Survey Data. Surv Pract 2009; 2(5). DOI: https://doi.org/10.29115/SP-2009-0019

Extreme Survey Weight Adjustment as a Component of Sample Balancing (a.k.a.Raking) | Abt Global 2024. Disponible en: https://www.abtglobal.com/insights/ publications/presentation/extreme-survey-weight-adjustment-as-component-of-sample

giscus [Internet]. [citado el 26 de octubre de 2024]. Disponible en: https://giscus.app/en/widget?origin= https%3A%2F%2Fsdaza.com%2Fblog%2F2012%2Fraking%2F&session=&theme=null&reactionsEnabled=1&emitMetadata=0&inputPosition=bottom&repo=sdaza%2Fsdaza.github.io&repoId=MDEwOlJlcG9zaXRvcnk1MzY3MjE3MQ%3D%3D&category=Comments&categoryId=DIC_kwDOA5PmLc4CTBt6&strict=1&description=Demography%2C+Sociology%2C+Simulation%2C+Data+Science&backLink=https%3A%2F%2Fsdaza.com%2Fblog%2F2012%2Fraking%2F&term=Raking+weights+with+R+%7C+Sebastian+Daza

Downloads

Published

2025-04-24

How to Cite

Vera-Ponce, V. J. ., Zuzunaga-Montoya, F. E. ., Sanchez-Tamay, N. M. ., Valladolid-Sandoval, L. A. M. ., Ballena-Caicedo, J. ., Bustamante-Rodríguez, J. C. ., Coronel, A. C. ., Huaman-Vega, C. H. ., & Gutierrez De Carrillo, C. I. . (2025). Raking Method as a Tool for Improving Representativeness in Non-Probability Studies. International Journal of Statistics in Medical Research, 14, 223–236. https://doi.org/10.6000/1929-6029.2025.14.22

Issue

Section

General Articles

Most read articles by the same author(s)

<< < 1 2