Robustness of Bayesian Methods in Healthcare System Assessment: A Comprehensive Review

Authors

  • Md. Tanwir Akhtar Department of Public Health, College of Health Sciences, Saudi Electronic University, Saudi Arabia

DOI:

https://doi.org/10.6000/1929-6029.2025.14.62

Keywords:

Bayesian inference, healthcare system assessment, hierarchical models, cost‑effectiveness analysis, epidemiology, personalized medicine, policy evaluation

Abstract

Background: Healthcare systems generate heterogeneous, incomplete, and evolving data; methods that combine prior knowledge with new evidence are needed.

Aim: The present research critically evaluates the usefulness and resilience of Bayesian methods for healthcare system assessment.

Scope: This study synthesizes foundational principles and contrasts with frequentist approaches; examines applications across quality of care benchmarking, health economic evaluation, epidemiologic surveillance, resource allocation, policy appraisal, and personalized medicine; and highlights computational advances enabling practical deployment.

Key Findings: Bayesian techniques provide partial pooling through hierarchical models, formal incorporation of prior information, accurate probabilistic inference, and dynamic updating as data accumulates. These features give more stable estimates in sparse settings, transparent quantification of uncertainty, and decision‑relevant outputs (e.g., posterior probabilities and cost-effectiveness acceptability). Modern samplers and approximate inference make complex models tractable, yet results remain sensitive to prior specification and data quality, stressing the need for validation, sensitivity analysis, and clear reporting.

Conclusion: Bayesian methods offer a meticulous, flexible framework for assessing performance, value, and equity in healthcare systems. They can enhance policy-making and clinical decision support when paired with principled prior elicitation, robust computation, and reproducible workflows. Next, the practical recommendations and research priorities to accelerate responsible adoption across healthcare analytics were outlined. At the end, this review highlights both methodological robustness and translational potential, positioning Bayesian methods as indispensable for evidence-based healthcare decision-making.

References

Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian approaches to clinical trials and health-care evaluation. John Wiley & Sons, Ltd 2004. DOI: https://doi.org/10.1002/0470092602

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis. 3rd ed. Boca Raton: Chapman & Hall/CRC 2013. DOI: https://doi.org/10.1201/b16018

Carlin BP, Louis TA. Bayesian methods for data analysis. 3rd ed. Boca Raton: Chapman & Hall/CRC 2008. DOI: https://doi.org/10.1201/b14884

Bernardo JM, Smith AFM. Bayesian theory. New York: Wiley 2009.

Brooks S, Gelman A, Jones G, Meng XL, editors. Handbook of Markov chain Monte Carlo. Boca Raton: Chapman & Hall/CRC 2011. DOI: https://doi.org/10.1201/b10905

Normand SLT, Shahian DM. Statistical and clinical aspects of hospital outcomes profiling. Stat Sci 2007; 22(2): 206-26. DOI: https://doi.org/10.1214/088342307000000096

Briggs A, Claxton K, Sculpher MJ. Decision modelling for health economic evaluation. Oxford: Oxford Univ Press 2006. DOI: https://doi.org/10.1093/oso/9780198526629.001.0001

Claxton K, Sculpher M, McCabe C, Briggs A, Akehurst R, Buxton M, et al. Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra. Health Econ 2005; 14(4): 339-47. DOI: https://doi.org/10.1002/hec.985

Best N, Richardson S, Thomson A. A comparison of Bayesian spatial models for disease mapping. Stat Methods Med Res 2005; 14(1): 35-59. DOI: https://doi.org/10.1191/0962280205sm388oa

Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 2020; 584(7820): 257-61. DOI: https://doi.org/10.1038/s41586-020-2405-7

Briggs AH. Handling uncertainty in cost-effectiveness models. Pharmacoeconomics 2000; 17(5): 479-500. DOI: https://doi.org/10.2165/00019053-200017050-00006

Parmigiani G, Inoue LYT. Decision Theory: Principles and Approaches. Chichester, UK: Wiley, 2009. DOI: https://doi.org/10.1002/9780470746684

Zhou J, Wang F, Hu J, Ye J. From micro to macro: Data driven phenotyping by densification of longitudinal electronic medical records. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2014; 135-144. DOI: https://doi.org/10.1145/2623330.2623711

Neal RM. Bayesian learning for neural networks. New York: Springer 2012.

Ghahramani Z. Probabilistic Machine Learning and Artificial Intelligence. Nature 2015; 521(7553): 452-459.

Wasserman L. All of statistics: a concise course in statistical inference. New York: Springer 2004. DOI: https://doi.org/10.1007/978-0-387-21736-9

Betancourt M. A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint arXiv:1701.02434, 2017.

Blei DM, Kucukelbir A, McAuliffe JD. Variational inference: a review for statisticians. J Am Stat Assoc 2017; 112(518): 859-77. DOI: https://doi.org/10.1080/01621459.2017.1285773

Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: a probabilistic programming language. J Stat Softw 2017; 76(1): 1-32. DOI: https://doi.org/10.18637/jss.v076.i01

Centers for Medicare & Medicaid Services (CMS). Complications and deaths – hospital dataset. CMS 2024. Available from: https://data.cms.gov/provider-data/

Krumholz HM, Wang Y, Mattera JA, Wang Y, Han LF, Ingber MJ, et al. An administrative claims model suitable for profiling hospital performance based on 30-day mortality rates among patients with an acute myocardial infarction. Circulation 2006; 113(13): 1683-92. DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.611186

Shahian DM, Wolf RE, Iezzoni LI, Kirle L, Normand SLT. Variability in the measurement of hospital-wide mortality rates. N Engl J Med 2010; 363(26): 2530-9. DOI: https://doi.org/10.1056/NEJMsa1006396

Christiansen CL, Morris CN. Hierarchical Poisson regression modeling. J Am Stat Assoc 1997; 92(438): 618-32. DOI: https://doi.org/10.1080/01621459.1997.10474013

Normand SLT, Glickman ME, Gatsonis CA. Statistical methods for profiling providers of medical care: issues and applications. J Am Stat Assoc 1997; 92(439): 803-14. DOI: https://doi.org/10.1080/01621459.1997.10474036

Gelman A, Jakulin A, Pittau MG, Su YS. A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat 2008; 2(4): 1360-83. DOI: https://doi.org/10.1214/08-AOAS191

Stan Development Team. RStan: the R interface to Stan. Version 2.32. Vienna: R Foundation for Statistical Computing 2024. Available from: https://mc-stan.org/

R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing 2024. https://www.R-project.org/

Austin PC. A comparison of Bayesian methods for profiling hospital performance. Med Decis Making 2002; 22(2): 163-72. DOI: https://doi.org/10.1177/0272989X0202200213

Spiegelhalter DJ. Funnel plots for comparing institutional performance. Stat Med 2005; 24(8): 1185-202. DOI: https://doi.org/10.1002/sim.1970

Mandel JS, Bond JH, Church TR, Snover DC, Bradley GM, Schuman LM, et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. N Engl J Med 1993; 328(19): 1365-71. DOI: https://doi.org/10.1056/NEJM199305133281901

Atkin WS, Edwards R, Kralj-Hans I, Wooldrage K, Hart AR, Northover JM, et al. Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled trial. Lancet 2010; 375(9726): 1624-33. DOI: https://doi.org/10.1016/S0140-6736(10)60551-X

Zauber AG, Lansdorp-Vogelaar I, Knudsen AB, Wilschut J, van Ballegooijen M, Kuntz KM. Evaluating test strategies for colorectal cancer screening: a decision analysis for the U.S. Preventive Services Task Force. Ann Intern Med 2008; 149(9): 659-69. DOI: https://doi.org/10.7326/0003-4819-149-9-200811040-00244

Ladabaum U, Ferrandez A, Lanas A. Cost-effectiveness of colorectal cancer screening in high-risk Spanish patients: use of a validated model to inform public policy. Cancer Epidemiol Biomarkers Prev 2010; 19(11): 2765-76. DOI: https://doi.org/10.1158/1055-9965.EPI-10-0530

Gold MR, Siegel JE, Russell LB, Weinstein MC, editors. Cost-effectiveness in health and medicine. New York: Oxford Univ Press 1996. DOI: https://doi.org/10.1093/oso/9780195108248.001.0001

Fenwick E, Claxton K, Sculpher M. Representing uncertainty: the role of cost-effectiveness acceptability curves. Health Econ 2001; 10(8): 779-87. https://doi.org/10.1002/hec.635 DOI: https://doi.org/10.1002/hec.635

Briggs AH. A Bayesian approach to stochastic cost-effectiveness analysis. Health Econ 1999; 8(3): 257-61. DOI: https://doi.org/10.1002/(SICI)1099-1050(199905)8:3<257::AID-HEC427>3.0.CO;2-E

Claxton K, Sculpher M, Culyer A. Mark versus Luke? Appropriate methods for the evaluation of public health interventions. York: Univ of York, Centre for Health Economics 2007. CHE research paper no. 31. https://www.york.ac.uk/media/che/documents/papers/researchpapers/rp31_evaluation_of_public_health_interventions.pdf

Brauner JM, Mindermann S, Sharma M, et al. Inferring the effectiveness of government interventions against COVID-19. Science 2021; 371(6531): eabd9338. DOI: https://doi.org/10.1126/science.abd9338

Kendall A, Gal Y. What uncertainties do we need in Bayesian deep learning for computer vision? Adv Neural Inf Process Syst 2017; 30: 5574-84.

Leibig C, Allken V, Ayhan MS, Berens P, Wahl S. Leveraging uncertainty information from deep neural networks for disease detection. Sci Rep 2017; 7(1): 17816. DOI: https://doi.org/10.1038/s41598-017-17876-z

Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. Proc ICML 2016; 1050-9.

Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016; 316(22): 2402-10. DOI: https://doi.org/10.1001/jama.2016.17216

Kuleshov V, Fenner N, Ermon S. Accurate uncertainties for deep learning using calibrated regression. Proc ICML 2018; 2796-804.

Carneiro G, Tao Pu LZC, Singh R, Burt A. Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy. Med Image Anal 2020; 62: 101653. DOI: https://doi.org/10.1016/j.media.2020.101653

Gelman A, Simpson D, Betancourt M. The prior can often only be understood in the context of the likelihood. Entropy 2017; 19(10): 555. DOI: https://doi.org/10.3390/e19100555

Spiegelhalter DJ. The art of statistics: learning from data. London: Penguin 2019. https://books.google.com.sa/books? id=CiZeDwAAQBAJ

Khozin S, Blumenthal GM, Pazdur R. Real-world data for clinical evidence generation in oncology. J Natl Cancer Inst 2017; 109(11): djx187. DOI: https://doi.org/10.1093/jnci/djx187

Ghahramani Z. Probabilistic Machine Learning and Artificial Intelligence. Nature 2015; 521(7553): 452-459. DOI: https://doi.org/10.1038/nature14541

Basu A. Economics of individualization in comparative effectiveness research and a basis for a patient-centered health care. J Health Econ 2011; 30(3): 549-59. DOI: https://doi.org/10.1016/j.jhealeco.2011.03.004

Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, et al. Eds. Bayesian statistics 9. Oxford: Oxford Univ Press 2011. DOI: https://doi.org/10.1093/acprof:oso/9780199694587.001.0001

Ashby D, Smith AFM. Evidence-based medicine as Bayesian decision-making. Stat Med 2000; 19(23): 3291-305. DOI: https://doi.org/10.1002/1097-0258(20001215)19:23<3291::AID-SIM627>3.0.CO;2-T

Downloads

Published

2025-11-21

How to Cite

Akhtar, M. T. . (2025). Robustness of Bayesian Methods in Healthcare System Assessment: A Comprehensive Review. International Journal of Statistics in Medical Research, 14, 662–675. https://doi.org/10.6000/1929-6029.2025.14.62

Issue

Section

General Articles