Machine Learning-Based Prediction of Seasonal Influenza Trends in Saudi Arabia: A Tool for Regional Public Health Planning

Authors

  • Alshaikh A. Shokeralla Department of Mathematics, Faculty of Science, Al-Baha University, Al-Aqiq 65931, Saudi Arabia
  • Fathelrhman El Guma Department of Mathematics, Faculty of Science, Al-Baha University, Al-Aqiq 65931, Saudi Arabia
  • Ali H. Abdalla Department of Mathematics, Faculty of Science, Al-Baha University, Al-Aqiq 65931, Saudi Arabia
  • Amal E.Y. Hagsddig Department of Statistics, Faculty of Engineering, Mashreq University, Khartoum, Sudan
  • Rahma AbuBakr Musa Biology Department, Faculty of Science, Al-Baha University, Saudi Arabia and Biology Department, Faculty of Applied and Industrial Science, Bahri University, Sudan
  • M.A.M. Eltaweel Department of Mathematics, Faculty of Science, Al-Baha University, Al-Aqiq 65931, Saudi Arabia and Faculty of Science Ain Shams University Cairo Egypt
  • Abdelaziz H. Elawad Department of Mathematics, Faculty of Science, Al-Baha University, Al-Aqiq 65931, Saudi Arabia
  • Ibrahim Elshamy Higher Institute of Engineering & Technology, Almanzala, Egypt and Mathematics Department, Faculty of Science, Al Baha University, KSA

DOI:

https://doi.org/10.6000/1929-6029.2025.14.64

Keywords:

Forecasting, Influenza, Machine learning, Random Forest, Saudi Arabia, Support Vector Regression

Abstract

Influenza has continued to be a worldwide social health problem, especially in high-density population areas with minimal early-warning mechanisms. The present study evaluates the predictive ability of two machine learning models Support Vector Regression (SVR) and Random Forest (RF) to predict weekly influenza cases in Saudi Arabia, spanning from 2017 to 2022, on 313 weekly influenza records in the WHO Global Influenza Surveillance and Response System (GISRS). The performance of these models was measured with R², MAE, MSE, and RMSE. Although SVR had a better training accuracy (R² = 0.96), RF had a better generalization (R² = 0.818) and more consistent predictions at the peaks of the seasons. These observations show that RF is appropriate to real-time influenza surveillance and can provide a replicable and versatile framework to assist data-driven epidemic preparedness in Saudi Arabia and other similar contexts throughout MENA and Asia-Pacific.

References

World Health Organization. (2023). Influenza (seasonal). https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)

Alshamrani M, Farahat F, Alzunitan M, et al. Hajj vaccination strategies: Preparedness for risk mitigation. J Infect Public Health 2024; 17(11): 102547. DOI: https://doi.org/10.1016/j.jiph.2024.102547

Maddah N, Verma A, Almashmoum M, et al. Effectiveness of public health digital surveillance systems for infectious disease prevention and control at mass gatherings: systematic review. J Med Internet Res 2023; 25: e44649. DOI: https://doi.org/10.2196/44649

Guma FE. Analysis of influenza-like illness trends in Saudi Arabia: a comparative study of statistical and deep learning techniques. Osong Public Health Res Perspect 2025; 16(3): 270-284. DOI: https://doi.org/10.24171/j.phrp.2025.0080

Alzahrani SM, Guma FE. Improving seasonal influenza forecasting using time series machine learning techniques. J Inf Syst Eng Manage 2024; 9(4): 30195. DOI: https://doi.org/10.55267/iadt.07.15132

Daqqa I, Almarashi AM, Bashier MM, Aripov M, Abaker AOI, Alhag AA, Shokeralla AA. Predictive modeling of breast cancer incidence: A comparative study of fuzzy time series and machine learning techniques. Journal of Statistics Applications & Probability 2024; 14(2): 183-189. DOI: https://doi.org/10.18576/jsap/140204

Rodriguez A, Kamarthi H, Agarwal P, et al. Machine learning for data-centric epidemic forecasting. Nat Mach Intell 2024; 6(10): 1122-1131. DOI: https://doi.org/10.1038/s42256-024-00895-7

Keshavamurthy R, Dixon S, Pazdernik KT, et al. Predicting infectious disease for biopreparedness and response: a systematic review of machine learning and deep learning approaches. One Health 2022; 15: 100439. DOI: https://doi.org/10.1016/j.onehlt.2022.100439

Badami V. A study on influenza reports: the impact of various influencing factors and a predictive modeling approach to forecasting flu cases in European countries [doctoral dis-sertation]. Dublin, Ireland: National College of Ireland; 2022.

Santangelo OE, Gentile V, Pizzo S, Giordano D, Cedrone F. Machine learning and prediction of infectious diseases: a systematic review. Mach Learn Knowl Extr 2023; 5(1): 175-198. DOI: https://doi.org/10.3390/make5010013

Babanejaddehaki G, An A, Papagelis M. Disease outbreak detection and forecasting: a review of methods and data sources. ACM Trans Comput Healthc 2025; 6(2): 1-40.

Martin-Moreno JM, Alegre-Martinez A, Martin-Gorgojo V, et al. Predictive models for forecasting public health scenarios: practical experiences applied during the first wave of the COVID-19 pandemic. Int J Environ Res Public Health 2022; 19(9): 5546. DOI: https://doi.org/10.3390/ijerph19095546

Shokeralla AA, Alzharani AA, Abdalla AH, Modawy YM, Elshamy I, El Guma F. Modeling Climate-Driven Cholera Outbreaks: A Negative Binomial Regression Framework with Improved Handling of Overdispersion and Extreme Events. Letters in Biomathematics 2025; 12(1).

Zhang AR, Li XL, Wang T, et al. Ecology of Middle East respiratory syndrome coronavirus, 2012–2020: A machine learning modelling analysis. Transbound Emerg Dis 2022; 69(5): e2122-e2131. DOI: https://doi.org/10.1111/tbed.14548

Cleveland RB, Cleveland WS, McRae JE, Terpenning I. STL: A seasonal-trend decomposition. J Off Stat 1990; 6: 3-73.

Vapnik VN. The Nature of Statistical Learning Theory. New York, NY: Springer 1995. DOI: https://doi.org/10.1007/978-1-4757-2440-0

Sharma S, Raj K, Sharma SK, Khalid TA, Mustafa AO, Mohammed MM, Bakery AA. Applications of strongly deferred weighted convergence in the environment of uncertainty. International Journal of Analysis and Applications 2024; 22: 181-181. DOI: https://doi.org/10.28924/2291-8639-22-2024-181

Pedregosa G, Varoquaux A, Gramfort A, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res 2011; 12: 2825-2830.

Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comput 2004; 14(3): 199-222. DOI: https://doi.org/10.1023/B:STCO.0000035301.49549.88

Sykes ER, Wang Y. Optimising SVR for epidemiological predictions: a case study on COVID-19 mortality in Japan. Int J Artif Intell Soft Comput 2024; 8(5): 1-29. DOI: https://doi.org/10.1504/IJAISC.2024.143383

Shokeralla AA. The Discrete Laplace Transform (DLT) Order: A Sensitive Approach to Comparing Discrete Residual Life Distributions with Applications to Queueing Systems. European Journal of Pure and Applied Mathematics 2025; 18(4): 6994. DOI: https://doi.org/10.29020/nybg.ejpam.v18i4.6994

Zhang J, Nawata K. A comparative study on predicting influenza outbreaks. Biosci Trends 2017; 11(5): 533-541. DOI: https://doi.org/10.5582/bst.2017.01257

Zhao Z, Zhai M, Li G, et al. Study on the prediction effect of a combined model of SARIMA and LSTM based on SSA for influenza in Shanxi Province, China. BMC Infect Dis 2023; 23(1): 71. DOI: https://doi.org/10.1186/s12879-023-08025-1

Shokeralla AA, Qurashi ME, Mekki RY, Ali MS. The Effect of Symptoms on the Survival Time of Coronavirus Patients in the Sudanese Population. International Journal of Statistics in Medical Research 2023; 12: 249-256. DOI: https://doi.org/10.6000/1929-6029.2023.12.29

Al-Tawfiq JA, Gautret P, Benkouiten S, Memish ZA. Mass gatherings and the spread of respiratory infections. Lessons from the Hajj. Ann Am Thorac Soc 2016; 13(6): 759-765. DOI: https://doi.org/10.1513/AnnalsATS.201511-772FR

Memish ZA, Zumla A, Alhakeem RF, et al. Hajj: infectious disease surveillance and control. Lancet 2014; 383(9934): 2073-2082. DOI: https://doi.org/10.1016/S0140-6736(14)60381-0

Muhammad SK, Ansari TA, Shabbir B, et al. The role of arti-ficial intelligence in public health surveillance: a post-pan-demic perspective. Insights J Life Soc Sci 2025; 3(3): 74-80. DOI: https://doi.org/10.71000/pa7ab080

Saadeh R, Shokeralla AA, Al-Kuleab N, Hamad WS, Ali M, Abdoon MA, El Guma F. Stochastic Modelling of Seasonal Influenza Dynamics: Integrating Random Perturbations and Behavioural Factors. European Journal of Pure and Applied Mathematics 2025; 18(3): 6379-6379. DOI: https://doi.org/10.29020/nybg.ejpam.v18i3.6379

Khalid TA, Imam A, Bahatheg A, Elsamani SA, El Mukhtar B. A fractional epidemiological model for prediction and simulation the outbreaks of dengue fever outbreaks in sudan. Journal of Survey in Fisheries Sciences 2023; 10(3S): 2679-2692.

Chen Q, Zheng X, Shi H, et al. Prediction of influenza outbreaks in Fuzhou, China: comparative analysis of forecasting models. BMC Public Health 2024; 24(1): 1399. DOI: https://doi.org/10.1186/s12889-024-18583-x

Bezerra AKL, Santos ÉMC. Prediction the Daily Number of Confirmed Cases of COVID-19 in Sudan with ARIMA and Holt Winter Exponential Smoothing. International Journal of Development Research 2020; 10(08): 39408-39413.

Cong J, Ren M, Xie S, Wang P. Predicting seasonal influen-za based on SARIMA model, in mainland China from 2005 to 2018. Int J Environ Res Public Health 2019; 16(23): 4760. DOI: https://doi.org/10.3390/ijerph16234760

Shokeralla AA. A Hybrid Time Series–Regression Model for Tuberculosis Forecasting in Resource-Limited Settings, International Journal of Statistics in Medical Research 2025; 14: 299-307. DOI: https://doi.org/10.6000/1929-6029.2025.14.29

Babanejaddehaki G, An A, Papagelis M. Disease outbreak detection and forecasting: a review of methods and data sources. ACM Trans Comput Healthc 2025; 6(2): 1-40. DOI: https://doi.org/10.1145/3708549

Montesinos López OA, Montesinos López A, Crossa J. Support vector machines and support vector regression. In Multivariate statistical machine learning methods for genomic prediction. Cham: Springer International Publishing 2022; pp. 337-378. DOI: https://doi.org/10.1007/978-3-030-89010-0_9

Kakarash ZA, Ezat HS, Omar SA, Ahmed NF. Time series forecasting based on support vector machine using particle swarm optimization. International Journal of Computing 2022; 21(1): 76-88. DOI: https://doi.org/10.47839/ijc.21.1.2520

Szostek K, Mazur D, Drałus G, Kusznier J. Analysis of the Effectiveness of ARIMA, SARIMA, and SVR Models in Time Series Forecasting: A Case Study of Wind Farm Energy Production. Energies (19961073) 2024; 17(19). DOI: https://doi.org/10.3390/en17194803

del-Pozo-Bueno D, Kepaptsoglou D, Peiró F, Estradé S. Comparative of machine learning classification strategies for electron energy loss spectroscopy: Support vector machines and artificial neural networks. Ultramicroscopy 2023; 253: 113828. DOI: https://doi.org/10.1016/j.ultramic.2023.113828

Bountzis P, Kavallieros D, Tsikrika T, Vrochidis S, Kompatsiaris IY. A deep one-class classifier for network anomaly detection using autoencoders and one-class support vector machines. Frontiers in Computer Science 2025; 7: 1646679. DOI: https://doi.org/10.3389/fcomp.2025.1646679

Mustaffa Z, Sulaiman MH. Random forest-based wind power prediction method for sustainable energy system. Cleaner Energy Systems 2025; 100210. DOI: https://doi.org/10.1016/j.cles.2025.100210

Tjøstheim D. Selected topics in time series forecasting: Statistical models vs. machine learning. Entropy 2025; 27(3): 279. DOI: https://doi.org/10.3390/e27030279

Ibrahim A, Kashef R, Corrigan L. Predicting market movement direction for bitcoin: A comparison of time series modeling methods. Computers & Electrical Engineering 2021; 89: 106905. DOI: https://doi.org/10.1016/j.compeleceng.2020.106905

Gajewski P, Čule B, Rankovic N. Unveiling the power of ARIMA, support vector and random forest regressors for the future of the Dutch employment market. Journal of Theoretical and Applied Electronic Commerce Research 2023; 18(3): 1365-1403. DOI: https://doi.org/10.3390/jtaer18030069

Magalhães B, Bento P, Pombo J, Calado MDR, Mariano S. Short-term load forecasting based on optimized random forest and optimal feature selection. Energies 2024; 17(8): 1926. DOI: https://doi.org/10.3390/en17081926

Pedregosa G, Varoquaux A, Gramfort A, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res 2011; 12: 2825–2830.

Zhu X, Ren J, Wang J, Li J. Automated machine learning with dynamic ensemble selection. Appl Intell 2023; 53(20): 23596-23612. DOI: https://doi.org/10.1007/s10489-023-04770-7

Dixon S, Keshavamurthy R, Farber DH, et al. A comparison of infectious disease forecasting methods across locations, diseases, and time. Pathogens 2022; 11(2): 185. DOI: https://doi.org/10.3390/pathogens11020185

Guma FE, Abdoon MA, Abdalla SJM, Alharbi SA, Alsemiry RD, Allogmany R, Al-Kuleab N. Fractional Order Modelling of Influenza Dynamics: Impact of Memory Effect and Severity-Based Variations. International Journal of Biomathematics 2025.

Ali M, Guma FE, Qazza A, Saadeh R, Alsubaie NE, Althubyani M, Abdoon MA. Stochastic modeling of influenza transmission: Insights into disease dynamics and epidemic management. Partial Differential Equations in Applied Mathematics 2024; 11: 100886. DOI: https://doi.org/10.1016/j.padiff.2024.100886

Downloads

Published

2025-11-24

How to Cite

Shokeralla, A. A. ., El Guma, F. ., Abdalla, A. H. ., Hagsddig, A. E. ., Musa, R. A. ., Eltaweel, M. ., Elawad, A. H. ., & Elshamy, I. . (2025). Machine Learning-Based Prediction of Seasonal Influenza Trends in Saudi Arabia: A Tool for Regional Public Health Planning. International Journal of Statistics in Medical Research, 14, 688–696. https://doi.org/10.6000/1929-6029.2025.14.64

Issue

Section

General Articles