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Abstract: Case-Based Reasoning (CBR) is the process of solving problems by properly adapting the solutions of similar 
(analogous) problems solved in the past. As an Artificial Intelligence’s method CBR has become recently very popular to 
information managers increasing the effectiveness and reducing the cost of various human activities by substantially 
automated processes, such as diagnosis, scheduling, design, etc. In this paper a combination is utilized of the Centre of 
Gravity defuzzification technique and of the Fuzzy Numbers for assessing the effectiveness of CBR systems. Our new 
fuzzy assessment approach is validated by comparing its outcomes in our applications with the corresponding outcomes 
of two traditional assessment methods, the calculation of the mean values and the GPA index. 
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1. INTRODUCTION 

Roughly speaking, Case-Based Reasoning (CBR) is 
the process of solving problems by properly adapting 
the solutions of similar (analogous) problems solved in 
the past. CBR has currently grown to a generally 
cognitive theory for Problem Solving (PS) and 
Learning.  

In this work we shall apply a combination of the 
Centre of Gravity (COG) defuzzification technique and 
of the Fuzzy Numbers (FNs) for assessing the 
effectiveness of CBR systems. Fuzzy Logic (FL), due 
to its nature of characterizing the ambiguous real 
situations with multiple values, offers more realistic 
resources than those of the Aristotle’s bi-valued logic 
for assessment purposes. In particular, FNs play an 
important role to the FL mathematics, analogous to the 
role played by the ordinary numbers to classical 
mathematics. 

The rest of the article is formulated as follows: In 
Section 2 a brief but comprehensive account is given of 
the CBR process. In Section 3 we present those 
elements from the theory of FNs and in particular of the 
Triangular (TFNs) and Trapezoidal (TpFNs) FNs which 
are necessary for the purposes of this work. In Section 
4 examples are presented of applications of our new 
fuzzy assessment method to several types of CBR 
systems. Our method is validated by comparing its 
outcomes with the corresponding outcomes of two 
traditional assessment methods, the calculation of the 
mean values and of the Grade Point Average (GPA)  
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index. Our last Section 5 is devoted to our general 
conclusions and a short discussion about future 
perspectives of further research on the subject. 

2. CASE-BASED REASONING 

One of the most popular general PS strategies is 
the strategy of the analogous problem: When the solver 
is not sure of the appropriate procedure to solve a 
given problem, a good hint would be to look for a 
similar problem solved in the past, and try to adapt the 
solution procedure of this problem for use with the new 
problem. The PS by analogy, usually referred as 
Analogical Reasoning (AR) or Analogy- Based 
Reasoning is a special case of the general class of 
transfer of knowledge, i.e. of the use of already existing 
knowledge to produce new knowledge [1].  

The importance of AR in human thinking has been 
recognized years ago. In fact, there is a considerable 
number of studies developed and many experiments 
performed on individuals by mathematicians, 
psychologists and other scientists about the AR 
process ([2], Section 2). However, it is the Case-Based 
Reasoning (CBR) approach for PS and learning that 
has got a lot of attention over the last few years, 
because as an intelligent-systems method enables 
information managers to increase efficiency and reduce 
cost of many human activities by substantially 
automating processes, such as diagnosis, scheduling 
and design ([2], Section 3). Notice that the term AR is 
sometimes used as a synonymous of the typical CBR 
approach [3]. However, it is often used also to 
characterize methods, that solve new problems based 
on past cases of different domains [4, 5], while typical 
CBR methods focus on single-domain cases (a form of 
intra-domain analogy). 
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CBR is often used where experts find it hard to 
articulate their thought processes when solving 
problems. This is because knowledge acquisition for a 
classical knowledge-based system would be extremely 
difficult in such domains, and is likely to produce 
incomplete or inaccurate results.  

When using CBR the need for knowledge 
acquisition can be limited to establishing how to 
characterize cases, i.e. the analogous problems’ 
situations. A case-library can be a powerful corporate 
resource allowing everyone in an organization to tap in 
the corporate library, when handling a new problem. A 
CBR system, usually designed and functioning with the 
help of computers, allows the case-library to be 
developed incrementally, while its maintenance is 
relatively easy and can be carried out by domain 
experts. 

There are two styles of CBR, the PS style and the 
interpretive style. The PS style can support a variety of 
tasks including planning, diagnosis and design, e.g. in 
Medicine [6], Industry [7] and Robotics [8]. The 
interpretive style is useful for classification, evaluation 
or justification of a solution, argumentation and for the 
projection of effects of a decision. Lawyers and 
managers making strategic decisions use the 
interpretive style [9, 10].  

CBR has been formalized for purposes of computer 
and human reasoning as a four steps process, often 
referred as the “four R’s”. These steps involve: 

R1: Retrieve the most similar to the new problem 
past case. 

R2: Reuse the information and knowledge of the 
retrieved case for the solution of the new 
problem. 

R3: Revise the proposed solution. 

R4: Retain the part of this experience likely to be 
useful for future problem solving. 

The first three of the above steps are not linear, 
characterized by a backward - forward flow among 
them. A simplified flow - chart of the CBR process, 
adequate for the purposes of the present paper, is 
presented in Figure 1 below: 

More details about the CBR methodology, history 
and applications can be found in [2, 11] and in the 
relevant references given in the previous papers. A 

detailed functional diagram illustrating the four steps of 
the CBR process is also available in [2] (Figure 1).  

 
Figure 1: A simplified flow-chart of the CBR process. 

As a general PS methodology intended to cover a 
wide range of real-world applications, CBR must face 
the challenge to deal with uncertain, incomplete and 
vague information. Correspondingly recent years have 
witnessed an increased interest in formalizing parts of 
the CBR methodology within frameworks of reasoning 
under uncertainty, and in building hybrid approaches by 
combining CBR with methods of uncertain and 
approximate reasoning.  

In an earlier work [12] we have developed a 
mathematical framework for the CBR process by 
introducing a finite Markov Chain on it main steps, 
while in [13] we represented these steps as fuzzy 
subsets of a set of linguistic labels characterizing the 
degree of success of the CBR process in each step 
and we have utilized the corresponding CBR system’s 
total possibilistic uncertainty for measuring its 
effectiveness. Also, in [14] we have applied the 
Trapezoidal Fuzzy Assessment Model (TpFAM), which 
is a recently developed variation of the Center of 
Gravity (COG) defuzzification technique [15], for 
assessing a CBR system’s performance in each step of 
the CBR process. 

3. FUZZY NUMBERS 

3.1. Basic Definitions 

FL is based on the notion of a Fuzzy Set (FS), 
introduced by Zadeh in 1965 [16] as follows: 

3.1.1. Definition 

A FS A on the universal set U (or a fuzzy subset of 
U) is a set of ordered pairs of the form Α = {(x, mΑ(x)): 
x!U}, defined in terms of a membership function mΑ : 
U !  [0,1] that assigns to each element of U a real 
value from the interval [0,1].  

The value mΑ(x) us called the membership degree 
of x in A. The greater is mΑ(x), the better x satisfies the 
characteristic property of A. The definition of the 
membership function is not unique depending on the 
user’s subjective data, which is usually based on 
statistical or empirical observations. However, a 
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necessary condition for a fuzzy set to give a reliable 
description of the corresponding real situation is that its 
membership function’s definition is compatible to the 
common logic. 

For example, the probabilistic approach yields the 
natural language statement “there is an 85% chance 
that Mary is tall”, while the fuzzy terminology 
corresponds to the expression “Mary’s degree of 
membership within the set of tall people is 0.85”. The 
semantic difference is significant: The first view 
supposes that Mary is or is not tall (still caught in the 
law of the Excluded Middle); it is just that we only have 
a 85% chance of knowing in which set she is in. In 
contrast, fuzzy terminology supposes that Mary is 
“more or less” tall, or some other term corresponding to 
the value of 0.85.  

A crisp subset A of U can be considered as a fuzzy 
set in U with mΑ(x) = 1, if x !A and mΑ(x) = 0, if x !A. 
In this way most properties and operations of crisp sets 
can be extended to corresponding properties and 
operations of fuzzy sets.  

Note that many authors identify, for simplicity, a FS 
with its membership function, while others represent it 
as a symbolic sum (finite or an infinite series according 
to the cardinality of U), or as a symbolic integral, when 
U has the power of the continuous. 

The process of reasoning with fuzzy rules involves: 

• Fuzzification of the problem’s data by utilizing 
the suitable membership functions to define the 
required FSs. 

• Application of FL operators on the defined FSs 
and combination of them to obtain the final result 
in the form of a unique FS. 

• Defuzzification of the final FS to return to a crisp 
output value, in order to apply it on the real world 
situation for resolving the corresponding 
problem. 

For general facts on fuzzy sets we refer to the book 
of Klir & Folger [17].  

A FN is a special form of a FS on the set R of real 
numbers defined as follows: 

3.1.2. Definition 

A FN is a fuzzy set A on the set R of real numbers 
with membership function mA: R ! [0, 1], such that: 

• A is normal, i.e. there exists x in R such that 
mA(x) = 1, 

• A is convex, i.e. all its a-cuts Aa = {x!U: mA (x) !  
a}, a in [0, 1], are closed real intervals, and 

• Its membership function y = mA (x) is a 
piecewise continuous function. 

As a counter example, Figure 2 represents the 
graph of a fuzzy set on R which is not convex. In fact, 
we observe that A0.4 = [5, 8.5] !  [11, 13], i.e. A0.4 is not 
a closed interval.  

 
Figure 2: Example of a non convex fuzzy set on R. 

Since the x-cuts Ax of a FN, say A, are closed real 

intervals, we can write Ax = [  Al
x , Ar

x ] for each x in [0, 

1], where   Al
x , Ar

x  are real numbers depending on x. 
The following statement defines a partial order on the 
set of all FNs: 

3.1.3. Definition 

Given the FNs A and B we write A !B (or ! ) if, and 

only if,  Al
x ! Bl

x and  Ar
x ! Br

x  (or! ) for all x in [0, 
1]. Two such FNs are called comparable, otherwise 
they are called non comparable. 

3.1.4. Remark 

One can define the four basic arithmetic operations 
on FNS in the following two, equivalent to each other, 
ways [18]: 

(i) With the help of their a-cuts and the 
Representation-Decomposition Theorem of 
Ralesscou-Negoita ([19], Theorem 2.1, p.16) for 
FS. In this way the fuzzy arithmetic is turned to 
the well known arithmetic of the closed real 
intervals.  
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(ii) By applying the Zadeh’s extension principle 
([17], Section 1.4, p.20), which provides the 
means for any function f mapping the crisp set X 
to the crisp set Y to be generalized so that to 
map fuzzy subsets of X to fuzzy subsets of Y. 

In practice the above two general methods of the 
fuzzy arithmetic, requiring laborious calculations, are 
rarely used in applications, where the utilization of 
simpler forms of FNs is preferred.  

For general facts on FNs we refer to Chapter 3 of 
the book of Theodorou [20], which is written in Greek 
language, and also to the classical on the subject book 
of Kaufmann and Gupta [18]. 

3.2. Triangular Fuzzy Numbers 

TFNs are the simplest form of FNs. A TFN (a, b, c), 
with a, b, c in R actually means that “the value of b lies 
in the interval [a, c]”. The membership function of (a, b, 
c) is zero outside the interval [a, c], while its graph in [a, 
c] consists of two straight line segments forming a 
triangle with the OX axis (Figure 3).  

 
Figure 3: Graph and COG of the TFN (a, b, c). 

Therefore the analytical definition of a TFN is given 
as follows: 

3.2.1. Definition 

Let a, b and c be real numbers with a < b < c. Then 
the TFN (a, b, c) is a FN with membership function: 

  

y = m(x) = 

x ! a
b! a

, x " [a,b]

c ! x
c ! b

,        x " [b,c]

0,        x < a or x > c

#

$

%
%
%

&

%
%
%

 

The following two Propositions refer to basic 
properties of TFNs that we are going to use later in this 
paper:  

3.2.2. Proposition 

The x-cuts Ax of a TFN A = (a, b, c), x! [0, 1], are 

calculated by the formula Ax = [  Al
x , Ar

x ] = [a + x(b - 
a), c - x(c - b)] . 

Proof: Since Ax = {y!R: m(y !  x}, Definition 6 gives 

for the case of  Al
x that  

 
y ! a
b! a = x! y = a + x(b – a). Similarly for the case of 

 Ar
x we have that 

 
c ! y
c ! b = x 

! y = c - x(c - b). 

3.2.3. Proposition 

(Defuzzification of a TFN) The coordinates (X, Y) of 
the COG of the graph of the TFN (a, b, c) are 

calculated by the formulas X = 
  
a + b+ c

3
, Y = 

 
1
3

.  

Proof: The graph of the TFN (a, b, c) is the triangle 
ABC of Figure 3, with A (a, 0), B(b, 1) and C (c, 0). 
Then, the COG, say G, of ABC is the intersection point 
of its medians AN and BM. The proof of the Proposition 
is easily obtained by calculating the equations of AN 
and BM and by solving the linear system of these two 
equations. 

3.2.4. Arithmetic Operations on TFNs 

It can be shown [5] that the two general methods of 
defining arithmetic operations on FNs mentioned in 
Remark 3.1.4 lead to the following simple rules for the 
addition and subtraction of TFNs: 

Let A = (a, b, c) and B = (a1, b1, c1) be two TFNs. 
Then 

• The sum A + B = (a+a1, b+b1, c+c1). 

• The difference A - B = A + (-B) = (a-c1, b-b1, c-
a1), where –B = (-c1, -b1, -a1) is defined to be the 
opposite of B 1. 

                                            

1Obviously A + (-A) = (a-c, 0, c-a) ! O = (0, 0, 0), where the TFN O is defined 
by O(x) = 1, if x = 0 and O(x)=0, if x ! 0. 
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In other words, the opposite of a TFN, as well as the 
sum and the difference of two TFNs are always TFNs. 
On the contrary, the product and the quotient of two 
TFNs, although they are FNs, they are not always 
TFNs, unless if a, b, c, a1, b1, c1 are in R+ [21]. 

One can also define the following two scalar 
operations: 

• k + A= (k+a, k+b, k+c), k !R 

• kA = (ka, kb, kc), if k>0 and kA = (kc, kb, ka), if 
k<0. 

3.3. Trapezoidal Fuzzy Numbers 

Another simple form of FNs that are frequently used 
in applications are the TpFNs. Roughly speaking, a 
TpFN (a, b, c, d) with a, b, c, d in R states that “a 
certain real value lies in the interval [b, c]”. Its 
membership function y=m(x) is constantly 0 outside the 
interval [a, d], while its graph in this interval is the union 
of three straight line segments forming a trapezoid with 
the X-axis (Figure 4), 

 
Figure 4: Graph of the TpFN (a, b, c, d). 

Therefore, the analytic definition of a TpFN is given 
as follows: 

3.3.1. Definition 

Let a < b < c< d be given real numbers. Then the 
TpFN (a, b, c, d) is the FN with membership function: 

  

y = m(x) = 

x ! a
b! a

, x " [a,b]

x = 1, , x " [b,c]
d ! x
d ! c

,      x " [c,d]

0,        x < a and x > d

#

$

%
%
%

&

%
%
%

  

3.3.2. Remarks 

(i) A TFN (a, b, d) can be considered as a special 
case of the TpFN (a, b, c, d) with b=c, i.e. the 
TpFNs are generalizations of TFNs. 

(ii) It can be shown [18] that the arithmetic 
operations of addition and subtraction of TpFNs, 
as well as the corresponding two scalar 
operations can be performed in the same way 
with TFNs (see paragraph 3.2.4). However, the 
product and the quotient of two TpFNs, although 
they are FNs, in general they are not TpFNs, 
apart from some special cases [18].  

The following definition is introduced to be used in 
Section 4 for assessing the performance of a CBR 
system with the help of TpFNs/TFNs: 

3.3.3. Definition 

Let Ai , i = 1, 2,…, n be TpFNs/TFNs, where n is a 
non negative integer, n ! 2. Then we define the mean 
value of the Ai’s to be the TpFN/TFN:  

A= 
  
1
n (A1 + A2 + …. + An). 

We close this section with the following Proposition, 
which utilizes the COG technique for defuzzifying 
TpFNs: 

3.3.4. Proposition 

The coordinates (X, Y) of the COG of the graph of 
the TpFN (a, b, c, d) are calculated by the formulas  

X = 
  

c2 + d 2 ! a2 ! b2 + dc ! ba
3(c+ d ! a ! b)

, Y = 
  

2c+ d ! a ! 2b
3(c+ d ! a ! b)

. 

Proof: We divide the trapezoid forming the graph of 
the TpFN (a, b, c, d) in three parts, two triangles and 
one rectangle (Figure 4). The coordinates of the three 
vertices of the triangle ABE are (a, 0), (b, 1) and (b, 0) 
respectively, therefore by Proposition 3.2.3 the COG of 

this triangle is the point C1 (
  
a + 2b

3
, 1

3
). Similarly one 

finds that the COG of the triangle FCD is the point C2 

(
  
d + 2c

3
, 1

3
). Also, it is easy to check that the COG of 

the rectangle BCFE, being the intersection of its 

diagonals, is the point C3 (
  
b+ c

2
, 1

2
). Further, the areas 

of the two triangles are equal to S1 = 
  
b! a

2
 and S2 = 
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d ! c

2
respectively, while the area of the rectangle is 

equal to S3 = c - b (in all cases the corresponding 
height is 1, since the TpFN (a, b, c, d) is a normal fuzzy 
set on R).  

It is well known then [22] that the coordinates of the 
COG of the trapezoid, being the resultant of the COGs 
Ci (xi, yi), i=1, 2, 3, are calculated by the formulas  

X = 
  

1
S

Si xi
í=1

3

! , Y = 
  

1
S

Si yi
í=1

3

!  (1),  

where S = S1 + S2 + S3 = 
  
c+ d ! b! a

2
 is the area of the 

trapezoid. 

The proof of the Proposition is completed by 
replacing the above found values of S, Si, xi and yi, i = 
1, 2, 3, in formulas (1) and by performing the 
corresponding calculations. 

4. ASSESSING THE PERFORMANCE OF A CBR 
SYSTEM WITH THE HELP OF TFNs/TpFNs 

In this Section, we provide applications in which the 
TFNs/TpFNs are used as tools for the assessment of 
the effectiveness of CBR systems. For this, ranking in a 
climax from 0 to 100 the effectiveness of a CBR 
system’s past cases when used with new similar 
problems, we consider the following linguistic 
characterizations (or labels or grades or degrees) for 
their performance: A (85-100) = excellent, B (75-84) = 
very good, C (60-74) = good, D (50-59) = fair and F (0- 
49) = unsatisfactory2. 

This new fuzzy assessment approach is validated 
by comparing in our applications its outcomes with the 
corresponding outcomes of two classical assessment 
methods of the bi-valued logic, the calculation of the 
mean values and of the GPA index. 

4.1. Application (GPA – TFNs) 

Consider two CBR systems designed for help desk 
applications, with their libraries containing 105 and 90 
past cases respectively. The designers of both systems 
have supplied them with the same mechanism 
(software) for assessing the degree of success of their 

                                            

2The scores attached to the above linguistic labels are not standard, depending 
on the designer’s personal criteria. For example, in a more strict evaluation one 
could consider A (90 - 100), B (80 – 89), C (70 – 79), D (60 – 69), F (0 – 59), 
etc.  

past cases when used with new similar problems. The 
outcomes of this mechanism are depicted in Table 1 for 
each of the three first steps of the CBR process:  

Table 1: Degrees of success for the CBR systems 

FIRST SYSTEM 

Steps F D C B A 

R1 0 0 51 24 30 

R2 18 18 48 21 0 

R3 36 30 39 0 0 

SECOND SYSTEM 

Steps F D C B A 

R1 0 18 45 27 0 

R2 18 24 48 0 0 

 
Here we shall use the GPA index and the TFNs as 

assessment methods: 

(i) GPA index: We recall that the Great Point 
Average (GPA) index is a weighted mean in which 
more importance is given to the higher scores by 
attaching greater coefficients (weights) to them [23]. In 
other words, the GPA index focuses on the quality 
performance of a student group.  

Denote by yi , i = 1, 2, 3, 4, 5 the frequencies of the 
CBR system’s cases whose performance is 
characterized by F, D, C, B and A respectively, then 
the GPA index is calculated by the formula GPA = y2 + 
2y3 + 3y4 + 4y5 (2).  

In case of the ideal performance (y5 = 1) we have 
GPA = 4, while in the worst case (y1 = 1) we have GPA 
= 0; therefore 0 !  GPA !  4. Consequently, values of 
GPA greater than 4 : 2 = 2 correspond to a more than 
satisfactory system’s performance 

In our case, the data of Table 1 give the following 
frequencies:  

Replacing the values of frequencies from Table 2 in 
formula (2) one finds the following values for the GPA 
index: First System: R1: 

 

294
105

 = 2.8, R2: 
 

177
105

! 1.69, R3: 

 

108
105

! 1.03. Second System: R1: 
 

189
90

= 2.1, R2: 

 
168
90

! 1.87, R3: 
 
81
90

= 0.9 . The above values of the GPA 

index show that the first system demonstrated a better 
quality performance at steps R1 and R3 (Retrieve, 
Revise),.while the second one demonstrated a better 
performance at R2 (Reuse). Further, the two systems’ 
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performance was proved to be more than satisfactory 
in R1 and less than satisfactory in the other two steps, 
being worse at R3. This was logically expected, since 
the success in each step depends on the success in 
the previous steps. Notice that the two systems’ 
performance at the last step R4 was not examined, 
since all past cases, even the unsuccessful ones, are 
retained in a system’s library for possible use in future 
with related new problems; the unsuccessful ones to 
help for exploring possible reasons of failure to find a 
solution for the new problem. 

Finally, the mean values of the GPA index for the 
two systems at the steps R1, R2 and R3 are 
approximately equal to 1.84 and 1.62 respectively, 
showing that the first system demonstrated a better 
overall performance.  

(ii) Use of the TFNs: We assign to each 
assessment grade a TFN (denoted for simplicity by the 
same letter) as follows: A= (85, 92.5, 100), B = (75, 
79.5, 84), C = (60, 67, 74), D= (50, 54.5, 59) and F = 
(0, 24.5, 49). The middle entry of each of the above 
TFNs is equal to the mean value of the higher and 
lower scores attached to the corresponding degree, 
while the left and right entries are equal to the minimal 
and maximal score respectively of the corresponding 
degree.  

Inspecting the data of Table 1 one finds that for the 
first system and in step R1 we have 51 TFNs equal to 
C, 24 TFNs equal to B and 30 TFNs equal to A. Then, 
by Definition 3.3.3, the mean value of these TFNs, 
denoted for simplicity by the same letter R1, is equal to 

R1 = 
 

1
105

(51C + 24B + 30A) = 
 

1
105

[(3060, 4020, 4440) 

+ (1800, 1908, 2016) + (2550, 2775. 3000) = 

 
1

105
(7410, 8703, 9456) ! (70.57, 82.89, 90.96). 

Observing the TFN R1 one concludes that the 
performance of the first system at the step R1 (retrieve) 
lies in the interval [70.57, 90.96], i.e. it could be 
characterized from good (C), to excellent (A). Further, 
since the mean entries of the TFNS A, B and C are 
taken to be equal to the mean values of the lower and 
higher scores assigned to each of them, the middle 
entry of R1, being the mean value of these means, 
gives a rough approximation only of the systems 
performance (obviously not equal to the mean system’s 
performance, measured by the mean value of all 
scores assigned to the system’s cases). Therefore, 
here the first system’s performance could roughly been 
characterized by the score 82.89, i.e. as very good (B). 

In the same way one calculates the mean values R2 
= 

 
1

105
(18F + 18D+ 48C + 21B) !  (51, 60.07, 69.14) 

and R3 = 
 

1
105

(36F + 30D + 39C) !  (36.57, 48.86, 

61.14), thus obtaining the analogous conclusions for 
the first system’s performance at the steps R2 and R3 of 
the CBR process. Finally, the overall system’s 
performance can be assessed by the mean value R = 

 
1
3

(R1 + R2 + R3) !  (52.71, 63.94, 73.75), which shows 

that it can be characterized from fair (D) to good (C).  

Table 2: Frequencies of Success for the CBR Systems 

FIRST SYSTEM 

Steps y1 y2 y3 y4 y5 

R1 0 0 

 

51
105

 
 

24
105

 
 

30
105

 

R2 

 

18
105

 
 

18
105

 
 

48
105

 
 

21
105

 
0 

R3 

 

36
105

 
 

30
105

 
 

39
105

 
0 0 

SECOND SYSTEM 

Steps y1 y2 y3 y4 y5 

R1 0 

 

18
90

 
 

45
90

 
 

27
90

 
0 

R2 

 

18
90

 
 

24
90

 
 

48
90

 
0 0 

R3 

 

36
90

 
 

27
90

 
 

27
90

 
0 0 
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A similar argument gives for the second system the 
values R1 = (62.5, 68.25, 74), R2 ! (45.33, 55.17, 65) , 
R3 = (33, .46.25, 59.5) and R !  (46.94, 56.56, 66.17), 
thus obtaining the analogous conclusions for its 
performance at each step of the CBR process and its 
overall performance.  

However, the above approximate assessment can 
be precisely checked by applying Proposition 3.2.2 for 
calculating the x-cuts of the TFNs R and Definition 
3.1.3 for comparing these two TFNs. In fact, the x-cuts 
of them are [52.71 + 11.23x, 73.75 + 9.81x] and [46.94 
+ 9.62x, 66.17 + 9.59x] for the first and the second 
system respectively, while obviously we have that 
52.71 + 11.23x > 46.94 + 9.62x and 73.75 + 9.81x > 
66.17 + 9.59x, for all x in [0, 1]. This shows that (52.71, 
63.94, 73.75) > (46.94, 56.56, 66.17), i.e. that the first 
system demonstrates a better performance. The 
outcomes of the assessment methods (GPA, and 
TFNs) applied in the present application are depicted in 
Table 3. 

Our next application illustrates the usefulness of 
defuzzifying the TFNs in assessment processes: 

4.2. Application (Mean Values – Defuzzification of 
TFNs)  

The past cases of two different CBR systems were 
ranked in a climax from 0 to 100 as follows: 

First System (S1): 100(2 times), 99(3), 98(5), 95(8), 
94(7), 93(1), 92 (6), 90(5), 89(3), 88(7), 85(13), 82(6), 
80(14), 79(8), 78(6), 76(3), 75(3), 74(3), 73(1), 72(5), 
70(4), 68(2), 63(2), 60(3), 59(5), 58(1), 57(2), 56(3), 
55(4), 54(2), 53(1), 52(2), 51(2), 50(8), 48(7), 45(8), 
42(1), 40(3), 35(1). 

Second System (S2): 100(1), 99(2), 98(3), 97(4), 
95(9), 92(4), 91(2), 90(3), 88(6), 85(26), 82(18), 80(29), 
78(11), 75(32), 70(17), 64(12), 60(16), 58(19), 56(3), 
55(6), 50(17), 45(9), 40(6).  

Here we shall use the traditional calculation of the 
mean values and the TFNs as our assessment 
methods: 

(i) Mean values: Calculating the means of the 
scores for the two systems in the classical way one 
finds the values 76.006 and 75.09 respectively. This 
shows that the mean performance of both systems was 
very good (B), while the first system demonstrated a 
slightly better performance. 

(ii) TFNs: Using the TFNs A, B, C, D and F of 
paragraph (iii) of Application 4.1 the above scores are 
depicted in the following Table 4: 

Table 4: Systems’ Performance in Terms of the TFNs 

TFN S1 S2 

A 60 60 

B 40 90 

C 20 45 

D 30 45 

F 20 15 

 Total  170 255 

 
We observe that in Table 4 we have 170 TFNs for 

the first and 255 TFNs for the second system 
representing the performance of their past cases. For 
simplicity, let us denote the mean values of these TFNs 
by the letters S1 and S2 respectively. Then, performing 
straightforward calculations, one finds that 

S1 = 
 

1
170

. (60A+40B+20C+30D+20F) !  (63.53, 71.74, 

83.47) and 

S2 = 
 

1
255

. (60A+90B+45C+45D+15F) !  (65.88, 72.63, 

79.53).  

Observing the left and right entries of the TFNs S1 
and S2 one understands that the performance of both 
systems could be characterized from good (63.53 and 
65.88 respectively) to very good (83.47 and 79.53 
respectively). Further, applying the formula of 
Proposition 3.2.2 one finds that the x-cuts of the two 
TFNs are S1

x = [63.53+8.21x, 83.47-11.73x] and S2
x = 

[65.88+6.75x, 79.53-6.9x] respectively. But 
63.53+8.21x !  65.88+6.75x ! 1.46x ! 2.35 ! x 
! 1.61, which is true, since x is in [0, 1]. On the 

Table 3: Outputs of the Assessment Methods Used in Application 4.1 

METHOD OUTPUT 

GPA index The first system demonstrated a better overall performance and a better quality performance at steps R1 and R3, 
while the second system performed better at step R2 

TFNs The first system demonstrated a better performance.  
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contrary, we have that 83.47-11.73x ! 79.53-6.9x 
! 3.94 ! 4.83x! 0.82 ! x, which is not true for all 
values of x. Therefore, according to Definition 3.1.3, the 
TFNs S1 and S2 are not comparable, which means that 
at this stage one can not decide which of the two 
systems demonstrates the better performance. 

In order to overcome this difficulty we shall defuzzify 
the TFNs S1 and S2. In fact, by Proposition 3.2.3, the 
COGs of the triangles forming the graphs of these 
TFNs have x-coordinates equal to  

X = 
 
63.53+ 71.74+83.47

3
! 72.91 and  

X’ =
 
65.88+ 72.63+ 79.53

3
! 72.68 respectively.  

Observe now that the GOGs of the graphs of S1 and 
S2 lie in a rectangle with sides of length 100 units on 
the X-axis (customer scores from 0 to 100) and one 
unit on the Y-axis (normal fuzzy sets). Therefore, the 
nearer the x-coordinate of the COG to 100, the better 
the corresponding system’s performance. Thus, since 
X > X’, the first system demonstrates a (slightly) better 
performance. 

In concluding, the outcomes of the two assessment 
methods used in this application (means and TFNs) are 
compatible to each other.  

In our next application we shall use the TpFNs also 
as assessment tools: 

4.3. Application (TFNs – TpFNs) 

Six different users of a CBR system ranked with 
scores from 0-100 the effectiveness of the following 
five past cases for solving new related problems:  

C1 (Case 1): 43, 48, 49, 49, 50, 52, C2: 81, 83. 85, 
88, 91, 95, C3: 76, 82, 89, 95, 95, 98, C4: 86, 86, 87, 
87, 87, 88, C5: 35, 40, 44, 52, 59, 62.  

Here we shall evaluate the system’s effectiveness 
with respect to the above cases using the TFNs and 
the TpFNs: 

(i) TFNs: We consider again the TFNs A, B, C, D 
and F used in our two previous Applications. Observing 
the 5*6 = 30 in total scores of the given data one finds 
that in the present Application we have 14 TFNs equal 
to A, 4 equal to B, 1 equal to C, 4 equal to D and 7 
TFNs equal to F characterizing the five cases’ 
performance. The mean value of the above TFNs is 

equal to M = 
 
1

30
(14A + 4B + C + 4D + 7F) ! (60.33, 

68.98, 79.63). Therefore, the system’s performance lies 

in the interval [60.33, 79.63], i.e. it can be characterized 
from good (C) to very good (B). 

(ii) TpFNs: We assign to each case Ci , I = 1, 2, 3, 
4, 5 a TpFN (denoted, for simplicity, with the same 
letter) as follows: C1 = (0, 43, 52, 59), C2 = (75, 81, 95, 
100), C3 = (75, 76, 98, 100), C4 = (85, 86, 88, 100) and 
C5 = (0, 35, 62, 74). Each of the above TpFNs 
characterizes the performance of the corresponding 
case in the form (a, b, c, d), where a is the lower bound 
of its performance with respect to the corresponding 
linguistic grades, b and c are the lower and higher 
scores respectively assigned to the case by the six 
system’s users and d is the upper bound of its 
performance with respect to the linguistic grades. 

Next, for assessing the overall system’s 
performance with respect to the given five past cases, 
we calculate the mean value of the TpFNs Ci , i =1, 2, 

3, 4, 5, which is equal to the TpFN C = 
  

1
5

Ci
i=1

5

! = (47, 

64.2, 79, 86.6). Therefore, the system’s performance is 
lying in the interval [64.2, 79], i.e. it can be 
characterized from good (C) to very good (B).  

We note that in Applications 4.1 and 4.2 it was 
practically difficult to use the TpFNs as assessment 
tools due to the great number of the existing past 
cases. 

In concluding, we observe that the outcomes of the 
use of the TFNs and of the TpFNs for the evaluation of 
the system’s performance are compatible to each 
other. However, the information obtained is an 
approximation only, not giving an exact idea about the 
system’s performance. For this, we need to defuzzify 
either the TFN M or the TpFN C. We shall do this for C 
by extending the present Application as follows: 

4.4. Application (Defuzzification of TpFNs) 

Reconsider Application 4.3 and assume that the 
same six users assessed also the performance of five 
similar cases of another CBR system designed for the 
same purposes with the first one (e.g. diagnosis of a 
disease). Assume further that the overall performance 
of these cases was assessed as in Application 4.3 
(using TpFNs) and that the mean value of the 
corresponding TpFNs was found to be equal to C΄ = 
(47.8, 65.3, 78.1, 85.9). How one can compare the 
overall performance of the two systems with respect to 
the given five past cases of each one of them? 

Solution: Applying Proposition 3.3.4 we find that the 
x-coordinate of the COC of the trapezoid constituting 
the graph of the TpFN C is equal to 
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X =

792 + (86.6)2 ! (64.2)2 ! 472 + 79 *86.6 ! 47 * (64.2)
3(79+86.6 ! 47 ! 64.2)

" 68.84 . 

In the same way we find that the x-coordinate X΄of the 
graph of C΄ is approximately equal to 68.13. Therefore, 
the performance of both systems can be characterized 
as good (C).  

Further, using the same argument as in Application 
4.2 for TFNs, we observe that the nearer the x-
coordinate of the COG to 100, the better the 
corresponding system’s performance. Thus, since X > 
X’, the first system demonstrated a slightly better 
performance than the second one. 

5. CONCLUSION 

In the present paper we used the Triangular and 
Trapezoidal Fuzzy Numbers (TFNs and TpFNs) for the 
assessment of a CBR system’s performance. Since 
two TFNs/TpFNs are not always comparable, the use 
of them as assessment tools was combined in certain 
applications with the COG defuzzification technique. 
The creditability of this new fuzzy assessment approach 
was validated by comparing the outcomes of our applica-
tions with the corresponding outcomes of two traditional 
assessment methods (mean values, GPA index). 

The use of the TFNs/TpFNs together with the COG 
technique has the potential of a general assessment 
method that could be used in a great variety of other 
machine (e.g. for decision-making, etc.) and human 
(e.g. student assessment, etc.) activities. This is indeed 
the main target of our future research on the subject. 
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