Determination of Surface Topography and Composition of Cr-Free Pretreatment Layers on Hot Dip Galvanized Steel

Authors

  • Ville Saarimaa Top Analytica Oy, Ruukinkatu 4, FI-20540 Turku, Finland
  • Antti Markkula Ruukki Metals Oy, Harvialantie 420, FI-13300 Hämeenlinna, Finland
  • Jyrki Juhanoja Top Analytica Oy, Ruukinkatu 4, FI-20540 Turku, Finland
  • Bengt-Johan Skrifvars Top Analytica Oy, Ruukinkatu 4, FI-20540 Turku, Finland

DOI:

https://doi.org/10.6000/2369-3355.2014.01.02.1

Keywords:

Atomic force microscopy, time of flight secondary ion mass spectrometry, Auger electron spectroscopy, coil coating, Cr-free pretreatment, topography.

Abstract

Topography and composition of Cr-free, titanium-based pretreatment layers on hot dip galvanized steel were studied with scanning electron microscopy, atomic force microscopy, time of flight secondary ion mass spectrometry and Auger electron spectroscopy. A layer within the target coating weight range (4-10 mg Ti/m2) for industrial coil coating processes contained a micro-structure with hillocks and valleys, showing significant topographical variations. A local maximum film thickness of about 50 nm was detected for a sample containing 5.0 mg Ti/m2. The hillocks were composed of metal complexes and phosphates, formed as a result of rapid zinc dissolution and metal hydroxide/phosphate precipitation reactions. During the layer formation also the polymer component of the pretreatment chemical becomes embedded within the structure. The structure composed of hillocks and valleys may be highly beneficial for paint adhesion, increasing the surface contact area for primary and secondary chemical bonding

Author Biographies

Ville Saarimaa, Top Analytica Oy, Ruukinkatu 4, FI-20540 Turku, Finland

Ruukinkatu

Antti Markkula, Ruukki Metals Oy, Harvialantie 420, FI-13300 Hämeenlinna, Finland

Harvialantie

Jyrki Juhanoja, Top Analytica Oy, Ruukinkatu 4, FI-20540 Turku, Finland

Ruukinkatu

Bengt-Johan Skrifvars, Top Analytica Oy, Ruukinkatu 4, FI-20540 Turku, Finland

Ruukinkatu

References

Marcus P, Ouder J, Eds. Corrosion Mechanisms in Theory and Practise. New York: Marcel Dekker 1995.

Yang H, Kong X, Lu W, Liu Y, Guo J, Liu S. High anticorrosion chromate-free passivate films made by titanate and waterborne polyurethane on galvanized steel sheet. Prog Org Coat 2010; 67: 375-80. http://dx.doi.org/10.1016/j.porgcoat.2010.01.001 DOI: https://doi.org/10.1016/j.porgcoat.2010.01.001

Zhang J. Development of environmentally friendly non-chrome conversion coatings for cold-rolled steel [PhD thesis]. Blacksburg, Virginia Polytechnic Institute and State University; 2003.

Jašková V, Kalendová A. Anticorrosive coatings containing modified phosphates. Prog Org Coat 2011; 75: 328-34. http://dx.doi.org/10.1016/j.porgcoat.2012.07.019 DOI: https://doi.org/10.1016/j.porgcoat.2012.07.019

Öhman M, Persson D, Jacobsson D. In situ studies of conversion coated zinc/polymer surfaces during exposure to corrosive conditions. Prog Org Coat 2011; 70:16-22. http://dx.doi.org/10.1016/j.porgcoat.2010.09.012 DOI: https://doi.org/10.1016/j.porgcoat.2010.09.012

Zhang X, Sloof WG, Hovestad A, van Westing EP, Terryn H, de Wit JH. Characterization of chromate conversion coatings on zinc using XPS and SKPFM. Surf Coat Tech 2005; 197: 168-76. http://dx.doi.org/10.1016/j.surfcoat.2004.08.196 DOI: https://doi.org/10.1016/j.surfcoat.2004.08.196

Freeman DB. Phosphating and metal pre-treatment. Great Britain: Woodhead-Faulkner; 1986.

Ogle K, Morel S, Meddahi N. An electrochemical study of the delamination of polymer coatings on galvanized steel. Corros Sci 2005; 47: 2034-52. http://dx.doi.org/10.1016/j.corsci.2004.08.017 DOI: https://doi.org/10.1016/j.corsci.2004.08.017

Jiang L, Wolpers M, Volovitch P, Ogle K. An atomic emission spectroelectrochemical study of passive film formation and dissolution on galvanized steel treated with silicate conversion coatings. Surf Coat Tech 2012; 206: 3151-7. http://dx.doi.org/10.1016/j.surfcoat.2012.01.016 DOI: https://doi.org/10.1016/j.surfcoat.2012.01.016

De Graeve I, Schoukens I, Lanzutti A, et al. Mechanism of corrosion protection of hot-dip aluminium–silicon coatings on steel studied by electrochemical depth profiling. Corros Sci 2013; 76: 325-36. http://dx.doi.org/10.1016/j.corsci.2013.07.005 DOI: https://doi.org/10.1016/j.corsci.2013.07.005

Kong G, Lu J, Zhang S, Che C, Wu H. A comparative study of molybdate/silane composite films on galvanized steel with different treatment processes. Surf Coat Tech 2010; 205: 545-50. http://dx.doi.org/10.1016/j.surfcoat.2010.07.033 DOI: https://doi.org/10.1016/j.surfcoat.2010.07.033

Lostak T, Krebs S, Maljusch A, Gothe T, Giza M, Kimpel M, Flock J, Schulz S. Formation and characterization of Fe3+/Cu2+-modified zirconium oxide conversion layers on zinc alloy coated steel sheets. Electrochim Acta 2013; 112: 14-23. http://dx.doi.org/10.1016/j.electacta.2013.08.161 DOI: https://doi.org/10.1016/j.electacta.2013.08.161

Wilson B, Fink N, Grundmeier G. Formation of ultra-thin amorphous conversion films on zinc alloy coatings: Part 2: Nucleation, growth and properties of inorganic–organic ultra-thin hybrid films. Electrochim Acta 2006; 51: 3066-75. http://dx.doi.org/10.1016/j.electacta.2005.08.041 DOI: https://doi.org/10.1016/j.electacta.2005.08.041

Posner R, Fink N, Wolpers M, Grundmeier G. Electrochemical electrolyte spreading studies of the protective properties of ultra-thin films on zinc galvanized steel. Surf Coat Tech 2013; 228: 286-95. http://dx.doi.org/10.1016/j.surfcoat.2013.04.042 DOI: https://doi.org/10.1016/j.surfcoat.2013.04.042

Berger R, Bexell U, Grehk TM, Hörnström SE. A comparative study of the corrosion protective properties of chromium and chromium free passivation methods. Surf Coat Tech 2007; 202: 391-7. http://dx.doi.org/10.1016/j.surfcoat.2007.06.001 DOI: https://doi.org/10.1016/j.surfcoat.2007.06.001

Zhu L, Yang F, Ding N. Corrosion resistance of the electro-galvanized steel treated in a titanium conversion solution. Surf Coat Technol 2007; 201: 7829-34. http://dx.doi.org/10.1016/j.surfcoat.2007.03.024 DOI: https://doi.org/10.1016/j.surfcoat.2007.03.024

Berger R, Bexell U, Stavlid N, Grehk TM. The influence of alkali-degreasing on the chemical composition of hot-dip galvanized steel surfaces. Surf Interface Anal 2006; 38: 1130-8. http://dx.doi.org/10.1002/sia.2364 DOI: https://doi.org/10.1002/sia.2364

Nordlien JH, Walmsley JC, Østerberg H, Nisancioglu K. Formation of a zirconium-titanium based conversion layer on AA 6060 aluminium. Surf Coat Tech 2002; 153: 72-8. http://dx.doi.org/10.1016/S0257-8972(01)01663-2 DOI: https://doi.org/10.1016/S0257-8972(01)01663-2

Volovitch P, Allely C, Ogle K. Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn-Mg coating on steel. Corros Sci 2009; 51: 1251-62. http://dx.doi.org/10.1016/j.corsci.2009.03.005 DOI: https://doi.org/10.1016/j.corsci.2009.03.005

Tsai YT, Hou KH, Bai CY, Lee JL, Ger MD. The influence on immersion time of titanium conversion coatings on electrogalvanized steel. Thin Solid Films 2010; 518: 7541-4. http://dx.doi.org/10.1016/j.tsf.2010.05.042 DOI: https://doi.org/10.1016/j.tsf.2010.05.042

Tegehall PE, Vannerberg NG. Nucleation and formation of zinc phosphate conversion coating on cold-rolled steel. Corros Sci 1991; 32: 635-52. http://dx.doi.org/10.1016/0010-938X(91)90112-3 DOI: https://doi.org/10.1016/0010-938X(91)90112-3

Matsuzaki A, Yamashita M, Hara N, Effect of pretreatment film composition on adhesion of organic film on zinc coated steel sheet. Mater Trans 2010; 51: 1833-41. http://dx.doi.org/10.2320/matertrans.M2010185 DOI: https://doi.org/10.2320/matertrans.M2010185

Adhikari S, Unocic KA, Zhai Y, Frankel GS, Zimmerman J, Fristad W. Hexafluorozirconic acid based surface pretreatments: Characterization and performance assessment. Electrochim Acta 2011; 56: 1912-24. http://dx.doi.org/10.1016/j.electacta.2010.07.037 DOI: https://doi.org/10.1016/j.electacta.2010.07.037

Saarimaa V, Kauppinen E, Markkula A, Juhanoja J, Skrifvars BJ, Steen P. Microscale distribution of Ti-based conversion layers on hot dip galvanized steel. Surf Coat Tech 2012; 206: 4173-9. http://dx.doi.org/10.1016/j.surfcoat.2012.04.017 DOI: https://doi.org/10.1016/j.surfcoat.2012.04.017

Lunder O, Simensen C, Yu Y, Nisancioglu K. Formation and characterization of Ti-Zr based conversion layers on AA6060 aluminum. Surf Coat Tech 2004; 184: 278-90. http://dx.doi.org/10.1016/j.surfcoat.2003.11.003 DOI: https://doi.org/10.1016/j.surfcoat.2003.11.003

Le Manchet S, Verchère D, Landoulsi J. Effects of organic and inorganic treatment agents on the formation of conversion layer on hot-dip galvanized steel: An X-ray photoelectron spectroscopy study. Thin Solid Films 2012; 520: 2009-16. http://dx.doi.org/10.1016/j.tsf.2011.09.064 DOI: https://doi.org/10.1016/j.tsf.2011.09.064

Bexell U. Surface Characterization Using ToF-SIMS, AES and XPS of Silane Films and Organic Coatings Deposited on Metal Substrates [PhD Thesis]. Sweden. Uppsala University; 2003.

Bierwagen GP, Twite R, Chen G, Tallman DE. Atomic force microscopy, scanning electron microscopy and electrochemical characterization of Al alloys, conversion coatings, and primers used for aircraft. Prog Org Coat 1997; 32: 25-30. http://dx.doi.org/10.1016/S0300-9440(97)00097-0 DOI: https://doi.org/10.1016/S0300-9440(97)00097-0

Rezaee N, Attar MM, Ramezanzadeh B. Studying corrosion performance, microstructure and adhesion properties of a room temperature zinc phosphate conversion coating containing Mn2+ on mild steel. Surf Coat Tech 2013; 236: 361-7. http://dx.doi.org/10.1016/j.surfcoat.2013.10.014 DOI: https://doi.org/10.1016/j.surfcoat.2013.10.014

Hernández M, Genescá J, Uruchurtu J, Galliano F, Landolt D. Effect of an inhibitive pigment zinc-aluminum-phosphate (ZAP) on the corrosion mechanisms of steel in waterborne coatings. Prog Org Coat 2006; 56: 199-206. http://dx.doi.org/10.1016/j.porgcoat.2006.05.001 DOI: https://doi.org/10.1016/j.porgcoat.2006.05.001

Deck PD, Moon M, Sujdak RJ. Investigation of fluoacid based conversion coatings on aluminium. Prog Org Coat 1998; 34: 39-48. http://dx.doi.org/10.1016/S0300-9440(98)00017-4 DOI: https://doi.org/10.1016/S0300-9440(98)00017-4

Puomi P, Fagerholm HM, Rosenholm JB, Jyrkäs K. Comparison of different commercial pretreatment methods for hot-dip galvanized and Galfan coated steel. Surf Coat Tech 1999; 115: 70-8. http://dx.doi.org/10.1016/S0257-8972(99)00170-X DOI: https://doi.org/10.1016/S0257-8972(99)00170-X

Critchlow GW, Brewis DM. A comparison of chromate-phosphate and chromate-free conversion coatings for adhesive bonding. J Adhesion 1997; 61: 213-30. http://dx.doi.org/10.1080/00218469708010523 DOI: https://doi.org/10.1080/00218469708010523

Downloads

Published

2014-10-29

How to Cite

Saarimaa, V., Markkula, A., Juhanoja, J., & Skrifvars, B.-J. (2014). Determination of Surface Topography and Composition of Cr-Free Pretreatment Layers on Hot Dip Galvanized Steel. Journal of Coating Science and Technology, 1(2), 88–95. https://doi.org/10.6000/2369-3355.2014.01.02.1

Issue

Section

Articles