High-Temperature Protective Coatings Produced by EB-PVD

Authors

  • B. A. Movchan International Center for Electron-Beam Technologies of E.O. Paton Electric Welding Institute of National Academy of Science of Ukraine
  • Yakovchuk K. Yu International Center for Electron-Beam Technologies of E.O. Paton Electric Welding Institute of National Academy of Science of Ukraine

DOI:

https://doi.org/10.6000/2369-3355.2014.01.02.2

Keywords:

Electron-beam evaporation and deposition (EB-PVD), high-temperature coating, multilayered thermal-barrier coating, crucible-evaporator, gas turbine blades.

Abstract

The paper presents some new technological sequences of electron beam evaporation and deposition of high-temperature metal-ceramic coatings.

The main attention is given to two-layer Me-Cr-Al-Y/ZrO2-Y2O3 coatings with transition layers of the total thickness of up to 0.2 mm.

Chemical composition and structures of the main layers (metal, ceramics) and substrate/metal and metal/ceramics transition layers, as well as the respective physico-mechanical properties are considered.

A method of deposition of these coatings in one technological cycle of evaporation and condensation with application of evaporation composite ingot is proposed.

Examples of coating “design” and respective equipment for practical application in gas turbine construction are given.

Author Biographies

B. A. Movchan, International Center for Electron-Beam Technologies of E.O. Paton Electric Welding Institute of National Academy of Science of Ukraine

International Center for Electron-Beam Technologies

Yakovchuk K. Yu, International Center for Electron-Beam Technologies of E.O. Paton Electric Welding Institute of National Academy of Science of Ukraine

International Center for Electron-Beam Technologies

References

Bunshah RF. Vacuum evaporation – history, recent developments and applications. Z metallkunde 1984; 75(11): 840-846. DOI: https://doi.org/10.1515/ijmr-1984-751104

Bunshah RF. Handbook of deposition technologies for films and coatings: science, technology and applications. 2nd ed. Park Ridge, N.J.: Noyes Publications 1994.

Movchan BA, Yakovchuk KYu. Graded thermal barrier coatings, deposited by EB-PVD. Surface and Coatings Technology 2004; 188-189: 85-92. http://dx.doi.org/10.1016/j.surfcoat.2004.08.006 DOI: https://doi.org/10.1016/j.surfcoat.2004.08.006

Мovchan BA, Malashenko IS. Zharostoykiye pokritiya osazhdayemiye v vacuume. Kiev: Naukova dumka 1983.

Movchan BA. Inorganic materials and coatings produced by EB-PVD. Surface Engineering 2006; 22(1): 35-46. http://dx.doi.org/10.1179/174329406X85029 DOI: https://doi.org/10.1179/174329406X85029

Movchan BA, Gavriljuk OJ. Electron beam projector provided with a linear thermionic emitting cathode for electron beam heating. United States Patent US 7,042,145. 2006 May.

Tamarin Y. Protective coatings for turbine blades. Ohio: ASM. Intern 2002.

Levi CG. Emerging materials and processe for thermal barrier systems. Solid State and Materials Science 2004; 38: 77-91. DOI: https://doi.org/10.1016/j.cossms.2004.03.009

Clarke DR, Oechsner M, Padture N. Thermal barrier coatings for more efficient gas-turbine engines. MRS Bulletin Oct 2012; 37(10): 891-898. http://dx.doi.org/10.1557/mrs.2012.232 DOI: https://doi.org/10.1557/mrs.2012.232

Evans AG, Mumm DR, Hutchinson JW, Meier GH, Petit FS. Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science 2001; 46: 505-553. http://dx.doi.org/10.1016/S0079-6425(00)00020-7

ovchan BA, Malashenko IS, Yakovchuk KYu, Rybnikov AI, Tchizhik AA. Two- and three-layer coatings produced by deposition in vacuum for gas turbine blade application. Surface and Coatings Technology 1994; 67: 55-63. http://dx.doi.org/10.1016/S0257-8972(05)80027-1 DOI: https://doi.org/10.1016/S0257-8972(05)80027-1

Schulz U, Fritscher K, Peters M. Thermocyclic behavior of variously stabilized EB-PVD thermal barrier coatings. J Eng Gas Turbines Power 1997; 119(4): 917-921. http://dx.doi.org/10.1115/1.2817074 DOI: https://doi.org/10.1115/1.2817074

Schulz U, Fritscher K, Leyens C. Two-source jumping beam evaporation for advanced EB-PVD TBC systems // Surface and Coatings Technology 2000; 133-134: 40-48. http://dx.doi.org/10.1016/S0257-8972(00)00871-9 DOI: https://doi.org/10.1016/S0257-8972(00)00871-9

Yu Z, Dharmasena KP, Hass DD, Wadley HNG. Vapor deposition of platinum alloyed nickel aluminide coatings. Surface and Coatings Technology 2006; 201: 2326-2334. http://dx.doi.org/10.1016/j.surfcoat.2006.04.020 DOI: https://doi.org/10.1016/j.surfcoat.2006.04.020

Mazurkiewicz A, Smolik J, Zbrowski A, Kacprzyńska J. Innovative technical solutions for evaporation of multilayer coatings by EB-PVD method. The Archives of Civil and Mechanical Engineering 2014; 14(2): 250-254. http://dx.doi.org/10.1016/j.acme.2013.09.008 DOI: https://doi.org/10.1016/j.acme.2013.09.008

Movchan BA, Korzh AV, Topal VI. United Technology Corporation (USA) and International Center for Electron Beam Technologies of E.O.Paton Electric Welding Institute (Ukraine). Method of vacuum vaporization of metals. European patent EP 0969115 (A1). 1997 May.

Movchan BA, Nerodenko LM, Rudoy JE. International Center for Electron Beam Technologies of E.O.Paton Electric Welding Institute (Ukraine). Method for producing by evaporation a functionally graded coatings with an outer ceramic layer on a metal substrate. United States Patent US 6,669,982. 2003 Dec.

Movchan BA, Yakovchuk KYu. Electron beam installations for evaporation and deposition of inorganic materials and coatings. Advances in Electrometallurgy 2004; 2: 9-14.

Yakovchuk KYu, Rudoy YuE. Single-stage electron beam technology of deposition of thermal barrier gradient coatings. Advances in Electrometallurgy 2003; 2: 9-14.

Ratzer-Scheibe H-J, Schulz U, Krell T. The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings. Surface and Coatings Technology 2006; 200: 5636-5644. http://dx.doi.org/10.1016/j.surfcoat.2005.07.109 DOI: https://doi.org/10.1016/j.surfcoat.2005.07.109

Movchan BA, Demchishin AV. Investigation of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminuim oxide and zirconium dioxide. Fiz Met Metalloved 1969; 28(4): 653-660.

Thornton JA. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J Vac Sci Technol 1974; 11: 666. http://dx.doi.org/10.1116/1.1312732 DOI: https://doi.org/10.1116/1.1312732

Sanpath S, Schulz U, Jarligo MO, Kuroda S. Processing science of advanced thermal barrier systems. MRS Bulletin October 2012; 37(10): 903-910. DOI: https://doi.org/10.1557/mrs.2012.233

Thornton JA. High rate thick film growth. Annual Review of Materials Science 1977; 7: 239-260. http://dx.doi.org/10.1146/annurev.ms.07.080177.001323 DOI: https://doi.org/10.1146/annurev.ms.07.080177.001323

Schulz U, Terry SG, Levi CG. Microstructure and textureof EB-PVD TBCs grown under different rotation modes. Materials Science and Engineering 2003; 360: 318-328. DOI: https://doi.org/10.1016/S0921-5093(03)00470-2

Wada K, Yoshiya M, Yamaguchi N, Matsubara H. Texture and microstructure of ZrO2-4 mol.% Y2O3 layers obliquely deposited by EB-PVD. Surface and Coatings Technology 2006; 200: 2725-2730. http://dx.doi.org/10.1016/j.surfcoat.2005.02.121 DOI: https://doi.org/10.1016/j.surfcoat.2005.02.121

Schulz U, Sarahan B, Fritscher K, Leyens C. Review on advanced EB-PVD ceramic topcoats for TBC applications. Int. Journal of Applied Ceramic Technology 2004; 1(4): 302-315. http://dx.doi.org/10.1111/j.1744-7402.2004.tb00182.x DOI: https://doi.org/10.1111/j.1744-7402.2004.tb00182.x

Hass DD, Slifka AJ, Wadley HNG. Low thermal conductivity vapor deposited zirconia microstructures. Acta Materialia 2001; 49: 973-983. http://dx.doi.org/10.1016/S1359-6454(00)00403-1 DOI: https://doi.org/10.1016/S1359-6454(00)00403-1

Gu S, Lu TG, Hass TD, Wadley HNG. Thermal conductivity of zirconia coatings with zig-zag pore microstructures. Acta Mater 2001; 49: 2539-2547. http://dx.doi.org/10.1016/S1359-6454(01)00141-0 DOI: https://doi.org/10.1016/S1359-6454(01)00141-0

Movchan BA, Lemkey FD. Some approaches to producing microporous materials and coatings by EB PVD. Surface and Coatings Technology 2003; 165: 90. http://dx.doi.org/10.1016/S0257-8972(02)00723-5 DOI: https://doi.org/10.1016/S0257-8972(02)00723-5

Nicholls JR, Lawson KJ, Johnstone A, Rickerby DS. Methods to reduce the thermal conductivity of EB-PVD TBCs. Surface and Coatings Technology 2002; 151-152: 383-391. http://dx.doi.org/10.1016/S0257-8972(01)01651-6 DOI: https://doi.org/10.1016/S0257-8972(01)01651-6

Evans AG, Mumm DR, Hutchinson GH, Meier GH, Pettit FS. Mechanisms comtrolling the durability of thermal barrier coatings. Progress in Material Science 2001; 46: 505-553. http://dx.doi.org/10.1016/S0079-6425(00)00020-7 DOI: https://doi.org/10.1016/S0079-6425(00)00020-7

Levi CG, Hutchinson JW, Vidal-Setif MH, Johnson CA. Environmental degradation of thermal barrier coatings by molten deposits. MRS Bulletin 2012; 37(10): 931-941. http://dx.doi.org/10.1557/mrs.2012.230 DOI: https://doi.org/10.1557/mrs.2012.230

Turbine blade coatings - EB-PVD production systems. ALD Vacuum Technologies GmbH, Germany; Available from: http://web.ald-vt.de/cms/fileadmin/pdf/prospekte/SMARTCoater_101012.pdf

Reinhold E, Botzler P, Deus C. EB-PVD process management for highly productive zirconia thermal barrier coating of turbine blades. Surface and Coating Technology 1999; 120-121: 77-83. http://dx.doi.org/10.1016/S0257-8972(99)00344-8 DOI: https://doi.org/10.1016/S0257-8972(99)00344-8

Downloads

Published

2014-10-29

How to Cite

Movchan, B. A., & Yu, Y. K. (2014). High-Temperature Protective Coatings Produced by EB-PVD. Journal of Coating Science and Technology, 1(2), 96–110. https://doi.org/10.6000/2369-3355.2014.01.02.2

Issue

Section

Articles