Synthesis, Comparative Characterization and Photocatalytic Application of SnO2/MWCNT Nanocomposite Materials

Authors

  • Z. Nemeth Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
  • Z. Pallai Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
  • B. Reti Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
  • Z. Balogh Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Lyngby, Denmark
  • O. Berkesi Department of Physical Chemistry and Material Science, University of Szeged, H-6720 Szeged, Hungary
  • K. Baan Department of Physical Chemistry and Material Science, University of Szeged, H-6720 Szeged, Hungary
  • A. Erdohelyi Department of Physical Chemistry and Material Science, University of Szeged, H-6720 Szeged, Hungary
  • E. Horvath Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
  • G. Veréb Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Hungary
  • A. Dombi Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Hungary
  • L. Forró Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
  • K. Hernadi Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Hungary

DOI:

https://doi.org/10.6000/2369-3355.2014.01.02.6

Keywords:

Carbon nanotubes, chemical synthesis, electron microscopy, IR spectroscopy, photocatalysis.

Abstract

Two different preparation methods were developed to cover successfully multi-walled carbon nanotubes (MWCNT) with tin-dioxide (SnO2) nanoparticles using SnCl2·2H2O as precursor under different solvent conditions. The applied mass ratios of the components were 1:4, 1:8, 1:16, 1:32 and 1:64, respectively. As-prepared tin-dioxide coverages were characterized by TEM, SEM, SEM-EDX, Raman microscopy, BET and X-ray diffraction techniques. Photocatalytic efficiencies of selected composites were investigated in a self-made photoreactor, equipped with UV-A fluorescence lamps. Photocatalytic degradation of phenol solution was followed by using HPLC. Observations revealed that using hydrothermal method we can easily control the layer of SnO2 nanoparticles on the surface of MWCNTs. Using various solvents SnO2 nanoparticles with different morphologies formed. The nanocomposites have low photocatalytic efficiencies under conditions used generally (when λ>300 nm).

Author Biographies

Z. Nemeth, Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary

Applied and Environmental Chemistry

Z. Pallai, Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary

Applied and Environmental Chemistry

B. Reti, Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary

Applied and Environmental Chemistry

Z. Balogh, Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Lyngby, Denmark

Center for Electron Nanoscopy

O. Berkesi, Department of Physical Chemistry and Material Science, University of Szeged, H-6720 Szeged, Hungary

Physical Chemistry and Material Science

K. Baan, Department of Physical Chemistry and Material Science, University of Szeged, H-6720 Szeged, Hungary

Physical Chemistry and Material Science

A. Erdohelyi, Department of Physical Chemistry and Material Science, University of Szeged, H-6720 Szeged, Hungary

Physical Chemistry and Material Science

E. Horvath, Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Laboratory of Physics of Complex Matter

G. Veréb, Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Hungary

Research Group of Environmental Chemistry

A. Dombi, Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Hungary

Research Group of Environmental Chemistry

L. Forró, Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Laboratory of Physics of Complex Matter

K. Hernadi, Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Hungary

Research Group of Environmental Chemistry

References

Iijima S. Helical microtubules. Nature 1991; 354: 56-8. http://dx.doi.org/10.1038/354056a0 DOI: https://doi.org/10.1038/354056a0

Chu H, Wei L, Cui R, Wang J, Li Y. Carbon nanotubes combined. Coord Chem Rev 2010; 254: 1117-34. http://dx.doi.org/10.1016/j.ccr.2010.02.009 DOI: https://doi.org/10.1016/j.ccr.2010.02.009

Frank S, Poncharal P, Wang ZL, Heer WA. Carbon nanotube quantum resistors. Science 1998; 280: 1744-6. http://dx.doi.org/10.1126/science.280.5370.1744 DOI: https://doi.org/10.1126/science.280.5370.1744

Liu YL, Yang HF, Yang Y, Liu ZM, Shen GL, Yu RQ. Gas sensing. Thin Solid Films 2006; 497: 355-60. http://dx.doi.org/10.1016/j.tsf.2005.11.018

Dong H, Lu K. Attaching titania. Int J Appl Ceram Technol 2009; 6: 216-22. http://dx.doi.org/10.1111/j.1744-7402.2008.02270.x DOI: https://doi.org/10.1111/j.1744-7402.2008.02270.x

Diao P, Liu Z. Electrochemistry. J Phys Chem B 2005; 109: 20906-13. http://dx.doi.org/10.1021/jp052666r DOI: https://doi.org/10.1021/jp052666r

Jiang G, Zheng X, WangY, Li T, Sun X. Photodegradation. Powder Technol 2011; 207: 465-9. http://dx.doi.org/10.1016/j.powtec.2010.11.029 DOI: https://doi.org/10.1016/j.powtec.2010.11.029

Kauffman DR, Tang Y, Kichambare PD, Jackovitz JF. Long-term performance. Energy Fuels 2010; 24: 1877-81. http://dx.doi.org/10.1021/ef100013v DOI: https://doi.org/10.1021/ef100013v

Landi BJ, Ganter MJ, Cress CD, Dileo RA, Raffaelle RP. Carbon nanotubes. Science 2008; 2 638-54. DOI: https://doi.org/10.1039/b904116h

Han W, Zettl A. Coating. Nano Letters 2003; 3(5): 681-3. http://dx.doi.org/10.1021/nl034142d DOI: https://doi.org/10.1021/nl034142d

Kuang Q, Li SF, Xie ZX, Lin SC, Zhang XH, Xie SY, Huang RB, Zheng LS. Controllable fabrication. Carbon 2006; 44: 1166-72. http://dx.doi.org/10.1016/j.carbon.2005.11.001 DOI: https://doi.org/10.1016/j.carbon.2005.11.001

Liu YL, Yang HF, Yang Y, Liu ZM, Shen GL, Yu RQ. Gas sensing properties. Thin Solid Films 2006; 497: 355-60. http://dx.doi.org/10.1016/j.tsf.2005.11.018 DOI: https://doi.org/10.1016/j.tsf.2005.11.018

Du G, Zhong C, Zhang P, Guo Z, Chen Z, Liu H. Tin dioxide/carbon nanotube. Electrochim Acta 2010; 55: 2582-6. http://dx.doi.org/10.1016/j.electacta.2009.12.031 DOI: https://doi.org/10.1016/j.electacta.2009.12.031

Pang HL, Lu JP, Chen JH, Huang CT, Liu B, Zhang XH. Preparation of SnO2. Electrochim Acta 2009; 54: 2610-5. http://dx.doi.org/10.1016/j.electacta.2008.10.058 DOI: https://doi.org/10.1016/j.electacta.2008.10.058

Feng C, Li L, Guo Z, Li H. Synthesis and characterization. J Alloys Compd 2010; 504: 457-61. http://dx.doi.org/10.1016/j.jallcom.2010.05.144 DOI: https://doi.org/10.1016/j.jallcom.2010.05.144

Noerochim L, Wang JZ, Chou SL, Li HJ, Liu HK. SnO2 coated. Electrochim Acta 2010; 56: 314-20. http://dx.doi.org/10.1016/j.electacta.2010.08.078 DOI: https://doi.org/10.1016/j.electacta.2010.08.078

Xu C, Sun J, Gao L. Synthesis of multiwalled carbon nanotubes. J Phys Chem C 2009; 113 20509-13. http://dx.doi.org/10.1021/jp909740h DOI: https://doi.org/10.1021/jp909740h

Zhu CL, Zhang ML, Qiao YJ, Gao P, Chen YJ. High capacity. Mater Res Bull 2010; 45: 437-41. http://dx.doi.org/10.1016/j.materresbull.2009.11.011 DOI: https://doi.org/10.1016/j.materresbull.2009.11.011

Du N, Zhang H, Chen BD, Ma XY, Huang HH, Tu JP, Yang DR. Synthesis of polycrystalline SnO2. Mater Res Bull 2009; 44: 211-5. http://dx.doi.org/10.1016/j.materresbull.2008.04.001 DOI: https://doi.org/10.1016/j.materresbull.2008.04.001

Aroutiounian VM, Arakelyan VM, Khachaturyan EA, Shahnazaryan GE, Aleksanyan MS, Forro L, Magrez A, Hernadi K, Nemeth Z. Manufacturing and investigations. Sens Actuators B 2012; 173: 890-6. http://dx.doi.org/10.1016/j.snb.2012.04.039

Aroutiounian VM, Adamyan AZ, Khachaturyan EA, Adamyan ZN, Hernadi K, Pallai Z, Nemeth Z, Forro L, Magrez A, Horvath E. Study of the surface-ruthenated. Sens Actuators B 2013; 177: 308-15. http://dx.doi.org/10.1016/j.snb.2012.10.106 DOI: https://doi.org/10.1016/j.snb.2012.10.106

Wu SS, Cao HQ, Yin SF, Liu XW, Zhang XR. Amino acid-assisted hydrothermal synthesis. J Phys Chem C 2009; 113: 17893-8. http://dx.doi.org/10.1021/jp9068762 DOI: https://doi.org/10.1021/jp9068762

Dimitrov M, Tsoncheva T, Shao S, Kohn R. Novel preparation. Appl Catal B 2010; 94: 158-65. http://dx.doi.org/10.1016/j.apcatb.2009.11.004 DOI: https://doi.org/10.1016/j.apcatb.2009.11.004

Linsebigler AL, Lu G, Yates JT. Photocatalysis. Chem Rev 1995; 95: 735-58. http://dx.doi.org/10.1021/cr00035a013 DOI: https://doi.org/10.1021/cr00035a013

Sun Y, Wilson SR, Schuster DI. High dissolution. J Am Chem Soc 2001; 123: 5348-9. http://dx.doi.org/10.1021/ja0041730 DOI: https://doi.org/10.1021/ja0041730

Wang N, Xu J, Guan L. Synthesis. Mater Res Bull 2011; 46: 1372-6. http://dx.doi.org/10.1016/j.materresbull.2011.05.014 DOI: https://doi.org/10.1016/j.materresbull.2011.05.014

Couteau E, Hernadi K, Seo JW, Thien-Nga L, Miko Cs, Gaal R, Forro L. CVD synthesis. Chem Phys Lett 2003; 378: 9-13. http://dx.doi.org/10.1016/S0009-2614(03)01218-1 DOI: https://doi.org/10.1016/S0009-2614(03)01218-1

Magrez A, Seo JW, Miko Cs, Hernadi K, Forro L. Growth of carbon nanotubes. J Phys Chem B 2005; 109: 100087-91. DOI: https://doi.org/10.1021/jp050363r

Aroutiounian VM, Arakelyan VM, Khachaturyan EA, Shahnazaryan GE, Aleksanyan MS, Forro L, Magrez A, Hernadi K, Nemeth Z. Manufacturing. Sens Actuators B 2012; 173: 890-6. http://dx.doi.org/10.1016/j.snb.2012.04.039 DOI: https://doi.org/10.1016/j.snb.2012.04.039

Horrillo MC, Serventi A, Rickerby D, Gutiérrez J. Influence of tin oxide. Sens Actuators B 1999; 58: 474-7. http://dx.doi.org/10.1016/S0925-4005(99)00106-9 DOI: https://doi.org/10.1016/S0925-4005(99)00106-9

Mandayo GG, Castano E, Gracia FJ, Cirera A, Cornet A, Morante JR. Strategies. Sens Actuators B 2003; 95: 90-6. http://dx.doi.org/10.1016/S0925-4005(03)00413-1 DOI: https://doi.org/10.1016/S0925-4005(03)00413-1

Downloads

Published

2014-10-30

How to Cite

Nemeth, Z., Pallai, Z., Reti, B., Balogh, Z., Berkesi, O., Baan, K., Erdohelyi, A., Horvath, E., Veréb, G., Dombi, A., Forró, L., & Hernadi, K. (2014). Synthesis, Comparative Characterization and Photocatalytic Application of SnO2/MWCNT Nanocomposite Materials. Journal of Coating Science and Technology, 1(2), 137–150. https://doi.org/10.6000/2369-3355.2014.01.02.6

Issue

Section

Articles