Reactive DC Magnetron Sputtering-Induced the Formation of Amorphous CuN Films Embedded Nanocrystalline WC Phase

Authors

  • Yue Lin School of Materials Science and Engineering, Anhui University of Technology
  • Shihong Zhang School of Materials Science and Engineering, Anhui University of Technology

DOI:

https://doi.org/10.6000/2369-3355.2016.03.01.3

Keywords:

Nanocomposite film, Reactive magnetron sputtering, CuN, WC, High-temperature wear behavior

Abstract

A novel amorphous CuN/nanocrystal WC (nc-WC/a-CuN) film synthesized by reactive dc magnetron sputtering is reported in this paper. The nc-WC/a-CuN42 at.% film which is composed of many WC dendrite crystals of 5~10 nm with (001) orientation embedded in amorphous CuN possesses ~55 GPa hardness. The high-temperature wear analysis shows that this novel film possesses the comparable excellent friction performance with DLC film which is attributed to self-lubricant function of a-CuN; simultaneously the film was still maintaining the higher hardness at elevated temperature.

References

[1] Zhang SH, Cho TY, Yoon JH, Li MX, Shum PW, Kwon SC. Investigation on microstructure, surface properties and anti-wear performance of HVOF sprayed WC–CrC–Ni coatings modified by laser heat treatment. Mater Sci Eng: B 2009; 162: 127.
http://dx.doi.org/10.1016/j.mseb.2009.03.017
[2] Zhang SH, He YS, Li MX, He YZ, Kwon SC, Yoon JH, Cho TY. Synthesis and characterization of Cu3N-WC nanocomposite films prepared by direct current magnetron sputtering. Thin Solid Films 2010; 518: 5227-5232.
[3] Pujada BR, Tichelaar FD, Janssen GCAM. Stress in tungsten carbide-diamond like carbon multilayer coatings. Appl Phys Lett 2007; 90: 021913.
http://dx.doi.org/10.1063/1.2430905
[4] Liu Y, Gubisch M, Haensel T, Spiess L, Schaefer JA. Evaluation of the friction of WC/DLC solid lubricating films in vacuum. Tribol Int 2006; 39: 1584.
http://dx.doi.org/10.1016/j.triboint.2006.02.061

[5] Shi J, Lu YF, Cherukuri RS, Mendu KK, Doerr DW, Alexander DR, Li LP, Chen XY. Laser-assisted nanoscale deposition of diamond-like carbon films on tungsten tips. Appl Phys Lett 2004; 85: 1009.
http://dx.doi.org/10.1063/1.1777816
[6] Chen LY, C Franklin- H Nan. Diamond-like carbon nanocomposite films. Appl Phys Lett 2003; 82: 3526.
http://dx.doi.org/10.1063/1.1576909
[7] Mayrhofer PH, Mitterer C, Hultman L, Clemens H. Microstructural design of hard coatings. Prog Mater Sci 2006; 51: 1032.
http://dx.doi.org/10.1016/j.pmatsci.2006.02.002
[8] Musil J, Daniel R. Structure and mechanical properties of magnetron sputtered Zr–Ti–Cu–N films. Surf Coat Tech 2003; 166: 243.
http://dx.doi.org/10.1016/S0257-8972(02)00819-8
[9] Lao JJ, Shao N, Mei FH, Li GY, Gu MY. Mutual promotion effect of crystal growth in TiN?SiC TiN?SiC Nanomultilayers. Appl Phys Lett 2005; 86: 011902.
http://dx.doi.org/10.1063/1.1844045
[10] Zhu LN, Li GL, Wang HD, Xu BS, Zhuang DM, Liu JJ. Microstructures and nano mechanical properties of the metal tungsten film. Curr Appl Phys 2009; 9: 510.
http://dx.doi.org/10.1016/j.cap.2008.05.003
[11] Ma DY, Ma SL, Xu KW, Veprek S. Effecting of oxygen and chlorine on nano-structured TiN/Si3N4 films hardness. Mater Lett 2005; 59: 838.
http://dx.doi.org/10.1016/j.matlet.2004.10.062
[12] Tritremmel C, Daniel R, Rudigier H, Polcik P, Mitterer C, Surf Coat Tech 2014; 57-64: 246.
[13] Liu ZJ, Vyas A, Lu YH, Shen YG. Structural properties of sputter-deposited CNx/TiN multilayer films. Thin Solid Films 2005; 479: 31.
http://dx.doi.org/10.1016/j.tsf.2004.11.106
[14] Yu DL, Tian YJ, He JL, Xiao FR, Wang TS, Li DC, Li L, Zheng G, Yanagisawa O. Preparation of CNx/TiNy multilayers by ion beam sputtering. J Cryst Growth 2001; 233: 303.
http://dx.doi.org/10.1016/S0022-0248(01)01492-0

Downloads

Published

2016-05-24

How to Cite

Lin, Y., & Zhang, S. (2016). Reactive DC Magnetron Sputtering-Induced the Formation of Amorphous CuN Films Embedded Nanocrystalline WC Phase. Journal of Coating Science and Technology, 3(1), 23–28. https://doi.org/10.6000/2369-3355.2016.03.01.3

Issue

Section

Articles