Corrosion Protection of Aluminum Alloy by Sol-Gel Derived Organic-Inorganic Hybrid Pretreatments Based on Epoxy Resin Modified Silane Precursor

Authors

  • Mahshid Niknahad Mahshid Niknahad Coating Research Institute, Eastern Michigan University
  • Chintankumar J. Patel Coating Research Institute, Eastern Michigan University
  • Vijay Mannari Coating Research Institute, Eastern Michigan University

DOI:

https://doi.org/10.6000/2369-3355.2016.03.01.4

Keywords:

Sol-gel, organic-inorganic hybrid, epoxy silane, corrosion inhibitor, aluminum alloy

Abstract

Organic-Inorganic hybrid (OIH) derived by sol-gel process have emerged as promising pretreatments alternative to conventional chromate-based systems for aluminum alloys.

In this study novel organo-silane precursor has been synthesized from epoxy resin and amino-silane compound and used as the primary component of OIH film. The effects of epoxy and silane functionality and organic inhibitor used in the composition have been studied on corrosion resistance performance of aluminum alloy (3003-H14). The study also investigates the performance of top coat (powder coating) adhesion onto the pretreatment under different cure conditions. The chemical structure of sol-gel precursor (epoxy silane) and the deposited films have been characterized by FTIR analysis. The corrosion protection performance has been studied by electrochemical impedance spectroscopy (EIS), D.C. electrochemical polarization measurements, and the accelerated neutral salt spray test (ASTM B117). This study shows that by proper choice of precursor structure, functionality, processing conditions, and corrosion inhibitor amount, it is possible to derive OIH films with corrosion resistance performance comparable to conventional Cr (VI) based pretreatments.

References

[1] Schweitzer PA, Ed. Corrosion and corrosion protection handbook, 2nd ed., rev. and expanded. New York: M. Dekker, 1989.
[2] Schweitzer PA. Corrosion engineering handbook. atmospheric and media corrosion of metals, 2nd ed. Boca Raton: CRC Press 2007.
[3] Gilroy D, Eddowes PJ, Dalrymple IM, et al. Techniques for assessing the protective properties of chromated conversion coatings—part I: aluminum. Met Finish 1996; 94: 26-30.
http://dx.doi.org./10.1016/0026-0576(96)85145-2
[4] Bonnel K, Le Pen C, Pébère N. E.I.S. characterization of protective coatings on aluminium alloys. Electrochimica Acta 1999; 44: 4259-67.
http://dx.doi.org./10.1016/S0013-4686(99)00141-3
[5] Zhang X, van den Bos C, Sloof WG, Hovestad A, Terryn H, de Wit JHW.“Comparison of the morphology and corrosion performance of Cr(VI)- and Cr(III)-based conversion coatings on zinc. Surf Coat Technol 2005; 199: 92-104.
http://dx.doi.org./10.1016/j.surfcoat.2004.12.002
[6] Liu Y, Feng Z, Walton J, Thompson GE, Skeldon P, Zhou X. Comparison of the behaviours of chromate and sol–gel coatings on aluminium. Surf Interface Anal 2013; 45: 1446-51.
http://dx.doi.org./10.1002/sia.5206
[7] Van Ooij W, VanZhu D, Stacy M, et al. Corrosion protection properties of organofunctional silanes—an overview. Tsinghua Sci Technol 2005; 10: 639-64.
http://dx.doi.org./10.1016/S1007-0214(05)70134-6
[8] Crawmer D. OSHA hexavalent chromium regulation. Adv Mater Process 2006; 164: 62-75. http://go.galegroup.com/ps/i.do?id= GALE%7CA150656269&v=2.1&u=lom_emichu&it=r&p=ITOF&sw=w&asid=f54169527acee5fe589c6363ab6acba8
[9] Pirhady Tavandashti N, Sanjabi S, Shahrabi T. Corrosion protection evaluation of silica/epoxy hybrid nanocomposite coatings to AA2024. Prog Org Coat 2009; 65: 182-6.
http://dx.doi.org./10.1016/j.porgcoat.2008.10.010
[10] Metroke TL, Gandhi JS, Apblett A. Corrosion resistance properties of ormosil coatings on 2024-T3 aluminum alloy. Prog Org Coat 2004; 50: 231-46.
http://dx.doi.org./10.1016/j.porgcoat.2004.03.001
[11] Twite RL, Bierwagen GP. Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog Org Coat 1998; 33: 91-100.
http://dx.doi.org./10.1016/S0300-9440(98)00015-0
[12] Bierwagen G, Brown R, Battocchi D, Hayes S. Active metal-based corrosion protective coating systems for aircraft requiring no-chromate pretreatment. Prog Org Coat 2010; 67: 195-208.
http://dx.doi.org./10.1016/j.porgcoat.2009.10.031
[13] Kakde V, Mannari V. Advanced chrome-free organic–inorganic hybrid pretreatments for aerospace aluminum alloy 2024-T3—application of novel bis-ureasil sol–gel precursors. J Coat Technol Res 2009; 6: 201-11.
http://dx.doi.org/10.1007/s11998-008-9142-4
[14] Feng Z, Liu Y, Thompson GE, Skeldon P. Sol–gel coatings for corrosion protection of 1050 aluminium alloy. Electrochimica Acta 2010; 55: 3518-27.
http://dx.doi.org./10.1016/j.electacta.2010.01.074
[15] Conde A, Durán A, de Damborenea JJ. Polymeric sol–gel coatings as protective layers of aluminium alloys. Prog Org Coat 2003; 46: 288-96.
http://dx.doi.org./10.1016/S0300-9440(03)00014-6
[16] Romano A-P, Fedel M, Deflorian F, Olivier M-G. Silane sol–gel film as pretreatment for improvement of barrier properties and filiform corrosion resistance of 6016 aluminium alloy covered by cataphoretic coating. Prog Org Coat 2011; 72: 695-702.
http://dx.doi.org./10.1016/j.porgcoat.2011.07.012
[17] Serra A, Ramis X, Fernández-Francos X. Epoxy sol-gel hybrid thermosets. Coatings 2016; 6: 8.
http://dx.doi.org/10.3390/coatings6010008
[18] Ciriminna R, Fidalgo A, Pandarus V, Béland F, Ilharco LM, Pagliaro M. The sol–gel route to advanced silica-based materials and recent applications. Chem Rev 2013; 113: 6592-620.
http://dx.doi.org./10.1021/cr300399c
[19] Davis SR, Brough AR, Atkinson A. Formation of silica/epoxy hybrid network polymers. J Non-Cryst Solids 2003; 315: 197-205.
http://dx.doi.org./10.1016/S0022-3093(02)01431-X
[20] Fedel M, Olivier M, Poelman M, Deflorian F, Rossi S, Druart M-E. Corrosion protection properties of silane pre-treated powder coated galvanized steel. Prog Org Coat 2009; 66: 118-28.
http://dx.doi.org./10.1016/j.porgcoat.2009.06.011
[21] Palomino LM, Suegama PH, Aoki IV, Fatima Montemor M, De Melo HG. Electrochemical study of modified non-functional bis-silane layers on Al alloy 2024-T3. Corros Sci 2008; 50: 1258-66.
http://dx.doi.org./10.1016/j.corsci.2008.01.018
[22] Palanivel V, Zhu D, van Ooij WJ. Nanoparticle-filled silane films as chromate replacements for aluminum alloys. Prog Org Coat 2003; 47: 384-92.
http://dx.doi.org./10.1016/j.porgcoat.2003.08.015
[23] Zhu D, van Ooij WJ. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodium chloride solution.: Part 2: mechanism for corrosion protection. Corros Sci 2003; 45: 2177-97.
http://dx.doi.org./10.1016/S0010-938X(03)00061-1
[24] Song J, Van Ooij WJ. Bonding and corrosion protection mechanisms of ?-APS and BTSE silane films on aluminum substrates. J Adhes Sci Technol 2003; 17: 2191-221.
http://dx.doi.org./10.1163/156856103772150788
[25] Chru?ciel JJ, Le?niak E. Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. Prog Polym Sci 2015; 41: 67-121.
http://dx.doi.org./10.1016/j.progpolymsci.2014.08.001
[26] Ponyrko S, Kobera L, Brus J, Mat?jka L. Epoxy-silica hybrids by nonaqueous sol–gel process. Polymer 2013; 54: 6271-82.
http://dx.doi.org./10.1016/j.polymer.2013.09.034
[27] Piscitelli F, Lavorgna M, Buonocore GG, Verdolotti L, Galy J, Mascia L. Plasticizing and reinforcing features of siloxane domains in amine-cured epoxy/silica hybrids. Macromol Mater Eng 2013; 298: 896-909.
http://dx.doi.org./10.1002/mame.201200222
[28] Metroke TL, Parkhill RL, Knobbe ET. Passivation of metal alloys using sol–gel-derived materials — a review. Prog Org Coat 2001; 41: 233-8.
http://dx.doi.org./10.1016/S0300-9440(01)00134-5
[29] Raps D, Hack T, Wehr J, et al. Electrochemical study of inhibitor-containing organic–inorganic hybrid coatings on AA2024. Corros Sci 2009; 51: 1012-21.
http://dx.doi.org./10.1016/j.corsci.2009.02.018
[30] Yasakau KA, Zheludkevich ML, Karavai OV, Ferreira MGS. Influence of inhibitor addition on the corrosion protection performance of sol–gel coatings on AA2024. Prog Org Coat 2008; 63: 352-61.
http://dx.doi.org./10.1016/j.porgcoat.2007.12.002
[31] Zheng S, Li J. Inorganic–organic sol gel hybrid coatings for corrosion protection of metals. J Sol-Gel Sci Technol 2010; 54: 174-87.
http://dx.doi.org./10.1007/s10971-010-2173-1
[32] Palanivel V, Huang Y, van Ooij WJ. Effects of addition of corrosion inhibitors to silane films on the performance of AA2024-T3 in a 0.5 M NaCl solution. Prog Org Coat 2005; 53: 153-68.
http://dx.doi.org./10.1016/j.porgcoat.2003.07.008
[33] Quinet M, Neveu B, Moutarlier V, Audebert P, Ricq L. Corrosion protection of sol–gel coatings doped with an organic corrosion inhibitor: Chloranil. Prog Org Coat 2007; 58: 46-53.
http://dx.doi.org./10.1016/j.porgcoat.2006.11.007
[34] Zheludkevich ML, Serra R, Montemor MF, Yasakau KA, Salvado IMM, Ferreira MGS. Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3: corrosion protection performance. Electrochimica Acta 2005; 51: 208-17.
http://dx.doi.org./10.1016/j.electacta.2005.04.021
[35] Voevodin NN, Grebasch NT, Soto WS, Arnold FE, Donley MS. Potentiodynamic evaluation of sol–gel coatings with inorganic inhibitors. Surf Coat Technol 2001; 140: 24-8.
http://dx.doi.org./10.1016/S0257-8972(01)00999-9
[36] Khramov AN, Voevodin NN, Balbyshev VN, Mantz RA. Sol–gel-derived corrosion-protective coatings with controllable release of incorporated organic corrosion inhibitors. Thin Solid Films 2005; 483: 191-6.
http://dx.doi.org./10.1016/j.tsf.2004.12.021
[37] Zheludkevich ML, Yasakau KA, Poznyak SK, Ferreira MGS. Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy. Corros Sci 2005; 47: 3368-83.
http://dx.doi.org./10.1016/j.corsci.2005.05.040
[38] Zandi-Zand R, Ershad-Langroudi A, Rahimi A. Silica based organic–inorganic hybrid nanocomposite coatings for corrosion protection. Prog Org Coat 2005; 53: 286-91.
http://dx.doi.org./10.1016/j.porgcoat.2005.03.009
[39] Farias MA, Coelho LAF, Pezzin SH. Epoxy/silsesquioxane organic–inorganic hybrids: sol–gel synthesis of inorganic precursors containing amino and phenyl groups. Polym Eng Sci 2012; 52: 52-61.
http://dx.doi.org./10.1002/pen.22044
[40] Han Y-H, Taylor A, Knowles KM. Characterisation of organic–inorganic hybrid coatings deposited on aluminium substrates. Surf Coat Technol 2008; 202: 1859-68.
http://dx.doi.org./10.1016/j.surfcoat.2007.08.006
[41] Kumar N, Jyothirmayi A, Soma Raju KRC, Subasri R. Effect of functional groups (methyl, phenyl) on organic–inorganic hybrid sol–gel silica coatings on surface modified SS 316. Ceram Int 2012; 38: 6565-72.
http://dx.doi.org./10.1016/j.ceramint.2012.05.040
[42] Yasakau KA, Zheludkevich ML, Karavai OV, Ferreira MGS. Influence of inhibitor addition on the corrosion protection performance of sol–gel coatings on AA2024. Prog Org Coat 2008; 63: 352-61.
http://dx.doi.org./10.1016/j.porgcoat.2007.12.002
[43] Floyd FL, Avudaiappan S, Gibson J, et al. Using electrochemical impedance spectroscopy to predict the corrosion resistance of unexposed coated metal panels. Prog Org Coat 200; 66: 8-34.
http://dx.doi.org./10.1016/j.porgcoat.2009.04.009

Downloads

Published

2016-05-24

How to Cite

Mahshid Niknahad, M. N., J. Patel, C., & Mannari, V. (2016). Corrosion Protection of Aluminum Alloy by Sol-Gel Derived Organic-Inorganic Hybrid Pretreatments Based on Epoxy Resin Modified Silane Precursor. Journal of Coating Science and Technology, 3(1), 29–40. https://doi.org/10.6000/2369-3355.2016.03.01.4

Issue

Section

Articles