Effect of Nanocrystalline Diamond Films Deflection on Wear Observed in Reciprocating Sliding Tests

Authors

  • V. Podgursky Department of Materials Engineering, Tallinn University of Technology,
  • A. Bogatov Department of Materials Engineering, Tallinn University of Technology,
  • S. Sobolev Gubkin Russian State University of Oil and Gas,
  • M. Viljus Centre for Materials Research, Tallinn University of Technology,
  • V. Sedov Prokhorov General Physics Institute, Russian Academy of Sciences,
  • E. Ashkinazi National Research Nuclear University MEPhI,

DOI:

https://doi.org/10.6000/2369-3355.2016.03.03.2

Keywords:

Diamond films, tribology, deflection, adaptation, self-organization.

Abstract

The present study deals with the tribological behavior of nanocrystalline diamond (NCD) films. The diamond films were deposited by microwave plasma enhanced chemical vapor deposition (MPCVD) in methane/hydrogen/air plasma on the Si(100) substrates. The tribological properties were studied by reciprocal sliding tests against Si3N4 balls. The depth profiles and surface morphology of the wear scars were investigated by means of mechanical profilometry and scanning electron microscopy (SEM). Various adaptation processes occur between contacting surfaces including asperity polishing, formation of carbonaceous tribolayer and ripple patterns on the wear scar surfaces. The film deflection is the specific form of adaptation decreasing contact pressure and, therefore, the damage (including wear) of both counter bodies. The deflection of NCD films in sliding tests can be related with the effect of fatigue.

References

[1] Haubner R, Kalss W. Diamond deposition on hardmetal substrates – comparison of substrate pre-treatments and industrial applications. Int J Refract Met Hard Mater 2010; 28: 475-483.
http://dx.doi.org/10.1016/j.ijrmhm.2010.03.004
[2] Auciello O, Birrell J, Carlisle JA, Gerbi JE, Xiao X, Peng B, Espinosa HD. Materials science and fabrication process for a new MEMS technology based on ultrananocrystalline diamond thin films. J Phys Condens Matter 2004; 16: R539-R552.
http://dx.doi.org/10.1088/issn.0953-8984
[3] Roy M, Haubner R. Surface Engineering for Enhanced Performance against Wear, Springer 2013.
[4] Van Bouwelen FM, Enckevort WJP. A simple model to explain the anisotropy of diamond polishing. Diam Relat Mater 1999; 8: 840-844.
http://dx.doi.org/10.1016/s0925-9635(98)00347-1
[5] Hird JR, Field JE. Diamond polishing. Proc R Soc Lond A 2004; 460: 3547-3568.
http://dx.doi.org/10.1098/rspa.2004.1339
[6] Pastewka L, Moser S, Gumbsch P, Moseler M. Anisotropic mechanical amorphization drives wear in diamond. Nat Mater 2011; 10: 34-38.
http://dx.doi.org/10.1038/nmat2902
[7] Chromik RR, Winfrey AL, Lüning J, Nemanich RJ, Wahl KJ. Run-in behavior of nanocrystalline diamond coatings studied by in situ tribometry. Wear 2008; 265: 477-489.
http://dx.doi.org/10.1016/j.wear.2007.11.023
[8] Konicek AR, Grierson DS, Sumant AV, Friedmann TA, Sullivan JP, Gilbert PUPA, Sawyer WG, Carpick RW. Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys Rev B 2012; 85: 155448-1-155448-13.
http://dx.doi.org/10.1103/physrevb.85.155448
[9] Erdemir A, Halter M, Fenske GR, Zuiker C, Csencsits R, Krauss AR, Gruen DM. Friction and wear mechanisms of smooth diamond films during sliding in air and dry nitrogen. Tribol Trans 1997; 40: 667-675.
http://dx.doi.org/10.1080/10402009708983707
[10] Bhushan B, Subramaniam VV, Malshe A, Gupta BK, Ruan J. Tribological properties of polished diamond films. J Appl Phys 1993; 74(6): 4174-4180.
http://dx.doi.org/10.1063/1.354421
[11] Erdemir A, Fenske GR, Krauss AR, Gruen DM, McCauley T, Csencsits RT. Tribological properties of nanocrystalline diamond films. Surf Coat Technol 1999; 120-121: 565-572.
http://dx.doi.org/10.1016/s0257-8972(99)00443-0
[12] Podgursky V, Hantschel T, Bogatov A, Kimmari E, Antonov M, Viljus M, Mikli V, Tsigkourakos M, Vandevorst W, Buijnsters JG, Raadik AT, Kulu P. Rippling on wear scar surfaces of nanocrystalline diamond films after reciprocating sliding against ceramic balls. Tribol Lett 2014; 55: 493-503.
http://dx.doi.org/10.1007/s11249-014-0379-z
[13] Bogatov A, Podgursky V, Raadik AT, Kamjula AR, Hantschel T, Tsigkourakos M, Kulu P. Investigation of morphology changes on nanocrystalline diamond film surfaces during reciprocating sliding against Si3N4 balls. Key Engineering Materials 2014; 604: 126-129.
http://dx.doi.org/10.4028/www.scientific.net/10.4028/www.scientific.net/kem.604.126kem.604.126
[14] Bogatov A, Viljus M, Raadik T, Hantschel T, Podgursky V. Nanocrystalline diamond films deformation observed during sliding tests against Si3N4 balls as a possible cause for ripple formation on wear scars. Materials Science (Medžiagotyra) 2015; 21: 349-352.
http://dx.doi.org/10.5755/j01.ms.21.3.7232
[15] Bogatov A, Traksmaa R, Podgursky V. Changes in surface morphology, deflection and wear of microcrystalline diamond film observed during sliding tests against Si3N4 balls. Key Engineering Materials 2016; 674: 145-151.
http://dx.doi.org/10.4028/www.scientific.net/kem.674.145
[16] Blau PJ. On the nature of running-in. Tribol Int 2005; 38(11): 1007-1012.
http://dx.doi.org/10.1016/j.triboint.2005.07.020
[17] Yashin M, Bogatov A, Podgursky V. Comparative analysis of wear rates of microcrystalline diamond and diamond-like carbon coatings deposited on WC-Co substrates. Accepted for Key Engineering Materials 2017.
[18] Holmberg K, Ronkainen H, Laukkanen A, Wallin K. Friction and wear of coated surfaces - scales, modeling and simulation of tribomechanisms. Surf Coat Technol 2007; 202: 1034-1049.
http://dx.doi.org/10.1016/j.surfcoat.2007.07.105
[19] Holmberg K, Matthews A, Tribological Properties of Metallic and Ceramic Coatings, in Modern Tribology Handbook, (ed. B. Bhushan), 2/23, CRC Press, Boca Raton, USA 2001; 827 – 870.
[20] Ronkainen H, Koskinen J, Varjus S, Holmberg K. Load-carrying capacity evaluation of coating/substrate systems for hydrogen-free and hydrogenated diamond-like carbon films. Tribol Lett 1999; 6: 63-73.
http://dx.doi.org/10.1023/a:1019107622768
[21] Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 2004; 19(1): 3-20.
http://dx.doi.org/10.1557/jmr.2004.19.1.3
[22] Tsui TY, Pharr GM. Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J Mater Res 1999; 14(1): 292-301.
http://dx.doi.org/10.1557/jmr.1999.0042
[23] Michler J, Mermoux M, von Kaenel Y, Haouni A, Lucazeau G, Blank E. Residual stress in diamond films: origins and modeling. Thin Solid Films 1999; 357(2): 189-201.
http://dx.doi.org/10.1016/s0040-6090(99)00528-3
[24] Bowden FP, Freitag EH. The friction of solids at very high speeds. Proc R Soc A 1958; 248: 350-367.
http://dx.doi.org/10.1098/rspa.1958.0248
[25] Podgursky V, Bogatov A, Sedov V, Sildos I, Mere A, Viljus M, Buijnsters JG, Ralchenko V. Growth dynamics of nanocrystalline diamond films produced by microwave plasma enhanced chemical

vapor deposition in methane/hydrogen/air mixture: Scaling analysis of surface morphology. Diam Relat Mater 2015; 58: 172-179.
http://dx.doi.org/10.1016/j.diamond.2015.07.002
[26] Bhushan B, Li X. Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J of Materials Research 1997; 12 (1): 54-63.
http://dx.doi.org/10.1557/jmr.1997.0010
[27] Boyd EJ, Uttamchandani D. Measurement of the anisotropy of Young’s modulus in single-crystal silicon. J of Microelectromechanical Systems 2012; 21(1): 243-249.
http://dx.doi.org/10.1109/jmems.2011.2174415
[28] Gan L, Ben-Nissan B, Ben-David A. Modelling and finite element analysis of ultra-microhardness indentation of thin films. Thin Solid Films 1996; 290-291: 362-366.
http://dx.doi.org/10.1016/s0040-6090(96)08972-9
[29] Ericson F, Schweitz J-A. Micromechanical fracture strength of silicon. J Appl Phys 1990; 68: 5840-5844.
http://dx.doi.org/10.1063/1.346957
[30] Williams OA, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K, Jackman RB. Growth, electronic properties and applications of nanodiamond. Diam Relat Mater 2008; 17: 1080-1088.
http://dx.doi.org/10.1016/j.diamond.2008.01.103
[31] Williams OA, Nanocrystalline diamond. Diam Relat Mater 2011; 20: 621-640.
http://dx.doi.org/10.1016/j.diamond.2011.02.015
[32] Setasuwona P, Metanawin T. Study of diamond film interface structure and contacting area. Materials Research 2009; 12(1): 89-94.
http://dx.doi.org/10.1590/s1516-14392009000100011
[33] Nosonovsky M, Bhushan B. Thermodynamics of surface degradation, self-organization and self-healing for biomimetic surfaces. Phil Trans R Soc A 2009; 367: 1607-1627.
http://dx.doi.org/10.1098/rsta.2009.0009
[34] Fox-Rabinovich GS, Totten GE, Eds. Self-organization during friction, Boca Raton, FL: CRC Press 2006.

Downloads

Published

2016-12-21

How to Cite

Podgursky, V., Bogatov, A., Sobolev, S., Viljus, M., Sedov, V., & Ashkinazi, E. (2016). Effect of Nanocrystalline Diamond Films Deflection on Wear Observed in Reciprocating Sliding Tests. Journal of Coating Science and Technology, 3(3), 109–115. https://doi.org/10.6000/2369-3355.2016.03.03.2

Issue

Section

Articles