Enhancing the Thermal and Mechanical Properties of Organic-Inorganic Hybrid Nanocomposite Films Based on Poly Lactic Acid/OMMT Nano Clay

Authors

  • S. Mahendra Selvan Department of Chemistry, College of Engineering, Anna University, Chennai-600025, India
  • D. Duraibabu Department of Chemistry, College of Engineering, Anna University, Chennai-600025, India
  • A. Gnanaprakasam Department of Chemistry, College of Engineering, Anna University, Chennai-600025, India
  • S. Ananda Kumar Department of Chemistry, College of Engineering, Anna University, Chennai-600025, India

DOI:

https://doi.org/10.6000/2369-3355.2017.04.03.2

Keywords:

PLA, OMMT nano clay, Mechanical properties, Thermal stability, Surface morphology, Water absorption

Abstract

Organic (PLA) inorganic (OMMT nano clay) hybrid nanocomposite films were fabricated using poly lactic acid (PLA) with various weight percentages (1-3wt%) of organically modified montmorillonite (OMMT) nano clay by means of one step solvent casting method. The thermal, mechanical and water absorption properties were determined as per standard testing methods to determine the optimum percentage loading of OMMT nano clay within the PLA-OMMT nanocomposite was investigated. The surface morphology of the organic-inorganic hybrid nanocomposite films was analyzed through XRD, SEM, and TEM surface analytical techniques. The incorporation of OMMT clay in to PLA matrix is found to have enhanced the thermo-mechanical properties. The water absorption and solubility test results also support the data from thermo-mechanical tests. The 2 wt % OMMT clay loaded PLA films showed the best results among all. The obtained results showed that the thermal, mechanical and water absorption properties could be increased significantly with the optimum incorporation of OMMT nano clay in a PLA matrix, in comparision wih the neat PLA.

References

Carol TM, Pellegrino J, Paster MD. Opportunities in the industrial biobased products. Applied Biochemistry and Biotechnology 2004; 113: 871-885. https://doi.org/10.1385/ABAB:115:1-3:0871 DOI: https://doi.org/10.1385/ABAB:115:1-3:0871

Molinaro S, Romero MC, Boaro M, Sensidoni A, Lagazio C, Morrise M, Kerry J. Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based. Journal of Food Engineering 2013; 117: 113-123. https://doi.org/10.1016/j.jfoodeng.2013.01.021 DOI: https://doi.org/10.1016/j.jfoodeng.2013.01.021

Badía JD, Strömberg E, Ribes-Greus A, Karlsson S. Assessing the MALDI-TOF MS sample preparation procedure to analyze the influence of thermo-oxidative ageing and thermo-mechanical degradation on poly(lactide). Eur Polym J 2011; 47(7): 1416-1428. https://doi.org/10.1016/j.eurpolymj.2011.05.001 DOI: https://doi.org/10.1016/j.eurpolymj.2011.05.001

Bouwmeester H, Hollman PC, Peters RJ. Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environmental Science Technology 2015; 49: 8932-8947. https://doi.org/10.1021/acs.est.5b01090 DOI: https://doi.org/10.1021/acs.est.5b01090

Koelmans AA, Bakir A, Burton GA, Janssen CR. Microplastic as a Vector for Chemicals in the Aquatic Environment: Critical Review and Model-Supported Reinterpretation of Empirical Studies. Environmental Science Technology 2016; 50: 3315-3326. https://doi.org/10.1021/acs.est.5b06069 DOI: https://doi.org/10.1021/acs.est.5b06069

Araújo A, Botelho G, Oliveira M, Machado AV. Influence of clay organic modifier on the thermal-stability of PLA based nanocomposite. Applied Clay Science 2014; 88-89: 144-150. https://doi.org/10.1016/j.clay.2013.12.005

Niu X, Liu Y, Song Y, Han J, Pan H. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging. Carbohydrate Polymers 2018; 183(1): 102-109. https://doi.org/10.1016/j.carbpol.2017.11.079 DOI: https://doi.org/10.1016/j.carbpol.2017.11.079

Bouakaz BS, Habi A, Grohens Y, Pillin I. Organomontmorillonite/ graphene-PLA/PCL nanofilled blends: New strategy to enhance the functional properties of PLA/PCL blend. Applied Clay Science 2017; 139: 81-91. https://doi.org/10.1016/j.clay.2017.01.014

Nampoothiri KM, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresource Technol 2010; 101(22): 8493-501. https://doi.org/10.1016/j.biortech.2010.05.092 DOI: https://doi.org/10.1016/j.biortech.2010.05.092

Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, et al. Preparation and characterization of poly(L-Lactic Acid) foams. Polymer 1994; 35(5): 1068-77. https://doi.org/10.1016/0032-3861(94)90953-9 DOI: https://doi.org/10.1016/0032-3861(94)90953-9

Zhao H, Cui Z, Wang X, Turng L-S, Peng X. Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposite. Composites: Part B 2013; 51: 79-91. https://doi.org/10.1016/j.compositesb.2013.02.034 DOI: https://doi.org/10.1016/j.compositesb.2013.02.034

Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci 2008; 33: 820-852. https://doi.org/10.1016/j.progpolymsci.2008.05.004 DOI: https://doi.org/10.1016/j.progpolymsci.2008.05.004

De Silva RT, Pasbakhsh P, Mae LS, Kit AY. ZnO deposited/encapsulated halloysite-poly (lactic acid) (PLA) nanocomposite for high performance packagingfilms with improved mechanical and antimicrobial properties. Applied Clay Science 2015; 111: 10-20. https://doi.org/10.1016/j.clay.2015.03.024 DOI: https://doi.org/10.1016/j.clay.2015.03.024

Urquijo J, Guerrica-Echevarr ıa G, Eguiazabal JI. Melt processed PLA/PCL blends:Effect of processing method on phase structure, morphology, and mechanical properties. J Appl Polym Sci 2015; 132: 42641. https://doi.org/10.1002/app.42641 DOI: https://doi.org/10.1002/app.42641

Zhang N, Zeng C, Wang L, Ren J. Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with epoxyfunctional styrene acrylic copolymer as reactive agent. J Polym Environ 2012; 21: 286-292. https://doi.org/10.1007/s10924-012-0448-z DOI: https://doi.org/10.1007/s10924-012-0448-z

Zhou Y, Lei L, Yang B, Li J, Ren J. Preparation of PLA-based nanocomposite modified by nanoattapulgite with good toughness-strength balance. Polymer Testing 2017; 60: 78-83. https://doi.org/10.1016/j.polymertesting.2017.03.007

Duraibabu D, Madhumitha V, Alagar M, Kumar SA, Abhinandan S. Development and Characterization of a Novel Skeletal Modified Tetraglycidyl Epoxy Toughened DGEBA Epoxy Matrices Polymer Science Ser A 2014; 56: 480-487. https://doi.org/10.1134/S0965545X1404004X DOI: https://doi.org/10.1134/S0965545X1404004X

Gu JRSY, Dong B. Melt rheology of polylactide/montmorillonite nanocomposite. J Polym Sci B-Polym Phys 2007; 45: 3189-3196. https://doi.org/10.1002/polb.21317 DOI: https://doi.org/10.1002/polb.21317

Yu F, Huang HX. Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles. Polym Test 2015; 45: 107-113. https://doi.org/10.1016/j.polymertesting.2015.06.001 DOI: https://doi.org/10.1016/j.polymertesting.2015.06.001

Rhim J-W, Hong S-I, Ha C-S. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay compositefilms. LWT-Food Sci Technol 2009; 42(2): 612-7. https://doi.org/10.1016/j.lwt.2008.02.015 DOI: https://doi.org/10.1016/j.lwt.2008.02.015

Aghjeh MR, Kazerouni Y, Otadi M, Khonakdar HA, Jafari SH, Ebadi-Dehaghani H, Mousavi SH. A combined experimental and theoretical approach to quantitative assessment of microstructure in PLA/PP/Organo-Clay nanocomposite; wide-angle x-ray scattering and rheological analysis. Composites Part B 2018; 137: 235-246. https://doi.org/10.1016/j.compositesb.2017.10.036 DOI: https://doi.org/10.1016/j.compositesb.2017.10.036

Dhanapal D, Selvarasu V, Muthu Karuppan A, Srinivasan AK. Synthesis and Characterization of New Ether Linked Tetraglycidyl Epoxy Silicate Nanocomposite, Silicon, 2014. https://doi.org/10.1007/s12633-014-9183-5 DOI: https://doi.org/10.1007/s12633-014-9183-5

Duraibabu D, Rajagopal D, Kumar SA. A first MMT reinforced nanocomposite functionalized with ether linkage derived from tetraglycidyl/diglycidyl epoxy building block. Progress in Organic Coatings 2017; 104: 135-140. https://doi.org/10.1016/j.porgcoat.2016.12.014 DOI: https://doi.org/10.1016/j.porgcoat.2016.12.014

Narayanan M, Loganathan S, Valapa RB, Thomas S, Varghese TO. UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules 2017; 99: 37-45. https://doi.org/10.1016/j.ijbiomac.2017.01.152 DOI: https://doi.org/10.1016/j.ijbiomac.2017.01.152

Krishnaiah P, Ratnam CT, Manickam S. Development of silane grafted halloysite nanotube reinforced polylactide nanocomposite for the enhancement of mechanical, thermal and dynamic-mechanical properties. Applied Clay Science 2017; 135: 583-595. https://doi.org/10.1016/j.clay.2016.10.046 DOI: https://doi.org/10.1016/j.clay.2016.10.046

Arjmandi R, Hassana A, Mohamad Haafizb MK, Zakaria Z. Partial replacement effect of montmorillonite with cellulose nanowhiskers on polylactic acid nanocomposite. International Journal of Biological Macromolecules 2015; 81: 91-99. https://doi.org/10.1016/j.ijbiomac.2015.07.062

Wang L, Qiu J, Sakai E, Wei X. The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposite prepared by twin-screw extrusion. Composites: Part A 2016; 89: 18-25. https://doi.org/10.1016/j.compositesa.2015.12.016 DOI: https://doi.org/10.1016/j.compositesa.2015.12.016

Bouakaz BS, Habi A, Grohens Y, Pillin I. Organomontmorillonite/ graphene-PLA/PCL nanofilled blends: New strategy to enhance the functional properties of PLA/PCL blend. Applied Clay Science 2017; 139: 81-91. https://doi.org/10.1016/j.clay.2017.01.014 DOI: https://doi.org/10.1016/j.clay.2017.01.014

Arjmandi R, Hassana A, Haafizb MKM, Zakaria Z, Md. Islam S. Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposite. International Journal of Biological Macromolecules 2016; 82: 998-1010. https://doi.org/10.1016/j.ijbiomac.2015.11.028 DOI: https://doi.org/10.1016/j.ijbiomac.2015.11.028

Arjmandi R, Hassan A, Haafiz MKM, Zakaria Z. Partial replacement effect of montmorillonite with cellulose nanowhiskers on polylactic acid nanocomposite. Int J Biol Macromol 2015; 81: 91-99. https://doi.org/10.1016/j.ijbiomac.2015.07.062 DOI: https://doi.org/10.1016/j.ijbiomac.2015.07.062

Ogata N, Jimenez G, Kawai H, Ogihara T, J of Polym Science: Part B: Polymer Physics 1997; 35: 389-396. https://doi.org/10.1002/(SICI)1099-0488(19970130)35:2<389::AID-POLB14>3.0.CO;2-E DOI: https://doi.org/10.1002/(SICI)1099-0488(19970130)35:2<389::AID-POLB14>3.0.CO;2-E

Ebadi-Dehaghani H, Barikani M, Khonakdar HA, Jafari SH, Wagenknecht U, Heinrich G. On O2 gas permeability of PP/PLA/clay nanocomposite: A molecular dynamic simulation approach. Polymer Testing 2015; 45: 139-151. https://doi.org/10.1016/j.polymertesting.2015.05.010 DOI: https://doi.org/10.1016/j.polymertesting.2015.05.010

Najafi N, Heuzey M-C, Carreau PJ, Therriault D, Park CB. Mechanical and morphological properties of injection molded linear and branched-polylactide (PLA) nanocomposite foams. European Polymer Journal 2015; 73: 455-465. https://doi.org/10.1016/j.eurpolymj.2015.11.003 DOI: https://doi.org/10.1016/j.eurpolymj.2015.11.003

Zhou Y, Lei L, Yang B, Li J, Ren J. Preparation of PLA-based nanocomposite modified by nanoattapulgite with good toughness-strength balance. Polymer Testing 2017; 60: 78-83. https://doi.org/10.1016/j.polymertesting.2017.03.007 DOI: https://doi.org/10.1016/j.polymertesting.2017.03.007

Scaffaro R, Botta L, Maio A, Gallo G. PLA graphene nanoplatelets nanocomposite: Physical properties and release kinetics of an antimicrobial agent. Composites Part B 2017; 109: 138-146. https://doi.org/10.1016/j.compositesb.2016.10.058 DOI: https://doi.org/10.1016/j.compositesb.2016.10.058

Araújo A, Botelho G, Oliveira M, Machado AV. Influence of clay organic modifier on the thermal-stability of PLA based nanocomposite. Applied Clay Science 2014; 88-89: 144-150. https://doi.org/10.1016/j.clay.2013.12.005 DOI: https://doi.org/10.1016/j.clay.2013.12.005

Pinto VC, Ramos T, Alves ASF, Xavier J, Tavares PJ, Moreira, R.M. Guedes PMGP. Dispersion and failure analysis of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposite by SEM and DIC inspection. Engineering Failure Analysis 2017; 71: 63-71. https://doi.org/10.1016/j.engfailanal.2016.06.009 DOI: https://doi.org/10.1016/j.engfailanal.2016.06.009

Ayana B, Suin S, Khatua BB. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposite using unmodified nanoclay. Carbohydrate Polymers 2014; 110: 430-439. https://doi.org/10.1016/j.carbpol.2014.04.024 DOI: https://doi.org/10.1016/j.carbpol.2014.04.024

Downloads

Published

2019-01-11

How to Cite

Selvan, S. M., Duraibabu, D., Gnanaprakasam, A., & Kumar, S. A. (2019). Enhancing the Thermal and Mechanical Properties of Organic-Inorganic Hybrid Nanocomposite Films Based on Poly Lactic Acid/OMMT Nano Clay. Journal of Coating Science and Technology, 4(3), 59–65. https://doi.org/10.6000/2369-3355.2017.04.03.2

Issue

Section

Articles