Diamond Deposition on Graphite in Hydrogen Microwave Plasma

Authors

  • Jiaqi Zhu Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
  • Kaili Yao Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
  • Bing Dai Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
  • Victor Ralchenko Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
  • Guoyang Shu Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
  • Jiwen Zhao Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
  • Kang Liu Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
  • Lei Yang Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
  • Andrey Bolshakov Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
  • Jiecai Han Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China

DOI:

https://doi.org/10.6000/2369-3355.2018.05.01.2

Keywords:

Microwave plasma, diamond deposition, hydrogen plasma, graphite, etching.

Abstract

Hydrogen plasma etching of graphite generates radicals that can be used for diamond synthesis by chemical vapor deposition (CVD). We studied the etching of polycrystalline graphite by a hydrogen microwave plasma, growth of diamond particles of the non-seeded graphite substrates, and characterized the diamond morphology, grain size distribution, growth rate, and phase purity. The graphite substrates served simultaneously as a carbon source, this being the specific feature of the process. A disorder of the graphite surface structure reduces as the result of the etching as revealed with Raman spectroscopy. The diamond growth rate of 3 – 5 µm/h was achieved, the quality of the produced diamond grains improving with growth time due to inherently nonstationary graphite etching process

References

Fuentes-Fernandez E, Alcantar-Peña J, Lee G, et al. Synthesis and characterization of microcrystalline diamond to ultrananocrystalline diamond films via Hot Filament Chemical Vapor Deposition for scaling to large area applications. Thin Solid Films 2016; 603: 62-68. https://doi.org/10.1016/j.tsf.2015.11.088 DOI: https://doi.org/10.1016/j.tsf.2015.11.088

Tzeng Y-K, Zhang JL, Lu H, et al. Vertical-Substrate MPCVD Epitaxial Nanodiamond Growth. Nano Lett 2017; 17: 1489-1495. https://doi.org/10.1021/acs.nanolett.6b04543 DOI: https://doi.org/10.1021/acs.nanolett.6b04543

Villalpando I, John P, Porro S, Wilson J. Deposition of polycrystalline and nanocrystalline diamond on graphite: effects of surface pre-treatments. Appl Phys A 2017; 123: 183. https://doi.org/10.1007/s00339-017-0819-3 DOI: https://doi.org/10.1007/s00339-017-0819-3

Sussmann RS, (Ed.), CVD Diamond for Electronic Devices and Sensors, JohnWiley & Sons, Chichester 2009. https://doi.org/10.1002/9780470740392 DOI: https://doi.org/10.1002/9780470740392

Aharonovich E. Neu, Diamond nanophotonics. Adv Opt Mater 2014; 2: 911-928. https://doi.org/10.1002/adom.201400189 DOI: https://doi.org/10.1002/adom.201400189

Balmer RS, Brandon JR, Clewes CL, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications. J Phys Cond Matter 2009; 21: 364221. https://doi.org/10.1088/0953-8984/21/36/364221 DOI: https://doi.org/10.1088/0953-8984/21/36/364221

Voss A, Stateva SR, Reithmaier JP, Apostolova MD, Popov C. Patterning of the surface termination of ultrananocrystalline diamond films for guided cell attachment and growth. Surf Coat Tech 2017; 321: 229-235. https://doi.org/10.1016/j.surfcoat.2017.04.066 DOI: https://doi.org/10.1016/j.surfcoat.2017.04.066

Xiang D, Guo Z, Zhang L, Feng H. Preparation and cutting performance of ultra-smooth CVD composite diamond coated ladder-shape drilling tools. Diam Relat Mater 2018; 81: 54-60. https://doi.org/10.1016/j.diamond.2017.11.008 DOI: https://doi.org/10.1016/j.diamond.2017.11.008

Schwander M, Partes K. A review of diamond synthesis by CVD processes. Diam Relat Mater 2011; 20: 1287-1301. https://doi.org/10.1016/j.diamond.2011.08.005 DOI: https://doi.org/10.1016/j.diamond.2011.08.005

Butler JE, Mankelevich YA, Cheesman A, Ma J, Ashfold MNR. Understanding the chemical vapor deposition of diamond: recent progress. J Phys Cond Matter 2009; 21: 364201. https://doi.org/10.1088/0953-8984/21/36/364201 DOI: https://doi.org/10.1088/0953-8984/21/36/364201

Shin S-D, Hwang NM, Kim D-Y. High rate of diamond deposition through graphite etching in a hot filament CVD reactor. Diam Relat Mater 2002; 11: 1337-1343. https://doi.org/10.1016/S0925-9635(01)00671-9 DOI: https://doi.org/10.1016/S0925-9635(01)00671-9

Yang Q, Chen W, Xiao C, Sammynaiken R, Hirose A. Synthesis of diamond films and nanotips through graphite etching. Carbon 2005; 43: 748-754. https://doi.org/10.1016/j.carbon.2004.10.047 DOI: https://doi.org/10.1016/j.carbon.2004.10.047

Yang Q, Chen W, Xiao C, Hirose A, Bradley M. Low temperature synthesis of diamond thin films through graphite etching in a microwave hydrogen plasma. Carbon 2005; 43: 2635-2638. https://doi.org/10.1016/j.carbon.2005.05.010 DOI: https://doi.org/10.1016/j.carbon.2005.05.010

Lu X, Yang Q, Xiao C, Hirose A. Effects of hydrogen flow rate on the growth and field electron emission characteristics of diamond thin films synthesized through graphite etching. Diam Relat Mater 2007; 16: 1623-1627. https://doi.org/10.1016/j.diamond.2007.02.005 DOI: https://doi.org/10.1016/j.diamond.2007.02.005

Silva WDM, Ferreira NG, Travello J, Almeida EC, Azevedo AF, Baldan MR. Dependence of diamond nucleation and growth through graphite etching at different temperatures. Diam Relat Mater 2007; 16: 1705-1710. https://doi.org/10.1016/j.diamond.2007.05.004 DOI: https://doi.org/10.1016/j.diamond.2007.05.004

Lu X, Yang Q, Xiao C, Hirose A, Tiedje T. Synthesis and field electron emission characteristics of diamond multilayer films grown by graphite etching. J Phys D Appl Phys 2007; 40: 4010. https://doi.org/10.1088/0022-3727/40/13/015 DOI: https://doi.org/10.1088/0022-3727/40/13/015

Salvadori M, Ager J III, Brown I, Krishnan K. Diamond synthesis by microwave plasma chemical vapor deposition using graphite as the carbon source. Appl Phys Lett 1991; 59: 2386-2388. https://doi.org/10.1063/1.106024 DOI: https://doi.org/10.1063/1.106024

Yao K, Dai B, Ralchenko V, et al. Diamond films and particles growth in hydrogen microwave plasma with graphite solid precursor: Optical emission spectroscopy study. Diam Relat Mater 2018; 82: 33-40. https://doi.org/10.1016/j.diamond.2017.12.020 DOI: https://doi.org/10.1016/j.diamond.2017.12.020

Tang CJ, Neves AJ, Fernandes AJS. Influence of nucleation density on film quality, growth rate and morphology of thick CVD diamond films. Diam Relat Mater 2003; 12: 1488-1494. https://doi.org/10.1016/S0925-9635(03)00179-1 DOI: https://doi.org/10.1016/S0925-9635(03)00179-1

Yao K, Dai B, Zhu J, et al. Diamond micropowder synthesis via graphite etching in a microwave hydrogen plasma. Powder Technol 2017; 32: 124-130. https://doi.org/10.1016/j.powtec.2017.09.021 DOI: https://doi.org/10.1016/j.powtec.2017.09.021

Dubray JJ, Pantano CG, Yarbrough WA. Graphite as a substrate for diamond growth. J Appl Phys 1992; 72: 3136-3142. https://doi.org/10.1063/1.351475 DOI: https://doi.org/10.1063/1.351475

Lambrecht WRL, Lee CH, Segall B, Angus JC, Li ZD, Sunkara M. Diamond nucleation by hydrogenation of the edges of graphitic precursors. Nature 1993; 364: 607-610. https://doi.org/10.1038/364607a0 DOI: https://doi.org/10.1038/364607a0

Huang Q, Lei Q, Deng Q, et al. Raman spectra and modulus measurement on the cross section of proton-irradiated graphite. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2017; 412: 221-226. https://doi.org/10.1016/j.nimb.2017.09.004 DOI: https://doi.org/10.1016/j.nimb.2017.09.004

Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 2007; 9: 1276-1290. https://doi.org/10.1039/B613962K DOI: https://doi.org/10.1039/B613962K

Reich S, Thomsen C. Raman spectroscopy of graphite. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 2004; 362: 2271-2288. https://doi.org/10.1098/rsta.2004.1454 DOI: https://doi.org/10.1098/rsta.2004.1454

Poltoratskiy VG, Lavrinenko VI, Safonova MN, Petasyuk GA. A novel composite diamond-containing dispersed material of natural and synthetic diamonds powders and abrasive tools made of it. Diam Relat Mater 2016; 68: 66-70. https://doi.org/10.1016/j.diamond.2016.06.004 DOI: https://doi.org/10.1016/j.diamond.2016.06.004

Kanai C, Watanabe K, Takakuwa Y. Ab initio calculations on etching of graphite and diamond surfaces by atomic hydrogen. Phys Rev B 2001; 63: 235311. https://doi.org/10.1103/PhysRevB.63.235311 DOI: https://doi.org/10.1103/PhysRevB.63.235311

Vlasov I, Goovaerts E, Ralchenko V, Konov V, Khomich A, Kanzyuba M. Vibrational properties of nitrogen-doped ultrananocrystalline diamond films grown by microwave plasma CVD. Diam Relat Mater 2007; 16: 2074-2077. https://doi.org/10.1016/j.diamond.2007.07.007 DOI: https://doi.org/10.1016/j.diamond.2007.07.007

Shakhov FM, Abyzov AM, Takai K. Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature. J Solid State Chem 2017; 256: 72-92. https://doi.org/10.1016/j.jssc.2017.08.009 DOI: https://doi.org/10.1016/j.jssc.2017.08.009

Reinhold-López K, Braeuer A, Romann B, Popovska-Leipertz N, Leipertz A. In situ Raman monitoring of the formation and growth of carbon nanotubes via chemical vapor deposition. Procedia Engineering 2015; 102: 190-200. https://doi.org/10.1016/j.proeng.2015.01.126 DOI: https://doi.org/10.1016/j.proeng.2015.01.126

Harada Y, Hishinuma R, Terashima C, et al. Rapid growth of diamond and its morphology by in-liquid plasma CVD. Diam Relat Mater 2016; 63: 12-16. https://doi.org/10.1016/j.diamond.2015.10.009 DOI: https://doi.org/10.1016/j.diamond.2015.10.009

Bolshakov A, Ralchenko V, Yurov V, et al. High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation. Diam Relat Mater 2016; 62: 49-57. https://doi.org/10.1016/j.diamond.2015.12.001 DOI: https://doi.org/10.1016/j.diamond.2015.12.001

Lee S-T, Lin Z, Jiang X. CVD diamond films: nucleation and growth. Materials Science and Engineering: R: Reports 1999; 25: 123-154. https://doi.org/10.1016/S0927-796X(99)00003-0 DOI: https://doi.org/10.1016/S0927-796X(99)00003-0

Guo J, Li C, Liu J, et al. Structural evolution of Ti destroyable interlayer in large-size diamond film deposition by DC arc plasma jet. Appl Surf Sci 2016; 370: 237-242. https://doi.org/10.1016/j.apsusc.2016.02.158 DOI: https://doi.org/10.1016/j.apsusc.2016.02.158

Guo J, Liu J, Hua C, et al. Interfacial stress evolution simulation on the graphite substrate/interlayer/diamond film during the cooling process. Diam Relat Mater 2017; 75; 12-17. https://doi.org/10.1016/j.diamond.2016.12.017 DOI: https://doi.org/10.1016/j.diamond.2016.12.017

Downloads

Published

2018-08-16

How to Cite

Zhu, J., Yao, K., Dai, B., Ralchenko, V., Shu, G., Zhao, J., Liu, K., Yang, L., Bolshakov, A., & Han, J. (2018). Diamond Deposition on Graphite in Hydrogen Microwave Plasma. Journal of Coating Science and Technology, 5(1), 12–18. https://doi.org/10.6000/2369-3355.2018.05.01.2

Issue

Section

Articles